Main Memory

- The last level in the hierarchy is main memory, made of DRAM chips
- DRAM parameters (memory latency at the DRAM level):
 - Access time: time between the read is requested and the desired word arrives
 - Cycle time: minimum time between requests to memory (cycle time > access time because need for stabilization of address lines)

DRAM’s

- Address lines split into row and column addresses. A read operation consists of:
 - RAS (Row access strobe)
 - CAS (Column access strobe)
 - If device has been precharged, access time = RAS + CAS
 - If not, have to add precharge time
 - RAS, CAS, and Precharge are of the same order of magnitude
 - In DRAM, data needs to be written back after a read, hence cycle time > access time

DRAM and SRAM

- D stands for “dynamic”
 - Each bit is single transistor (plus capacitor; hence the need to rewrite info after a read).
 - Needs to be recharged periodically. Hence refreshing. All bits in a row can be refreshed concurrently (just read the row).
 - For each row it takes RAS time to refresh (can lead to up to 5% loss in performance).
- S stands for “static”
 - Uses 6 transistors/bit (some use 4). No refresh and no need to write after read (i.e., information is not lost by reading; very much like a FF in a register).

DRAM vs. SRAM

- Cycle time of SRAM 10 to 20 times faster than DRAM
- For same technology, capacity of DRAM 5 to 10 times that of SRAM
- Hence
 - Main memory is DRAM
 - On-chip caches are SRAM
 - Off-chip caches (it depends)
- DRAM growth
 - Capacity: Factor of 4 every 3 years (60% per year)
 - Cycle time: Improvement of 20% per generation (7% per year)

How to Improve Main Memory Bandwidth

- It’s easier to improve on bandwidth than on latency
- Sending address: can’t be improved (and this is latency)
- Although split-transaction bus allows some overlap
- Make memory wider (assume monolithic memory)
 - Sending one address, yields transfer of more than one word if the bus width allows it (and it does nowadays)
 - But less modularity (buy bigger increments of memory)
Interleaving (introducing parallelism at the DRAM level)

- Memory is organized in banks.
- Bank i stores all words at address $j \mod i$.
- All banks can read a word in parallel.
 - Ideally, number of banks should match (or be a multiple of) the L2 block size (in words).
- Bus does not need to be wider (buffer in the DRAM bank).
- Writes to individual banks for different addresses can proceed without waiting for the preceding write to finish (great for write-through caches).

Banks of Banks

- Superbanks interleaved by some bits other than lower bits.
- Superbanks composed of banks interleaved on low order bits for sequential access.
- Superbanks allow parallel access to memory.
 - Great for lock-up free caches, for concurrent I/O and for multiprocessors sharing main memory.

Limitations of Interleaving (sequential access)

- Number of banks limited by increasing chip capacity.
 - With 1M x 1 bit chips, it takes 64 x 8 = 512 chips to get 64 MB (easy to put 16 banks of 32 chips).
 - With 16 M x 1 chips, it takes only 32 chips (only one bank).
- In the $N \times m$ (N number of MB, m width of bits out of each chip) m is limited by electronic constraints to about 8 or maybe 16.

Example Memory Path of a Workstation

Page-mode and Synchronous DRAMs

- Introduce a page buffer.
 - In page mode no need for a RAS.
 - But if a miss, need to precharge = RAS + CAS.
- In SDRAM, same as page-mode but subsequent accesses even faster (burst mode).

Cached DRAM and Processor in Memory

- Put some SRAM on DRAM chip.
 - More flexibility in buffer size than page mode.
 - Can precharge DRAM while accessing SRAM.
 - But fabrication is different hence has not caught up in mass market.
- Go one step further (1 billion transistors/chip).
 - Put “simple” processor and SRAM and DRAM on chip.
 - Great bandwidth for processor-memory interface.
 - Cache with very large block size since parallel access to many banks is possible.
 - Can’t have too complex of a processor.
 - Need to invest in new fabs.
Processor in Memory (PIM)

- Generality depends on the intended applications
- IRAM
 - Vector processor; data stream apps; low power
- FlexRAM
 - Memory chip = Host + Simple multiprocessor + banks of DRAM; memory intensive apps.
- Active Pages
 - Co-processor paradigm; reconfigurable logic in memory
- FBRAM
 - Graphics in memory

Rambus

- Specialized memory controller (scheduler), channel, and RDRAM’s
- Parallelism and pipelining, e.g.
 - Independent row, column, and data buses (narrow = 2 bytes)
 - Pipelined memory subsystem (several packets/access; packets are 4 cycles = 10 ns)
 - Parallelism within the RDRAMs (many banks with 4 possible concurrent operations)
 - Parallelism among RDRAM’s (large number of them)
- Great for “streams of data” (Graphics, games)

Direct Rambus

- Extremely fast bus (400 MHz clock, 800 MHz transfer rate)
- Great bandwidth for stream data but still high latency for random reads/writes

Split-transaction Bus

- Allows transactions (address, control, data) for different requests to occur simultaneously
- Required for efficient Rambus
- Great for SMP’s sharing a single bus