
Mem. Hier. CSE 471 Aut 01 1

Evolution in Memory Management
Techniques

• In early days, single program run on the whole machine
– Used all the memory available

• Even so, there was often not enough memory to hold data
and program for the entire run
– Use of overlays, i.e., static partitioning of program and data so that

parts that were not needed at the same time could share the same
memory addresses

• Soon, it was noticed that I/O was much more time
consuming than processing, hence the advent of
multiprogramming

Mem. Hier. CSE 471 Aut 01 2

Multiprogramming

• Multiprogramming
– Several programs are resident in main memory at the same time

– When one program executes and needs I/O, it relinquishes CPU to
another program

• Some important questions from the memory management
viewpoint:
– How does one program ask for (more) memory

– How is one program protected from another

Mem. Hier. CSE 471 Aut 01 3

Virtual Memory: Basic idea

• Idea first proposed and implemented at the University of
Manchester in the early 60’s.

• Basic idea is to compile/link a program in a virtual space
as large as the addressing space permits

• Then, divide the virtual space in “chunks” and bring those
“chunks’ on demand in physical memory

• Provide a general (fully-associative) mapping between
virtual “chunks” and physical “chunks”

Mem. Hier. CSE 471 Aut 01 4

Virtual Memory Implementations

• When the virtual space is divided into chunks of the same
size, called pages, we have a paging system

• If chunks are of different sizes, we have segments
– Segments correspond to semantic objects (a good thing) but

implementation is more difficult (memory allocation of variable
size segments; checks for out of bounds etc.)

• Paging (segmented) systems predate caches
– But same questions (mapping, replacement, writing policy)

• An enormous difference: penalty for a miss

• Requires hardware assists for translation and protection

Mem. Hier. CSE 471 Aut 01 5

Paging

• Allows virtual address space larger than physical memory

• Allows sharing of physical memory between programs
(multiprogramming) without much fragmentation
– Physical memory allocated to a program does not need to be

contiguous; only an integer number of pages

• Allows sharing of pages between programs (not always
simple)

Mem. Hier. CSE 471 Aut 01 6

Two Extremes in the Memory Hierarchy

PARAMETER L1 PAGING SYSTEM

block (page) size 16-64 bytes 4K-8K (also 64K)

miss (fault) time 10-100 cycles
(20-1000 ns)

Millions of cycles
(3-20 ms)

miss (fault) rate 1-10% 0.00001-0.001%

memory size 16K-64K Bytes
(impl. depend.)

Gigabytes
(depends on ISA)

Mem. Hier. CSE 471 Aut 01 7

Other Extreme Differences

• Mapping: Restricted (L1) vs. general (Paging)
– Hardware assist for virtual address translation (TLB)

• Miss handler
– Harware only for caches
– Software only for paging system (context-switch)
– Hardware and/or software for TLB

• Replacement algorithm
– Not important for L1 caches
– Very important for paging system

• Write policy
– Always write back for paging systems

Mem. Hier. CSE 471 Aut 01 8

Illustration of Paging
Program A

Program B

Physical memory
V.p.0

V.p.0

V.p.1

V.p.1

V.p.2

V.p.2

V.p.3

V.p.n

V.p.q

Frame 0
Frame 1
Frame 2

Frame m

Note: In general n, q >> m

Programs A and B share
frame 0 but with different
virtual page numbers

Not all virtual pages of a
program are mapped at a
given time

Mapping device

Mem. Hier. CSE 471 Aut 01 9

Mapping Device: Page Tables

• Page tables contain page table entries (PTE):
– Virtual page number (implicit/explicit), physical page

number,valid, protection, dirty, use bits (for LRU-like
replacement), etc.

• Hardware register points to the page table of the running
process

• Earlier system: contiguous (in virtual space) page tables;
Now, multi-level page tables

• In some systems, inverted page tables (with a hash table)
• In all modern systems, page table entries are cached in a

TLB

Mem. Hier. CSE 471 Aut 01 10

Illustration of Page Table
Program A

Program B

Physical memory
V.p.0

V.p.0

V.p.1

V.p.1

V.p.2

V.p.2

V.p.3

V.p.n

V.p.q

Frame 0
Frame 1
Frame 2

Frame m

1
1
0

1

2
m

0

Page table for
Program A

Valid bits

Page table for
Program B

0
1

1 1

0

Mem. Hier. CSE 471 Aut 01 11

Virtual Address Translation

1

Virtual page number Offset

OffsetPhysical frame number

Page table

Mem. Hier. CSE 471 Aut 01 12

From Virtual Address to Memory Location
(highly abstracted)

ALU

Virtual address

Page
table

Physical address

Memory
hierarchy

Mem. Hier. CSE 471 Aut 01 13

Translation Look-aside Buffers (TLB)

• Keeping page tables in memory defeats the purpose of
caches
– Needs one memory reference to do the translation

• Hence, introduction of caches to cache page table entries;
these are the TLB’s
– There have been attempts to use the cache itself instead of a TLB

but it has been proven not to be worthwhile

• Nowadays, TLB for instructions and TLB for data
– Some part of the TLB’s reserved for the system

– Of the order of 128 entries, quite associative

Mem. Hier. CSE 471 Aut 01 14

TLB’s

• TLB miss handled by hardware or by software (e.g., PAL
code in Alpha) or by a combination HW/SW
– TLB miss 10-100 cycles -> no context-switch

• Addressed in parallel with access to the cache

• Since smaller, goes faster
– It’s on the critical path

• For a given TLB size (number of entries)
– Larger page size -> larger mapping range

Mem. Hier. CSE 471 Aut 01 15

TLB organization

OffsetVirtual page number

Indextag

Physical frame number

v d prot

Copy of PTE

Mem. Hier. CSE 471 Aut 01 16

From Virtual Address to Memory Location
(highly abstracted; revisited)

ALU

Virtual address

TLB

Physical address

hit

cache

Main
memory

miss

hit

miss

Mem. Hier. CSE 471 Aut 01 17

Address Translation

• At each memory reference the hardware searches the TLB
for the translation
– TLB hit and valid PTE the physical address is passed to the cache
– TLB miss, either hardware or software (depends on

implementation) searches page table in memory.
• If PTE is valid, contents of the PTE loaded in the TLB and back to

step above

• In hardware the TLB miss takes a few cycles
• In software takes up to 100 cycles
• In either case, no context-switch
• If PTE is invalid, we have a page fault (even on a TLB hit)

Mem. Hier. CSE 471 Aut 01 18

Speeding up L1 Access

• Cache can be (speculatively) accessed in parallel with TLB
if its indexing bits are not changed by the virtual-physical
translation

• Cache access (for reads) is pipelined:
– Cycle 1: Access to TLB and access to L1 cache (read data at given

index)

– Cycle 2: Compare tags and if hit, send data to register

Mem. Hier. CSE 471 Aut 01 19

Virtually Addressed Cache

TLB

data

Cache

PTE

Page Number Offset

 Tag Index Dsp

Tag
1 1

2. Compare

Mem. Hier. CSE 471 Aut 01 20

“Virtual” Caches

• Previous slide: Virtually addressed, physically tagged
– Can be done for small L1, i.e., capacity < (page * ass.)
– Can be done for larger caches if O.S. does a form of page coloring

such that “index” is the same for synonyms (see below)
– Can also be done more generally (complicated but can be elegant)

• Virtually addressed, virtually tagged caches
– Synonym problem (2 virtual addresses corresponding to the same

physical address). Inconsistency since the same physical location
can be mapped into two different cache blocks

– Can be handled by software (disallow it) or by hardware (with
“pointers”)

– Use of PID’s to only partially flush the cache

