Interconnection Networks for Multiprocessors

- · Buses have limitations for scalability: Physical (number of devices that can be attached)
 - Performance (contention on a shared resource; the bus)
- Instead use interconnection networks to form:
 - Tightly coupled systems. Most likely the nodes (processor and memory elements) will be homogeneous, and operated as a whole under the same operating system and will be physically close to each other (a few meters)
 - Local Area Networks (LAN) : building size; network of workstations (in fact the interconnect could be a bus – Ethernet)
 - Wide Area Networks (WAN long haul networks): connect
 - computers and LANs distributed around the world

NUMA Mult_CSE 471 Aut 01

Multistage Switch Topology (centralized)

- · Shared-bus (simple, one stage, but not scalable)
- Multiple buses (e.g., even and odd addresses)
- · Hierarchy of buses (often proposed, never commercially implemented)
- Crossbar (full connection) Gives the most parallelism; Cost (number of switches) grows as the square of number of processors $(O(n^2))$
- Multistage interconnection networks - Based on the perfect shuffle. Cost grows as O(nlogn)
- Fat tree

NUMA Mult. CSE 471 Aut 01

3

- Can reach any node from any node after log₂n trips through the shuffle
- Omega network (and butterfly networks) for n nodes uses logn perfect-shuffle-like stages of n/2 2*2 switches Setting of switches done by looking at destination address
 - Not all permutations can be done in one pass through the network (was important for SIMD, less important for MIMD)

NUMA Mult. CSE 471 Aut 01

Routing (in interconn. networks)

Destination-based routing - Oblivious

 Always follows the same path (deterministic). For example follow highest dimension of the hypercube first, then next one etc.

Destination-based routing - Adaptive

- Adapts to congestion in network. Can be minimal, i.e., allow only paths of (topological) minimal path-lengths
- Can be non-minimal (e.g., use of random path selection or of "hot potato" routing, but other routers might choose paths selected on the address)

NUMA Mult. CSE 471 Aut 01

14

Flow Control

- Entire messages vs. packets
 - Circuit-switched (the entire path is reserved)
 - Packet-switched, or store-and-forward (links, or hops, acquired and released dynamically)
- Wormhole routing (circuit-switched with virtual channels)

 Head of message "reserves" the path. Data transmitted in *flints*, i.e., amount of data that can be transmitted over a single channel. Virtual channels add buffering to allow priorities etc.
- Virtual cut-through (store-and-forward but whole packet does not need to be buffered to proceed)

NUMA Mult. CSE 471 Aut 01

15