
Review CSE 471 Autumn 01 1

Computer Design and Organization

• Architecture = Design + Organization + Performance

• Architecture of modern computer systems
– Central processing unit: pipelined, exhibiting instruction level

parallelism, and allowing speculation .

– Memory hierarchy: multi-level cache hierarchy and its
management, including hardware and software assists for enhanced
performance; interaction of hardware/software for virtual memory
systems.

– Input/output: Buses; Disks – performance and reliability (RAIDs)

– Multiprocessors: SMP’s and cache coherence

Review CSE 471 Autumn 01 2

Technological improvements

• CPU :
– Annual rate of speed improvement is 35% before 1985 and 60%

since 1985.

– Slightly faster than increase in number of transistors on-chip

• Memory:
– Annual rate of speed improvement is < 10%

– Density quadruples in 3 years.

• I/O :
– Access time has improved by 30% in 10 years

– Density improves by 50% every year

Review CSE 471 Autumn 01 3

Processor-Memory Performance Gap

10

100

1000

1
89 91 93 95 97 99

x

• x Memory system (10 x over 8 years but densities have increased 100x over
the same period)

• o x86 CPU (100x over 10 years)

x
x x

x

o o

o
o

o

o

“Memory gap” x

“Memory wall”

Review CSE 471 Autumn 01 4

Improvements in Processor Speed

• Technology
– Faster clock (commercially 1.7 GHz available; prototype > 3 GHz?)

• More transistors = More functionality
– Instruction Level parallelism (ILP)
– Multiple functional units, superscalar or out-of-order execution
– 40 Million transistors (Pentium 4) but Moore law still applies.

• Extensive pipelining
– From single 5 stage to multiple pipes as deep as 20 stages

• Sophisticated instruction fetch units
– Branch prediction; register renaming; trace caches

• On-chip Memory
– One or two levels of caches. TLB’s for instruction and data

10/22/01 Review CSE 471 Autumn 01 5

Performance evaluation basics

• Performance inversely proportional to execution time

• Elapsed time includes:
user + system; I/O; memory accesses; CPU per se

• CPU execution time (for a given program): 3 factors
– Number of instructions executed

– Clock cycle time (or rate)

– CPI: number of cycles per instruction (or its inverse IPC)

CPU execution time = Instruction count * CPI * clock cycle time

Review CSE 471 Autumn 01 6

Components of the CPI

• CPI for single instruction issue with ideal pipeline = 1

• Previous formula can be expanded to take into account
classes of instructions
– For example in RISC machines: branches, f.p., load-store.

– For example in CISC machines: string instructions

CPI = Σ CPIi * fi where fi is the frequency of instructions in class i

• Will talk about “contributions to the CPI” from, e.g,:
– memory hierarchy

– branch (misprediction)

– hazards etc.

Review CSE 471 Autumn 01 7

Comparing and summarizing benchmark
performance

• For execution times, use (weighted) arithmetic mean:

Weight. Ex. Time = Σ Weighti * Timei

• For rates, use (weighted) harmonic mean:

 Weight. Rate = 1 / Σ (Weighti / Rate i)

• See paper by Jim Smith (cf. ref in outline)
“Simply put, we consider one computer to be faster than another if it

executes the same set of programs in less time”

• Common benchmark suite: SPEC (SPEC92, SPEC95,
SPEC00 etc.)

Review CSE 471 Autumn 01 8

Computer design: Make the common case fast

• Amdahl’s law (speedup)
Speedup = (performance with enhancement)/(performance base case)
Or equivalently
Speedup = (exec.time base case)/(exec.time with enhancement)

• Application to parallel processing
– s fraction of program that is sequential
– Speedup S is at most 1/s
– That is if 20% of your program is sequential the maximum speedup with

an infinite number of processors is at most 5

Review CSE 471 Autumn 01 9

Pipelining

• One instruction/result every cycle (ideal)
– Not in practice because of hazards

• Increase throughput (wrt non-pipelined implementation)
– Throughput = number of results/second

• Speed-up (over non-pipelined implementation)
– In the ideal case, if n stages , the speed-up will be close to n. Can’t

make n too large: load balancing between stages & hazards

• Might slightly increase the latency of individual
instructions (pipeline overhead)

Review CSE 471 Autumn 01 10

Basic pipeline implementation

• Five stages: IF, ID, EXE, MEM, WB

• What are the resources needed and where
– ALU’s, Registers, Multiplexers etc.

• What info. is to be passed between stages
– Requires pipeline registers between stages: IF/ID, ID/EXE,

EXE/MEM and MEM/WB

– What is stored in these pipeline registers?

• Design of the control unit.

Review CSE 471 Autumn 01 11

Inst.
mem.

4

PC ALU

ALU

ALU

Data
mem.

Regs.

s
e 2

zero

IF ID/RR EXE Mem WB

IF/ID ID/EX EX/MEM MEM/WB

(PC)

(Rd)

data

control

Review CSE 471 Autumn 01 12

Inst.
mem.

4

PC ALU

ALU

ALU

Data
mem.

Regs.

s
e 2

zero

IF ID/RR EXE Mem WB

IF/ID ID/EX EX/MEM MEM/WB

(PC)

(Rd)

data

control

Five instructions in progress; one of each color

Review CSE 471 Autumn 01 13

Hazards

• Structural hazards
– Resource conflict (mostly in multiple issue machines; also for

resources which are used for more than one cycle see later)

• Data dependencies
– Most common RAW but also WAR and WAW in OOO execution

• Control hazards
– Branches and other flow of control disruptions

• Consequence: stalls in the pipeline
– Equivalently: insertion of bubbles or of no-ops

Review CSE 471 Autumn 01 14

Pipeline speed-up

1

depth pipeline
 = ealSpeedup_id

hazardsby dcontribute CPI + 1

depth pipeline
 = hazards_Speedup

Review CSE 471 Autumn 01 15

Example of structural hazard

• For single issue machine: common data and instruction
memory (unified cache)
– Pipeline stall every load-store instruction (control easy to

implement)

• Better solutions
– Separate I-cache and D-cache

– Instruction buffers

– Both + sophisticated instruction fetch unit!

• Will see more cases in multiple issue machines

Review CSE 471 Autumn 01 16

Data hazards

• Data dependencies between instructions that are in the pipe
at the same time.

• For single pipeline in order issue: Read After Write hazard
(RAW)

Add R1, R2, R3 #R1 is result register

Sub R4, R1,R2 #conflict with R1

Add R3, R5, R1 #conflict with R1

Or R6,R1,R2 #conflict with R1

Add R5, R2, R1 #R1 OK now (5 stage pipe)

Review CSE 471 Autumn 01 17

| |

|

|

|

|

|

|

|

|

| |

| | |

| | | |

| | | | |

Add R1, R2, R3
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

Add R5,R1,R2 | | | | | |
OK

IF ID EXE MEM WB

OK if in ID stage one can write
In 1st part of cycle and read in 2nd part

Review CSE 471 Autumn 01 18

Forwarding

• Result of ALU operation is known at end of EXE stage
• Forwarding between:

– EXE/MEM pipeline register to ALUinput for instructions i and i+1
– MEM/WB pipeline register to ALUinput for instructions i and i+2

• Note that if the same register has to be forwarded, forward the last
one to be written

– Forwarding through register file (write 1st half of cycle, read 2nd
half of cycle)

• Need of a “forwarding box” in the Control Unit to check
on conditions for forwarding

• Forwarding between load and store (memory copy)

Review CSE 471 Autumn 01 19

| |

|

|

|

|

|

|

|

|

| |

| | |

| | | |

| | | | |

Add R1, R2, R3
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

Add R5,R1,R2 | | | | | |
OK w/o forwarding

IF ID EXE MEM WB

Review CSE 471 Autumn 01 20

Forwarding in consecutive instructions

• What happens if we have
 add $10,$10,$12

 add $10,$10,$12

 add $10,$10,$12

Forwarding priority is given to the most recent result, that is the one
generated by the ALU in the EX/Mem, not the one passed to
Mem/Wb (requires extra check to see whether this situation arises)

Review CSE 471 Autumn 01 21

Other data hazards

• Write After Write (WAW). Can happen in
– Pipelines with more than one write stage

– More than one functional unit with different latencies (see later)

• Write After Read (WAR). Very rare
– With VAX-like autoincrement addressing modes

Review CSE 471 Autumn 01 22

Forwarding cannot solve all conflicts

• At least in a simple MIPS-like pipeline

Lw R1, 0(R2) #Result at end of MEM stage

Sub R4, R1,R2 #conflict with R1

Add R3, R5, R1 #OK with forwarding

Or R6,R1,R2 # OK with forwarding

Review CSE 471 Autumn 01 23

| |

|

|

|

|

|

|

|

|

| |

| | |

| | | |

| | | | |

LW R1, 0(R2)
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

IF ID EXE MEM WB

OK

No way!

OK

Review CSE 471 Autumn 01 24

| | |

|

|

|

|

| |

| | | |

| | | | |

LW R1, 0(R2)
R1 available here

Sub R4,R1,R2

R 1 needed here

ADD R3,R5,R1

OR R6,R1,R2

IF ID EXE MEM WB

|

|

| | | | | |

Insert a bubble

Review CSE 471 Autumn 01 25

Hazard detection unit

• If a Load (instruction i-1) is followed by instruction i that
needs the result of the load, we need to stall the pipeline
for one cycle , that is
– instruction i-1 should progress normally

– instruction i should not progress

– no new instruction should be fetched

• Controlled by a “hazard detection box” within the Control
unit; it should operate during the ID stage

Review CSE 471 Autumn 01 26

Inst.
mem.

4

PC ALU

ALU

ALU

Data
mem.

Regs.

s
e 2

zero

IF ID/RR EXE Mem WB

IF/ID ID/EX EX/MEM MEM/WB

(PC)

(Rd)

data

control

Forwarding
unit

Control unit

Stall unit

Review CSE 471 Autumn 01 27

Principle of Locality: Memory Hierarchies

• Text and data are not accessed randomly
• Temporal locality

– Recently accessed items will be accessed in the near future (e.g.,
code in loops, top of stack)

• Spatial locality
– Items at addresses close to the addresses of recently accessed items

will be accessed in the near future (sequential code, elements of
arrays)

• Leads to memory hierarchy at two main interface levels:
– Processor - Main memory -> Introduction of caches
– Main memory - Secondary memory -> Virtual memory (paging

systems)

Review CSE 471 Autumn 01 28

Caches (on-chip, off-chip)

• Caches consist of a set of entries where each entry has:
– block (or line) of data: information contents (initially, the image of

some main memory contents)
– tag: allows to recognize if the block is there (depends on the

mapping)
– status bits: valid, dirty, state for multiprocessors etc.

• Capacity (or size) of a cache: number of blocks * block
size

i.e., the cache metadata (tag + status bits) is not counted in the cache capacity

• Notation
– First-level (on-chip) cache: L1;
– Second-level (on-chip/off-chip): L2; third level (Off-chip) L3

Review CSE 471 Autumn 01 29

Cache Organization -- Direct-mapped

• Most restricted mapping
– Direct-mapped cache. A given memory location (block) can only

be mapped in a single place in the cache. This place is (generally)
given by:

 (block address) mod (number of blocks in cache)

– To make the mapping easier, the number of blocks in a direct-
mapped cache is (almost always)a power of 2.

Review CSE 471 Autumn 01 30

Direct-mapped Cache

Cache

Main memory

All addresses
mod C map to
the same cache
blockC lines

C lines

Review CSE 471 Autumn 01 31

Fully-associative Cache

• Most general mapping
– Fully-associative cache. A given memory location (block) can be

mapped anywhere in the cache.

– No cache of decent size is implemented this way but this is the
(general) mapping for pages (disk to main memory), for small
TLB’s, and for some small buffers used as cache assists (e.g.,
victim caches, write caches).

Review CSE 471 Autumn 01 32

Fully-associative Cache

Any memory
block can map to
any cache block

Cache

Main memory

Review CSE 471 Autumn 01 33

Set-associative Caches

• Less restricted mapping
– Set-associative cache. Blocks in the cache are grouped into sets

and a given memory location (block) maps into a set. Within the
set the block can be placed anywhere. Associativities of 2 (two-
way set-associative), 3, 4, 8 and even 16 have been implemented.

• Direct-mapped = 1-way set-associative

• Fully associative with m entries is m-way set associative

• Capacity
– Capacity = number of sets * set-associativity * block size

Review CSE 471 Autumn 01 34

Set-associative Cache

Cache

Main memory

A memory block maps into a
specific block of either set

Bank 0 Bank 1

Review CSE 471 Autumn 01 35

Cache Hit or Cache Miss?

• How to detect if a memory address (a byte address) has a
valid image in the cache:

• Address is decomposed in 3 fields:
– block offset or displacement (depends on block size)

– index (depends on number of sets and set-associativity)

– tag (the remainder of the address)

• The tag array has a width equal to tag

Review CSE 471 Autumn 01 36

Hit Detection

tag index displ.

Example: cache capacity C, block size b

Direct mapped: displ = log2 b; index = log2(C/ b); tag = 32 -index - displ

N -way S.A: displ = log2 b; index = log2(C/ bN); tag = 32 -index - displ

So what does it mean to have 3-way (N=3) set-associativity?

Review CSE 471 Autumn 01 37

Why Set-associative Caches?

• Cons
– The higher the associativity the larger the number of comparisons

to be made in parallel for high-performance (can have an impact
on cycle time for on-chip caches)

– Higher associativity requires a wider tag array (minimal impact)

• Pros
– Better hit ratio

– Great improvement from 1 to 2, less from 2 to 4, minimal after that
but can still be important for large L2 caches

– Allows parallel search of TLB and caches for larger (but still
small) caches (see later)

Review CSE 471 Autumn 01 38

Replacement Algorithm

• None for direct-mapped

• Random or LRU or pseudo-LRU for set-associative caches
– Not an important factor for performance for low associativity. Can

become important for large associativity and large caches

Review CSE 471 Autumn 01 39

Writing in a Cache

• On a write hit, should we write:
– In the cache only (write-back) policy

– In the cache and main memory (or higher level cache) (write-
through) policy

• On a write miss, should we
– Allocate a block as in a read (write-allocate)

– Write only in memory (write-around)

Review CSE 471 Autumn 01 40

The Main Write Options

• Write-through (aka store-through)
– On a write hit, write both in cache and in memory

– On a write miss, the most frequent option is write-around

– Pro: consistent view of memory (better for I/O); no ECC required
for cache

– Con: more memory traffic (can be alleviated with write buffers)

• Write-back (aka copy-back)
– On a write hit, write only in cache (requires dirty bit)

– On a write miss, most often write-allocate (fetch on miss) but
variations are possible

– Pro-con reverse of write through

Review CSE 471 Autumn 01 41

Classifying the Cache Misses: The 3 C’s

• Compulsory misses (cold start)
– The first time you touch a block. Reduced (for a given cache

capacity and associativity) by having large blocks

• Capacity misses
– The working set is too big for the ideal cache of same capacity and

block size (i.e., fully associative with optimal replacement
algorithm). Only remedy: bigger cache!

• Conflict misses (interference)
– Mapping of two blocks to the same location. Increasing

associativity decreases this type of misses.

• There is a fourth C: coherence misses (cf. multiprocessors)

