
NUMA Mult. CSE 471 Aut 01 1

Interconnection Networks for Multiprocessors

• Buses have limitations for scalability:
– Physical (number of devices that can be attached)
– Performance (contention on a shared resource: the bus)

• Instead use interconnection networks to form:
– Tightly coupled systems. Most likely the nodes (processor and

memory elements) will be homogeneous, and operated as a whole
under the same operating system and will be physically close to
each other (a few meters)

– Local Area Networks (LAN) : building size; network of
workstations (in fact the interconnect could be a bus – Ethernet)

– Wide Area Networks (WAN - long haul networks): connect
computers and LANs distributed around the world

NUMA Mult. CSE 471 Aut 01 2

Switches in the Interconnection Network

• Centralized (multistage) switch
– All nodes connected to the central switch

– Or, all nodes share the same medium (bus)

– There is a single path from one node to another (although some
redundant paths could be added for fault-tolerance)

• Distributed switch
– One switch associated with each node

• And of course, hierarchical combinations

NUMA Mult. CSE 471 Aut 01 3

Multistage Switch Topology (centralized)

• Shared-bus (simple, one stage, but not scalable)

• Multiple buses (e.g., even and odd addresses)

• Hierarchy of buses (often proposed, never commercially
implemented)

• Crossbar (full connection)
– Gives the most parallelism; Cost (number of switches) grows as

the square of number of processors (O(n2))

• Multistage interconnection networks
– Based on the perfect shuffle. Cost grows as O(nlogn)

• Fat tree

NUMA Mult. CSE 471 Aut 01 4

Crossbar

…... …...

n2 switches

complete concurrency

PE: processing
element = Proc +
cache + memory

Switch0

1

2

3

4

5

6

7

NUMA Mult. CSE 471 Aut 01 5

Perfect Shuffle and Omega Network

• Perfect shuffle: one stage of the interconnection network
– With a power of 2 number of processors (i.e., an n bit id)

• Shuffle(p0, p1, p2, …, p2
k
-2, p2

k
-1) = (p0, p2, p4, …, p2

k
-3, p2

k
-1) like

shuffling a deck of cards
• Put a switch that can either go straight-through or exchange between a

pair of adjacent nodes
• Can reach any node from any node after log2n trips through the

shuffle

• Omega network (and butterfly networks) for n nodes uses
logn perfect-shuffle-like stages of n/2 2*2 switches
– Setting of switches done by looking at destination address
– Not all permutations can be done in one pass through the network

(was important for SIMD, less important for MIMD)

NUMA Mult. CSE 471 Aut 01 6

Omega Network for n = 8 (k = 3)

0

1

2

3

4

5

6

7

To go from node
i to node j,
follow the
binary
representation of
j; at stage k,
check kth bit of
j. Go up if
current bit = 0
and go down if
bit =1

Example
path:
Node 3 to
node 6
(110)

1

1

0

NUMA Mult. CSE 471 Aut 01 7

Butterfly Network for n = 8 (k = 3)

0

1

2

3

4

5

6

7

1

0

FFT
pattern

1

NUMA Mult. CSE 471 Aut 01 8

Multistage Interconnection Networks

• Omega networks (and equivalent)
– Possibility of blocking (two paths want to go through same switch)

– Possibility of combining (two messages pass by the same switch,
for the same destination, at the same time)

– Buffering in the switches

– Possibility of adding extra stages for fault-tolerance

– Can make the switches bigger, e.g., 4*4, 4*8 etc.

NUMA Mult. CSE 471 Aut 01 9

Fat Tree (used in CM-5 and IBM SP-2)

• Increase bandwidth when closer to root
– To construct a fat tree, take a butterfly network, connect it to itself

back to back and fold it along the highest dimension.

– Links are now bidirectional

– Allow more than one path (e.g., each switch has 4 connections
backwards and 2 upwards cf. H&P p 585)

NUMA Mult. CSE 471 Aut 01 10

Decentralized Switch

• Rings (and hierarchy of)
– Used in the KSR
– Bus + ring (Sequent CC-NUMA)

• 2D and 3D-meshes and tori
– Intel Paragon 2D (message co-processor)
– Cray T3D and T3E 3D torus (shared-memory w/o cache

coherence)
– Tera 3D torus (shared-memory, no cache)

• Hypercubes
– CM-2 (12 cube; each node had 16 1-bit processors; SIMD)
– Intel iPSC (7 cube in maximum configuration; message passing)

NUMA Mult. CSE 471 Aut 01 11

Topologies

ring

2-d Mesh

Hypercube (d = 3)

NUMA Mult. CSE 471 Aut 01 12

Performance Metrics

• Message:
– Header: routing info and control

– Payload: the contents of the message

– Trailer: checksum

• Bandwidth
– Maximum rate at which the network can propagate info. once the

message enters the network

• Bisection bandwidth
– Divide the network roughly in 2 equal parts: sum the bandwidth of

the lines that cross the imaginary dividing line

NUMA Mult. CSE 471 Aut 01 13

Performance Metrics (c’ed)

• Transmission time (no contention): time for the message to
pass through the network
– Size of message/bandwidth

• Time of flight
– Time for the 1st bit to arrive at the receiver

• Transport latency: transmission time + time of flight

• Sender overhead: time for the proc. to inject the message

• Receiver overhead: time for the receiver to pull the
message

• Total latency = Sender over. + transport latency + rec. over

NUMA Mult. CSE 471 Aut 01 14

Routing (in interconn. networks)

• Destination-based routing - Oblivious
– Always follows the same path (deterministic). For example follow

highest dimension of the hypercube first, then next one etc.

• Destination-based routing - Adaptive
– Adapts to congestion in network. Can be minimal , i.e., allow only

paths of (topological) minimal path-lengths

– Can be non-minimal (e.g., use of random path selection or of “hot
potato” routing, but other routers might choose paths selected on
the address)

NUMA Mult. CSE 471 Aut 01 15

Flow Control

• Entire messages vs. packets
– Circuit-switched (the entire path is reserved)

– Packet-switched , or store-and-forward (links, or hops, acquired
and released dynamically)

• Wormhole routing (circuit-switched with virtual channels)
– Head of message “reserves” the path. Data transmitted in flints,

i.e., amount of data that can be transmitted over a single channel.
Virtual channels add buffering to allow priorities etc.

• Virtual cut-through (store-and-forward but whole packet
does not need to be buffered to proceed)

