
10/22/01 Mult. Pipes CSE 471 Autumn 01 1

Extending simple pipeline to multiple pipes

• Single issue: in ID stage direct to one of several EX stages

• Common WB stage

• EX of various pipelines might take more than one cycle

• Latency of an EX unit = Number of cycles before its result
can be forwarded = Number of stages –1

• Not all EX need be pipelined

• IF EX is pipelined
– A new instruction can be assigned to it every cycle (if no data

dependency) or, maybe only after x cycles, with x depending on
the function to be performed

10/22/01 Mult. Pipes CSE 471 Autumn 01 2

IF ID

EX (e.g., integer; latency 0)

M1 M7

A1 A4

Div (e.g., not pipelined,
Latency 25)

Me

Needed at beg of cycle
& ready at end of cycle

both

WB

F-p add (latency 3)

F-p mul (latency 6)

10/22/01 Mult. Pipes CSE 471 Autumn 01 3

Hazards in example multiple cycle pipeline

• Structural: Yes
– Divide unit is not pipelined. In the example processor two Divides

separated by less than 25 cycles will stall the pipe
– Several writes might be “ready” at the same time and want to use

WB stage at the same time (not possible if single write port)

• RAW: Yes
– Essentially handled as in integer pipe (the dependent inst is stalled

at the beginning of its EX stage) but with higher frequency of
stalls. Also more forwarding needed.

• WAW : Yes (see later)
– WAR no since read is in the ID stage

• Out of order completion : Yes (see later)

10/22/01 Mult. Pipes CSE 471 Autumn 01 4

RAW:Example from the book

F4 <- M IF ID EX MeWB
F0 <- F4 * F6 IF ID st M1 M2 M3 M4 M5 M6 M7 Me WB
F2 <- F0 + F8 IF ID st st st st st A1 A2 A3 A4 Me WB
 M <- F2 IF ID EX st st st st st st st Me WB

In blue data dependencies hazard

In red structural hazard

In green stall cycles

10/22/01 Mult. Pipes CSE 471 Autumn 01 5

Conflict in using the WB stage

• Several instructions might want to use the WB stage at the
same time
– E.g.,A Multd issued at time t and an addd issued at time t + 3

• Solution 1: reserve the WB stage at ID stage (scheme
already used in CRAY-1 built in 1976)
– Keep track of WB stage usage in shift register
– Reserve the right slot. If busy, stall for a cycle and repeat
– Shift every clock cycle

• Solution 2: Stall before entering either Me or WB
– Pro: easier detection than solution1
– Con: need to be able to trickle the stalls “backwards”.

10/22/01 Mult. Pipes CSE 471 Autumn 01 6

Example on how to reserve the WB stage
(Solution 1 in previous slide)

Time in ID stage Operation Shift register

 t multd 000 000 001

 t +1 int 001 000 010

 t + 2 int 011 000 100

 t + 3 addd 110 00X 000

Note: multd and addd want WB at time t + 9. addd will be asked to stall one
cycle

Instructions complete out of order (e.g., the two int terminate before the multd)

10/22/01 Mult. Pipes CSE 471 Autumn 01 7

WAW Hazards

• Instruction i writes f-p register Fx at time t
 Instruction i + k writes f-p register Fx at time t - m
• But no instruction i + 1, i +2, i+k uses (reads) Fx

(otherwise there would be a stall)
• Only requirement is that i + k ´s result be stored

– Note: this situation should be rare (useless instruction i)

• Solutions:
– Squash i : difficult to know where it is in the pipe
– At ID stage check that result register is not a result register in all
 subsequent stages of other units. If it is, stall appropriate number of

cycles.

10/22/01 Mult. Pipes CSE 471 Autumn 01 8

Out-of-order completion

• Instruction i finishes at time t

 Instruction i + k finishes at time t - m
– No hazard etc. (see previous example on integer completing before

multd)

• What happens if instruction i causes an exception at a time

 in [t-m,t] and instruction i + k writes in one of its own
source operands (i.e., is not restartable)?

10/22/01 Mult. Pipes CSE 471 Autumn 01 9

Exception handling

• Solutions (cf. book pp 194-196 for more details)
– Do nothing (imprecise exceptions; bad with virtual memory)
– Have a precise (by use of testing instructions) and an imprecise

mode; effectively restricts concurrency of f-p operations
– Buffer results in a “history file” (or a “future file”) until previous

(in order) instructions have completed; can be costly when there
are large differences in latencies but a similar technique is used for
OOO execution .

– Restrict concurrency of f-p operations and on an exception
“simulate in software” the instructions in between the faulting and
the finished one.

– Flag early those operations that might result in an exception and
stall accordingly

