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Computer Design and Organization

• Architecture = Design + Organization + Performance

• Architecture of modern computer systems
– Central processing unit: pipelined, exhibiting instruction level

parallelism, and allowing speculation .

– Memory hierarchy: multi-level cache hierarchy and its
management, including hardware and software assists for enhanced
performance; interaction of hardware/software for virtual memory
systems.

– Input/output: Buses; Disks – performance and reliability (RAIDs)

– Multiprocessors: SMP’s and cache coherence
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Technological improvements

• CPU :
– Annual rate of speed improvement is 35% before 1985 and 60%

since 1985.

– Slightly faster than increase in number of transistors on-chip

• Memory:
– Annual rate of speed improvement is < 10%

– Density quadruples in 3 years.

• I/O  :
– Access time has improved by 30% in 10 years

– Density improves by 50% every year
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Improvements in Processor Speed

• Technology
– Faster clock (commercially 1.7 GHz available; prototype > 3 GHz?)

• More transistors = More functionality
– Instruction Level parallelism (ILP)
– Multiple functional units, superscalar or out-of-order execution
– 40 Million transistors (Pentium 4) but Moore law still applies.

• Extensive pipelining
– From single 5 stage to multiple pipes as deep as 20 stages

• Sophisticated instruction fetch units
– Branch prediction; register renaming; trace caches

• On-chip Memory
– One or two levels of caches. TLB’s for instruction and data
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Performance evaluation basics

• Performance inversely proportional to execution time

• Elapsed time includes:
user + system; I/O; memory accesses; CPU per se

• CPU execution time (for a given program): 3 factors
– Number of instructions executed

– Clock cycle time (or rate)

– CPI: number of cycles per instruction (or its inverse IPC)

CPU execution time = Instruction count * CPI * clock cycle time
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Components of the CPI

• CPI for single instruction issue with ideal pipeline = 1

• Previous formula can be expanded to take into account
classes of instructions
– For example in RISC machines: branches, f.p., load-store.

– For example in CISC machines: string instructions

CPI = Σ CPIi * fi  where fi  is the frequency of instructions in class i

• Will talk about “contributions to the CPI” from, e.g,:
– memory hierarchy

– branch (misprediction)

– hazards etc.
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Comparing and summarizing benchmark
performance

• For execution times, use  (weighted) arithmetic mean:

Weight. Ex. Time = Σ Weighti * Timei

• For rates, use  (weighted) harmonic mean:

       Weight. Rate = 1 / Σ (Weighti / Rate i )

• See paper by Jim Smith (cf. ref in outline)
“Simply put, we consider one computer to be faster than another if it

executes the same set of programs in less time”

• Common benchmark suite: SPEC (SPEC92, SPEC95,
SPEC00 etc.)
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Computer design: Make the common case fast

• Amdahl’s law (speedup)
Speedup = (performance with enhancement)/(performance base case)
Or equivalently
Speedup = (exec.time base case)/(exec.time with enhancement)

• Application to parallel processing
– s  fraction of program that is sequential
– Speedup S is at most 1/s
– That is if 20% of your program is sequential the maximum speedup with

an infinite number of processors is at most  5
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Pipelining

• One instruction/result every cycle (ideal)
– Not in practice because of hazards

• Increase throughput (wrt non-pipelined implementation)
– Throughput = number of results/second

•  Speed-up (over non-pipelined implementation)
– In the ideal case, if n stages , the speed-up will be close to n. Can’t

make n too large: load balancing between stages & hazards

• Might slightly increase the latency of individual
instructions (pipeline overhead)
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Basic pipeline implementation

• Five stages: IF, ID, EXE, MEM, WB

• What are the resources needed and where
– ALU’s, Registers, Multiplexers etc.

• What info. is to be passed between stages
– Requires pipeline registers between stages: IF/ID, ID/EXE,

EXE/MEM and MEM/WB

– What is stored in these pipeline registers?

• Design of the control unit.
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Hazards

• Structural hazards
– Resource conflict (mostly in multiple issue machines; also for

resources which are used for more than one cycle see later)

• Data dependencies
– Most common RAW but also WAR and WAW in OOO execution

• Control hazards
– Branches and other flow of control disruptions

• Consequence: stalls in the pipeline
– Equivalently: insertion of bubbles or of no-ops
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Pipeline speed-up
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Example of structural hazard

• For single issue machine: common data and instruction
memory (unified cache)
– Pipeline stall every load-store instruction (control easy to

implement)

• Better solutions
– Separate I-cache and D-cache

– Instruction buffers

– Both + sophisticated instruction fetch unit!

• Will see more cases in multiple issue machines
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Data hazards

• Data dependencies between instructions that are in the pipe
at the same time.

• For single pipeline in order issue: Read After Write hazard
(RAW)

Add R1, R2, R3 #R1 is result register

Sub R4, R1,R2 #conflict with R1

Add R3, R5, R1 #conflict with R1

Or R6,R1,R2 #conflict with R1

Add        R5, R2, R1 #R1 OK now (5 stage pipe)
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Add R1, R2, R3
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

Add R5,R1,R2 | | | | | |
OK

IF            ID          EXE       MEM        WB

OK if in ID stage one can write 
In 1st part of cycle and read in 2nd part
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Forwarding

• Result of ALU operation is known at end of EXE stage
• Forwarding between:

– EXE/MEM pipeline register to ALUinput for instructions i and i+1
– MEM/WB pipeline register to ALUinput for instructions i and i+2

• Note that if the same register has to be forwarded, forward the last
one to be written

– Forwarding through register file (write 1st half of cycle, read 2nd
half of cycle)

• Need of a “forwarding box” in the Control Unit to check
on conditions for forwarding

• Forwarding between load and store (memory copy)
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Add R1, R2, R3
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

Add R5,R1,R2 | | | | | |
OK w/o forwarding

IF            ID          EXE       MEM        WB
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Forwarding in consecutive instructions

• What happens if we have
       add   $10,$10,$12

       add   $10,$10,$12

       add   $10,$10,$12

Forwarding priority is given to the most recent result, that is the one
generated by the ALU in the EX/Mem, not the one passed to
Mem/Wb (requires extra check to see whether this situation arises)
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Other data hazards

• Write After Write (WAW). Can happen in
– Pipelines with more than one write stage

– More than one functional unit with different latencies (see later)

• Write After Read (WAR). Very rare
– With VAX-like autoincrement addressing modes

Review CSE 471 Autumn 01 22

Forwarding cannot solve all conflicts

• At least in a simple MIPS-like pipeline

Lw R1, 0(R2) #Result at end of MEM stage

Sub R4, R1,R2 #conflict with R1

Add R3, R5, R1 #OK with forwarding

Or R6,R1,R2 # OK with forwarding
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LW  R1, 0(R2)
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

IF            ID          EXE       MEM        WB

OK

No way!

OK
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Hazard detection unit

• If a Load (instruction i-1) is followed by instruction i that
needs the result of the load, we need to stall the pipeline
for one cycle , that is
– instruction i-1 should progress normally

– instruction i should not progress

– no new instruction should be fetched

• Controlled by a “hazard detection box” within the Control
unit; it should operate during the ID stage
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Principle of Locality: Memory Hierarchies

• Text and data are not accessed randomly
• Temporal locality

– Recently accessed items will be accessed in the near future (e.g.,
code in loops, top of stack)

• Spatial locality
– Items at addresses close to the addresses of recently accessed items

will be accessed in the near future (sequential code, elements of
arrays)

• Leads to memory hierarchy at two main interface levels:
– Processor - Main memory -> Introduction of caches
– Main memory - Secondary memory -> Virtual memory (paging

systems)
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Caches (on-chip, off-chip)

• Caches consist of a set of entries where each entry has:
–  block (or line) of data: information contents (initially, the image of

some main memory contents)
– tag: allows to recognize if the block is there (depends on the

mapping)
– status bits: valid, dirty, state for multiprocessors etc.

• Capacity (or size) of a cache: number of blocks * block
size

i.e., the cache metadata (tag + status bits) is not counted in the cache capacity

• Notation
– First-level (on-chip) cache: L1;
– Second-level (on-chip/off-chip): L2; third level (Off-chip) L3

Review CSE 471 Autumn 01 29

Cache Organization -- Direct-mapped

• Most restricted mapping
– Direct-mapped cache. A given memory location (block) can only

be mapped in a single place in the cache. This place is (generally)
given by:

                 (block address) mod (number of blocks in cache)

– To make the mapping easier, the number of blocks in a direct-
mapped cache is (almost always)a power of 2.
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Direct-mapped Cache
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Fully-associative Cache

• Most general mapping
– Fully-associative cache. A given memory location (block) can be

mapped anywhere in the cache.

– No cache of decent size is implemented this way but this is the
(general) mapping for pages (disk to main memory), for small
TLB’s, and for some small buffers used as cache assists (e.g.,
victim caches, write caches).
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Fully-associative Cache

Any memory
block can map to
any cache block
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Set-associative Caches

• Less restricted mapping
– Set-associative cache. Blocks in the cache are grouped into sets

and a given memory location (block) maps into a set. Within the
set the block can be placed anywhere. Associativities of 2 (two-
way set-associative), 3, 4, 8 and even 16 have been implemented.

• Direct-mapped = 1-way set-associative

• Fully associative with m entries is m-way set associative

• Capacity
– Capacity = number of sets * set-associativity * block size
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Set-associative Cache

Cache

Main memory

A memory block maps into a
specific block of either set

Bank 0 Bank 1

Review CSE 471 Autumn 01 35

Cache Hit or Cache Miss?

• How to detect if a memory address (a byte address) has a
valid image in the cache:

• Address is decomposed in 3 fields:
– block offset  or displacement  (depends on block size)

– index (depends on number of sets and set-associativity)

– tag (the remainder of the address)

• The tag array has a width equal to tag
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Hit Detection

tag index displ.

Example: cache capacity C, block size b

Direct mapped: displ = log2 b; index = log2(C/ b); tag = 32 -index - displ

N -way S.A: displ = log2 b; index = log2(C/ bN); tag = 32 -index - displ

So what does it mean to have 3-way (N=3) set-associativity?
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Why Set-associative Caches?

• Cons
– The higher the associativity the larger the number of comparisons

to be made in parallel for high-performance (can have an impact
on cycle time for on-chip caches)

– Higher associativity requires a wider tag array (minimal impact)

• Pros
– Better hit ratio

– Great improvement from 1 to 2, less from 2 to 4, minimal after that
but can still be important for large L2 caches

– Allows parallel search of TLB and caches for larger (but still
small) caches (see later)
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Replacement Algorithm

• None for direct-mapped

• Random or LRU or pseudo-LRU for set-associative caches
– Not an important factor for performance for low associativity. Can

become important for large associativity and large caches
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Writing in a Cache

• On a write hit, should we write:
– In the cache only (write-back) policy

– In the cache and main memory (or higher level cache) (write-
through) policy

• On a write miss, should we
– Allocate a block as in a read (write-allocate)

– Write only in memory (write-around)

Review CSE 471 Autumn 01 40

The Main Write Options

• Write-through (aka store-through)
– On a write hit, write both in cache and in memory

– On a write miss, the most frequent option is write-around

– Pro: consistent view of memory (better for I/O); no ECC required
for cache

– Con: more memory traffic (can be alleviated with write buffers)

• Write-back (aka copy-back)
– On a write hit, write only in cache (requires dirty bit)

– On a write miss, most often write-allocate (fetch on miss) but
variations are possible

– Pro-con reverse of write through
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Classifying the Cache Misses: The 3 C’s

• Compulsory misses (cold start)
– The first time you touch a block. Reduced (for a given cache

capacity and associativity) by having large blocks

• Capacity misses
– The working set is too big for the ideal cache of same capacity and

block size (i.e., fully associative with optimal replacement
algorithm). Only remedy: bigger cache!

• Conflict misses (interference)
– Mapping of two blocks to the same location. Increasing

associativity decreases this type of misses.

• There is a fourth C: coherence misses (cf. multiprocessors)


