Multiprocessors - Flynn’s Taxonomy (1966)

Single Instruction stream, Single Data stream (SISD)
— Conventional uniprocessor
— Although ILPisexploited
 Single Program Counter -> Single Instruction stream
* Thedataisnot “streaming”
Single Instruction stream, Multiple Data stream (SIMD)
— Popular for some applications like image processing
— One can construe vector processors to be of the SIMD type.
— MMX extensionsto I SA reflect the SIMD philosophy
« Also gpparent in “multimedia’ processors (Equator Map-1000)
— “DataParallel” Programming paradigm

Multiprocessors CSE 471 Aut 01

Flynn’s Taxonomy (¢’ ed)

Multiple Instruction stream, Single Data stream (M1SD)
— Don’t know of any

Multiple Instruction stream, Multiple Data stream (MIMD)
— The most general
— Covers:

« Shared-memory multiprocessors

* Message passing multicomputers (including networks of
workstations cooperating on the same problem)

Multiprocessors CSE 471 Aut 01

Shared-memory Multiprocessors

« Shared-Memory = Single shared-address space (extension
of uniprocessor; communication via L oad/Store)
« Uniform Memory Access: UMA
— Today, almost uniquely in shared-bus systems
— Thebasisfor SMP's (Symmetric MultiProcessing)
— Cache coherence enforced by “snoopy” protocols

— Form the basis for clusters (but in clusters access to memory of
other clustersis not UMA)

Multiprocessors CSE 471 Aut 01

Shared-memory Multiprocessors (¢’ ed)

Non-uniform memory access: NUMA

— NUMA-CC: cache coherent (directory-based protocols or SCI)
— NUMA without cache coherence (enforced by software)

— COMA: Cache Memory Only Architecture

— Clusters

« Distributed Shared Memory: DSM
— Most often network of workstations.

— The shared address space is the “virtual address space”
— O.S. enforces coherence on a page per page basis

Multiprocessors CSE 471 Aut 01

M essage-passing Systems

« Processors communicate by messages
— Primitives are of the form “send”, “receive”’
— The user (programmer) hasto insert the messages
— Message passing libraries (MPI, OpenMP etc.)

« Communication can be:

— Synchronous: The sender must wait for an ack from the receiver
(e.g,inRPC)

— Asynchronous: The sender does not wait for areply to continue

Multiprocessors CSE 471 Aut 01

Shared-memory vs. Message-passing

« Anold debate that is not that much important any longer

« Many systems are built to support a mixture of both

paradigms

— “send, receive” can be supported by O.S. in shared-memory
systems

— “load/store” in virtual address space can be used in a message-
passing system (the message passing library can use “small”
messages to that effect, e.g. passing a pointer to amemory areain
another computer)

— Does anetwork of workstations with apage being the unit of

coherencefollow the shared-memory paradigm or the message
passing paradigm?

Multiprocessors CSE 471 Aut 01




The Pros and Cons

¢ Shared-memory pros

— Ease of programming (SPM D: Single Program Multiple Data
paradigm)

— Good for communication of small items
— Lessoverhead of O.S.
— Hardware-based cache coherence
* Message-passing pros
— Simpler hardware (more scalable)

— Explicit communication (both good and bad; some programming
languages have primitives for that), easier for long messages
— Use of message passing libraries

Multiprocessors CSE 471 Aut 01 7

Caveat about Parallel Processing

« Multiprocessors are used to:
— Speedup computations
— Solvelarger problems
* Speedup
— Time to execute on 1 processor / Time to execute on N processors

« Speedup islimited by the communication/computation
ratio and synchronization

« Efficiency
— Speedup / Number of processors

Multiprocessors CSE 471 Aut 01 8

Amdahl’s Law for Parallel Processing

* Recall Amdahl’s law

— If x% of your program is sequential, speedup is bounded by 1/x
« At best linear speedup (if no sequential section)
« What about superlinear speedup?

— Theoretically impossible

— “Occurs’ because adding a processor might mean adding more
overall memory and caching (e.g., fewer page faults!)

— Haveto be careful about the x% of sequentiality. Might become
lower if the data set increases.

« Speedup and Efficiency should have the number of
processors and the size of the input set as parameters

Multiprocessors CSE 471 Aut 01 9

SMP (Symmetric MultiProcessors aka M ultis)
Single shared-bus Systems

TITL

Interleaved 1/0 adapter
Memory

Multiprocessors CSE 471 Aut 01 10

Multiprocessor with Centralized Switch

Cache

Proc Proc Proc

< Interconnection network >

0005565955 65555555%

Proc @ Proc

Multiprocessors CSE 471 Aut 01 u

Multiprocessor with Decentralized Switches

Cache

Multiprocessors CSE 471 Aut 01 12




