
11/8/2001 Multithr. CSE 471 Autumn 01 1

Levels of Parallelism within a Single
Processor

• ILP: smallest grain of parallelism
– Resources are not that well utilized (far from ideal CPI)
– Stalls on operations with long latencies (division, cache miss)

• Multiprogramming: Several applications (or large sections
of applications) running concurrently
– O.S. directed activity
– Change of application requires a context-switch (e.g., on a page

fault)

• Multithreading
– Main goal: tolerate latency of long operations without paying the

price of a full context-switch

11/8/2001 Multithr. CSE 471 Autumn 01 2

Multithreading

• The processor supports several instructions streams
running “concurrently”

• Each instruction stream has its own context (process state)
– Registers

– PC, status register, special control registers etc.

• The multiple streams are multiplexed by the hardware on a
set of common functional units

11/8/2001 Multithr. CSE 471 Autumn 01 3

Fine Grain Multithreading

• Conceptually, at every cycle a new instruction stream
dispatches an instruction to the functional units

• If enough instruction streams are present, long latencies
can be hidden
– For example, if 32 streams can dispatch an instruction, latencies of

32 cycles could be tolerated

• For a single application, requires highly sophisticated
compiler technology
– Discover many threads in a single application

• Basic idea behind Tera (now Cray) MTA
– Burton Smith third such machine (he started in late 70’s)

11/8/2001 Multithr. CSE 471 Autumn 01 4

Tera’s MTA

• Each processor can execute
– 16 applications in parallel (multiprogramming)

– 128 streams

• At every clock cycle, processor selects a ready stream and
issues an instruction from that stream

• An instruction is a “LIW”: Memory, arithmetic, control

• Several instructions of the same stream can be in flight
simultaneously (ILP)

• Instructions of different streams can be in flight
simultaneously (multithreading)

11/8/2001 Multithr. CSE 471 Autumn 01 5

Tera’s MTA (c’ed)

• Since several streams belong to the same application,
synchronization is very important (will be discussed later
in the quarter)

• Needs instructions – and compiler support – to allocate,
activate, and deallocate streams

• Compiler support: loop level parallelism and software
pipelining

• Hardware support: dynamic allocation of streams
(depending on mix of applications etc.)

11/8/2001 Multithr. CSE 471 Autumn 01 6

Coarse Grain Multithreading

• Switch threads (contexts) only at certain events
– Change thread context takes a few (10-20?) cycles

– Used when long memory latency operations, e.g., access to a
remote memory in a shared-memory multiprocessor (100’s of
cycles)

• Of course, context-switches occur when there are
exceptions such as page faults

• Many fewer contexts needed than in fine-grain
multithreading



11/8/2001 Multithr. CSE 471 Autumn 01 7

Simultaneous Multithreading (SMT)

Combines the advantages of ILP and fine grain multithreading

ILP SMT

Vertical waste
of the order of
60% of
overall waste

Hoz. waste
Hoz. waste still
present but not as
much. Vert. waste
does not
necessarily all
disappear as this
figure implies

11/8/2001 Multithr. CSE 471 Autumn 01 8

SMT (a UW invention)

• Needs one context per thread
– But fewer threads needed than in fine grain multithreading

• Can issue simultaneously from distinct threads in the same
cycle

• Can share resources
– For example: physical registers for renaming, caches, BPT etc.

• Future generation Alpha was to be based on SMT

• Intel Hyperthreading is SMT with … 2 threads

11/8/2001 Multithr. CSE 471 Autumn 01 9

SMT (c’ed)

• Compared with an ILP superscalar of same issue width
– Requires 5% more real estate
– More complex to design (thread scheduling, identifying threads

that raise exceptions etc.)

• Drawback (common to all wide-issue processors):
centralized design

• Benefits
– Increases throughput of applications running concurrently
– Dynamic scheduling
– No partitioning of many resources (in contrast with chip

multiprocessors)

11/8/2001 Multithr. CSE 471 Autumn 01 10

Speculative Multithreading

• A current area of research
• Several approaches

– Try and identify “critical path” of instructions within a loop and
have them run speculatively (in advance) of the main thread in
further iterations

– Span speculative threads on events such as:
• Procedure call: continue with the caller and callee concurrently
• In loops: generate a speculative thread from the loop exit
• In hard to predict branches: have threads execute both sides

• Main advantage
– Warm up caches and branch predictors.

11/8/2001 Multithr. CSE 471 Autumn 01 11

Trace Caches

• Filling up the instruction buffer of wide issue processors is
a challenge (even more so in SMT)

• Instead of fetching from I-cache, fetch from a trace cache
• The trace cache is a complementary instruction cache that

stores sequences of instructions organized in dynamic
program execution order

• Implemented in forthcoming Intel Willamette and some
Sun Sparc architecture.

• One way to do dynamic optimization of programs and to
find critical path of instructions for speculative
multithreading


