Evolution in Memory Management Techniques

- In early days, single program run on the whole machine - Used all the memory available
- Even so, there was often not enough memory to hold data and program for the entire run
- Use of overlays, i.e., static partitioning of program and data so that parts that were not needed at the same time could share the same memory addresses
- Soon, it was noticed that I/O was much more time consuming than processing, hence the advent of multiprogramming

Mem. Hier. CSE 471 Aut 01

Dultiprogramming Multiprogramment Several programs are resident in main memory at the same time Several program executes and needs I/O, it relinquishes CPU to another program Some important questions from the memory management between the time program protected from another How is one program protected from another

Virtual Memory: Basic idea

- Idea first proposed and implemented at the University of Manchester in the early 60's.
- Basic idea is to compile/link a program in a virtual space as large as the addressing space permits
- Then, divide the virtual space in "chunks" and bring those "chunks' on demand in physical memory
- Provide a general (fully-associative) mapping between virtual "chunks" and physical "chunks"

Mem. Hier. CSE 471 Aut 01

Virtual Memory Implementations

- When the virtual space is divided into chunks of the same size, called pages, we have a paging system
- If chunks are of different sizes, we have segments
 Segments correspond to semantic objects (a good thing) but implementation is more difficult (memory allocation of variable size segments; checks for out of bounds etc.)
- Paging (segmented) systems predate caches
 But same questions (mapping, replacement, writing policy)
- An enormous difference: penalty for a miss
- · Requires hardware assists for translation and protection

Mem. Hier. CSE 471 Aut 01

Paging

- · Allows virtual address space larger than physical memory
- Allows sharing of physical memory between programs (multiprogramming) without much fragmentation
 - Physical memory allocated to a program does not need to be contiguous; only an integer number of pages
- Allows sharing of pages between programs (not always simple)

Mem. Hier. CSE 471 Aut 01

5

3

Two Extremes in the Memory Hierarchy

PARAMETER	L1	PAGING SYSTEM
block (page) size	16-64 bytes	4K-8K (also 64K)
miss (fault) time	10-100 cycles (20-1000 ns)	Millions of cycles (3-20 ms)
miss (fault) rate	1-10%	0.00001-0.001%
memory size	16K-64K Bytes (impl. depend.)	Gigabytes (depends on ISA)

Mem. Hier. CSE 471 Aut 01

Mem. Hier. CSE 471 Aut 01

17

