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Interconnection Networks for Multiprocessors

• Buses have limitations for scalability:
– Physical (number of devices that can be attached)
– Performance (contention on a shared resource: the bus)

• Instead use interconnection networks to form:
– Tightly coupled systems. Most likely the nodes (processor and

memory elements) will be homogeneous, and operated as a whole
under the same operating system and will be physically close to
each other (a few meters)

– Local Area Networks (LAN) : building size; network of
workstations (in fact the interconnect could be a bus – Ethernet)

– Wide Area Networks (WAN - long haul networks): connect
computers and LANs distributed around the world
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Switches in the Interconnection Network

• Centralized (multistage) switch
– All nodes connected to the central switch

– Or, all nodes share the same medium (bus)

– There is a single path from one node to another (although some
redundant paths could be added for fault-tolerance)

• Distributed switch
– One switch associated with each node

• And of course, hierarchical combinations
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Multistage Switch Topology (centralized)

• Shared-bus (simple, one stage, but not scalable)

• Multiple buses (e.g., even and odd addresses)

• Hierarchy of buses (often proposed, never commercially
implemented)

• Crossbar (full connection)
– Gives the most parallelism; Cost (number of switches) grows as

the square of number of processors (O(n2))

• Multistage interconnection networks
– Based on the perfect shuffle. Cost grows as O(nlogn)

• Fat tree
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Perfect Shuffle and Omega Network

• Perfect shuffle: one stage of the interconnection network
– With a power of 2 number of processors (i.e., an n bit id)

• Shuffle(p0, p1, p2, …, p2
k
-2, p2

k
-1) = (p0, p2, p4, …, p2

k
-3, p2

k
-1) like

shuffling a deck of cards
• Put a switch that can either go straight-through or exchange between a

pair of adjacent nodes
• Can reach any node from any node after log2n trips through the

shuffle

• Omega network (and butterfly networks) for n nodes uses
logn perfect-shuffle-like stages of  n/2  2*2 switches
– Setting of switches done by looking at destination address
– Not all permutations can be done in one pass through the network

(was important for SIMD, less important for MIMD)
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Omega Network for n = 8 (k = 3)
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Butterfly Network for n = 8 (k = 3)
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Multistage Interconnection Networks

• Omega networks (and equivalent)
– Possibility of blocking (two paths want to go through same switch)

– Possibility of combining (two messages pass by the same switch,
for the same destination, at the same time)

– Buffering in the switches

– Possibility of adding extra stages for fault-tolerance

– Can make the switches bigger, e.g., 4*4, 4*8 etc.
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Fat Tree (used in CM-5 and IBM SP-2)

• Increase bandwidth when closer to root
– To construct a fat tree, take a butterfly network, connect it to itself

back to back and fold it along the highest dimension.

– Links are now bidirectional

– Allow more than one path (e.g., each switch has 4 connections
backwards and 2 upwards cf. H&P p 585)
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Decentralized Switch

• Rings (and hierarchy of)
– Used in the KSR
– Bus + ring (Sequent CC-NUMA)

• 2D and 3D-meshes and tori
– Intel Paragon 2D (message co-processor)
– Cray T3D and T3E 3D torus (shared-memory w/o cache

coherence)
– Tera 3D torus (shared-memory, no cache)

• Hypercubes
– CM-2 (12 cube; each node had 16 1-bit processors; SIMD)
– Intel iPSC (7 cube in maximum configuration; message passing)
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Performance Metrics

• Message:
– Header: routing info and control

– Payload: the contents of the message

– Trailer: checksum

• Bandwidth
– Maximum rate at which the network can propagate info. once the

message enters the network

• Bisection bandwidth
– Divide the network roughly in 2 equal parts: sum the bandwidth of

the lines that cross the imaginary dividing line
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Performance Metrics (c’ed)

• Transmission time (no contention): time for the message to
pass through the network
– Size of message/bandwidth

• Time of flight
– Time for the 1st bit to arrive at the receiver

• Transport latency: transmission time + time of flight

• Sender overhead: time for the proc. to inject the message

• Receiver overhead: time for the receiver to pull the
message

• Total latency = Sender over. + transport latency + rec. over
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Routing (in interconn. networks)

• Destination-based routing - Oblivious
– Always follows the same path (deterministic). For example follow

highest dimension of the hypercube first, then next one etc.

• Destination-based routing - Adaptive
– Adapts to congestion in network. Can be minimal , i.e., allow only

paths of (topological) minimal path-lengths

– Can be non-minimal (e.g., use of random path selection or of “hot
potato” routing, but other routers might choose paths selected on
the address)
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Flow Control

• Entire messages  vs. packets
– Circuit-switched (the entire path is reserved)

– Packet-switched , or store-and-forward (links, or hops, acquired
and released dynamically)

• Wormhole routing (circuit-switched with virtual channels)
– Head of message “reserves” the path. Data transmitted in flints,

i.e., amount of data that can be transmitted over a single channel.
Virtual channels add buffering to allow priorities etc.

• Virtual cut-through (store-and-forward but whole packet
does not need to be buffered to proceed)


