
10/22/01 Exploiting ILP CSE 471 Autumn 01 1

How to improve (decrease) CPI

• Recall: CPI = Ideal CPI + CPI contributed by stalls

• Ideal CPI =1 for single issue machine even with multiple
pipes

• Ideal CPI will be less than 1 if we have several pipes and
we can issue (and “commit”) multiple instructions in the
same cycle, i.e., we take advantage of Instruction Level
Parallelism (ILP)

10/22/01 Exploiting ILP CSE 471 Autumn 01 2

Exploitation of Instruction Level Parallelism
(ILP)

• Will increase throughput and decrease CPU execution time

• Will increase structural hazards
– Cannot issue 2 instructions to the same pipe

• Makes reduction in other stalls even more important
– A stall costs more than the loss of a single instruction issue

• Will make the design more complex
– WAW and WAR hazards can occur

– Out-of-order completion can occur

– Precise exception handling is more difficult

10/22/01 Exploiting ILP CSE 471 Autumn 01 3

Where can we optimize? (control)

• CPI contributed by control stalls can be decreased
statically (compiler) or dynamically (hardware)

• Compiler optimizations
– Reduce the number of branches: loop unrolling

• Speculative execution
– Static (software) or dynamic (hardware) branch prediction

– Code movement : execute instructions before knowing that they
will need to be executed (beware of exceptions)

• Speculative loads

– Predication

10/22/01 Exploiting ILP CSE 471 Autumn 01 4

Where can we optimize? (data dependencies)

• CPI contributed by data hazards can be decreased statically
(compiler) or dynamically (hardware)

• Compiler optimizations
– Load scheduling, dependence analysis, software pipelining, trace

scheduling

• Hardware (run-time) techniques
– Forwarding (RAW)

– Register renaming (WAW, WAR)

10/22/01 Exploiting ILP CSE 471 Autumn 01 5

Data dependencies (RAW)

• Instruction (statement) Sj dependent on Si if

– Transitivity: Instruction j dependent on k and k dependent on i

• Dependence is a program property

• Hazards (RAW in this case) and their (partial) removals
are a pipeline organization property

• Code scheduling goal
– Maintain dependence and avoid hazard (pipeline is exposed to the

compiler)

O Ii j∩ ≠ ∅

10/22/01 Exploiting ILP CSE 471 Autumn 01 6

Loop unrolling

• Pros
– Decrease loop overhead (branches, counter settings)

– Allows better scheduling
• Longer basic blocks hence better opportunities to hide latency of

“long” operations and to prevent load delays

• Cons
– Increases register pressure

– Increases code length (I-cache occupancy)

– Requires prologue or epilogue

10/22/01 Exploiting ILP CSE 471 Autumn 01 7

Software pipelining

• Reorganize loops with loop-carried dependences by
“symbolically” unrolling them
– New code : statements of distinct iterations of original code

– Take an “horizontal” slice of several (dependent) iterations

Iter. i Iter. i + 1 Iter. i + 2

Store x[i]
Use x[i]

Load x[i]

Original code New code

Store x[i]

Use x[i-1]
Load x[i-2]

dependence

10/22/01 Exploiting ILP CSE 471 Autumn 01 8

Name dependence

• Anti dependence
– Si: …<- R1+ R2; ….; Sj: R1 <- …
– At the instruction level, this is WAR hazard if instruction j finishes

first

• Output dependence
– Si: R1 <- …; ….; Sj: R1 <- …
– At the instruction level, this is a WAW hazard if instruction j

finishes first

• In both cases, not really a dependence but a “naming”
problem
– Register renaming (compiler by register allocation, in hardware see

later)

O Ij i∩ ≠ ∅

O Oi j∩ ≠ ∅

10/22/01 Exploiting ILP CSE 471 Autumn 01 9

Control dependencies

• Branches restrict the scheduling of instructions

• Speculation (i.e., executing an instruction that might not be
needed) must be:
– Safe (no additional exception)

– Legal (the end result should be the same as without speculation)

• Speculation can be implemented by, for example:
– Compiler (code motion)

– Hardware (branch prediction)

– Both (predication)

