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Evolution in Memory Management
Techniques

• In early days, single program run on the whole machine
– Used all the memory available

• Even so, there was often not enough memory to hold data
and program for the entire run
– Use of overlays, i.e., static partitioning of program and data so that

parts that were not needed at the same time could share the same
memory addresses

• Soon, it was noticed that I/O was much more time
consuming than processing, hence the advent of
multiprogramming
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Multiprogramming

• Multiprogramming
– Several programs are resident in main memory at the same time

– When one program executes and needs I/O, it relinquishes CPU to
another program

• Some important questions from the memory management
viewpoint:
– How does one program ask for (more) memory

– How is one program protected from another
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Virtual Memory: Basic idea

• Idea first proposed and implemented at the University of
Manchester in the early 60’s.

• Basic idea is to compile/link a program in a virtual space
as large as the addressing space permits

• Then, divide the virtual space in “chunks” and bring those
“chunks’ on demand in physical memory

• Provide a general (fully-associative) mapping between
virtual “chunks” and physical “chunks”
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Virtual Memory Implementations

• When the virtual space is divided into chunks of the same
size, called pages, we have a paging system

• If chunks are of different sizes, we have segments
– Segments correspond to semantic objects (a good thing) but

implementation is more difficult (memory allocation of variable
size segments; checks for out of bounds etc.)

• Paging (segmented) systems predate caches
– But same questions (mapping, replacement, writing policy)

• An enormous difference: penalty for a miss

• Requires hardware assists for translation and protection
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Paging

• Allows virtual address space larger than physical memory

• Allows sharing of physical memory between programs
(multiprogramming) without much fragmentation
– Physical memory allocated to a program does not need to be

contiguous; only an integer number of pages

• Allows sharing of pages between programs (not always
simple)

Mem. Hier. CSE 471 Aut 01 6

Two Extremes in the Memory Hierarchy

PARAMETER L1 PAGING SYSTEM 

block (page) size 16-64 bytes 4K-8K (also 64K) 

miss (fault) time 10-100 cycles 
(20-1000 ns) 

Millions of cycles 
(3-20 ms) 

miss (fault) rate 1-10% 0.00001-0.001% 

memory size 16K-64K Bytes 
(impl. depend.) 

Gigabytes 
(depends on ISA) 
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Other Extreme Differences

• Mapping: Restricted (L1) vs. general (Paging)
– Hardware assist for virtual address translation (TLB)

• Miss handler
– Harware only for caches
– Software only for paging system (context-switch)
– Hardware and/or software for TLB

• Replacement algorithm
– Not important for L1 caches
– Very important for paging system

• Write policy
– Always write back for paging systems

Mem. Hier. CSE 471 Aut 01 8

Illustration of Paging
Program A

Program B

Physical memory
V.p.0

V.p.0

V.p.1

V.p.1

V.p.2

V.p.2

V.p.3

V.p.n

V.p.q

Frame 0
Frame 1
Frame 2

Frame m

Note: In general n, q >> m

Programs A and B share
frame 0 but with different
virtual page numbers

Not all virtual pages of a
program are mapped at a
given time

Mapping device
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Mapping Device: Page Tables

• Page tables contain page table entries (PTE):
– Virtual page number (implicit/explicit), physical page

number,valid, protection, dirty, use bits (for LRU-like
replacement), etc.

• Hardware register points to the page table of the running
process

• Earlier system: contiguous (in virtual space) page tables;
Now, multi-level page tables

• In some systems, inverted page tables (with a hash table)
• In all modern systems, page table entries are cached in a

TLB
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Illustration of Page Table
Program A

Program B

Physical memory
V.p.0
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1
1
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1
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Page table for
Program A

Valid bits

Page table for
Program B

0
1

1 1

0
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Virtual Address Translation

1

Virtual page number Offset

OffsetPhysical frame number

Page table
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From Virtual Address to Memory Location
(highly abstracted)

ALU

Virtual address

Page
table

Physical address

Memory
hierarchy
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Translation Look-aside Buffers (TLB)

• Keeping page tables in memory defeats the purpose of
caches
– Needs one memory reference to do the translation

• Hence, introduction of caches to cache page table entries;
these are the TLB’s
– There have been attempts to use the cache itself instead of a TLB

but it has been proven not to be worthwhile

• Nowadays, TLB for instructions and TLB for data
– Some part of the TLB’s reserved for the system

– Of the order of 128 entries, quite associative
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TLB’s

• TLB miss handled by hardware or by software (e.g., PAL
code in Alpha) or by a combination HW/SW
– TLB miss 10-100 cycles -> no context-switch

• Addressed in parallel with access to the cache

• Since smaller, goes faster
– It’s on the critical path

• For a given TLB size (number of entries)
– Larger page size -> larger mapping range
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TLB organization

OffsetVirtual page number

Indextag

Physical frame number

v d prot

Copy of PTE
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From Virtual Address to Memory Location
(highly abstracted; revisited)

ALU

Virtual address

TLB

Physical address

hit

cache

Main
memory

miss

hit

miss
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Address Translation

• At each memory reference the hardware searches the TLB
for the translation
– TLB hit and valid PTE the physical address is passed to the cache
– TLB miss, either hardware or software (depends on

implementation) searches page table in memory.
• If PTE is valid, contents of the PTE loaded in the TLB and back to

step above

• In hardware the TLB miss takes a few cycles
• In software takes up to 100 cycles
• In either case, no context-switch
• If PTE is invalid, we have a page fault (even on a TLB hit)
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Speeding up L1 Access

• Cache can be (speculatively) accessed in parallel with TLB
if its indexing bits are not changed by the virtual-physical
translation

• Cache access (for reads) is pipelined:
– Cycle 1: Access to TLB and access to L1 cache (read data at given

index)

– Cycle 2: Compare tags and if hit, send data to register
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Virtually Addressed Cache

TLB

data

Cache

PTE

Page Number       Offset

       Tag             Index        Dsp

Tag
1 1

2. Compare
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“Virtual” Caches

• Previous slide: Virtually addressed, physically tagged
– Can be done for small L1, i.e., capacity < (page * ass.)
– Can be done for larger caches if O.S. does a form of page coloring

such that “index” is the same for synonyms (see below)
– Can also be done more generally (complicated but can be elegant)

• Virtually addressed, virtually tagged caches
– Synonym problem (2 virtual addresses corresponding to the same

physical address). Inconsistency since the same physical location
can be mapped into two different cache blocks

–  Can be handled by software (disallow it) or by hardware (with
“pointers” )

– Use of PID’s to only partially flush the cache


