
10/24/01 Dyn. Sched. CSE 471 Autumn 01 1

Static vs. dynamic scheduling

• Assumptions (for now):
– 1 instruction issue / cycle

• Ideal CPI still 1, but real CPI will be closer to 1
• Same techniques will be used when we look at multiple issue

– Several pipelines with a common IF and ID

• Static scheduling (optimized by compiler)
– When there is a stall (hazard) no further issue of instructions
– Of course, the stall has to be enforced by the hardware

• Dynamic scheduling (enforced by hardware)
– Instructions following the one that stalls can issue if they do not

produce structural hazards or dependencies

10/24/01 Dyn. Sched. CSE 471 Autumn 01 2

Dynamic scheduling

• Implies possibility of:
– Out of order issue (we say that an instruction is issued once it has

passed the ID stage) and hence out of order execution

– Out of order completion (also possible in static scheduling but less
frequent)

– Imprecise exceptions (will take care of it later)

• Example (different pipes for add/sub and divide)
 R1 = R2/ R3 (long latency)

 R2 = R1 + R5 (stall, no issue, because of RAW on R1)

 R6 = R7 - R8 (can be issued, executed and completed before
the other 2)

10/24/01 Dyn. Sched. CSE 471 Autumn 01 3

Issue and Dispatch

• Split the ID stage into:
– Issue : decode instructions; check for structural hazards and maybe

more hazards such as WAW depending on implementations. Stall
if there are any. Instructions pass in this stage in order

– Dispatch: wait until no data hazards then read operands. At the
next cycle a functional unit, i.e. EX of a pipe, can start executing

• Example revisited.
 R1 = R2/ R3 (long latency; in execution)

 R2 = R1 + R5 (issue but no dispatch because of RAW on R1)

 R6 = R7 - R8 (can be issued, executed and completed before
the other 2)

10/24/01 Dyn. Sched. CSE 471 Autumn 01 4

Implementations of dynamic scheduling

• In order to compute correct results, need to keep track of :
– execution pipes

– register usage for read and write

– completion etc.

• Two major techniques
– Scoreboard (invented by Seymour Cray for the CDC 6600 in 1964)

– Tomasulo’s algorithm (used in the IBM 360/91 in 1967)

10/24/01 Dyn. Sched. CSE 471 Autumn 01 5

Scoreboarding -- The example machine
(cf. Figure 4.3 in your book)Registers

Data buses

Functional units

(pipes)

scoreboard
Control lines
/status

10/24/01 Dyn. Sched. CSE 471 Autumn 01 6

Scoreboard basic idea

• The scoreboard keeps a record of all data dependencies
– Keeps track of which registers are used as sources and destinations

and which functional units use them

• The scoreboard keeps a record of all pipe occupancies
– The original CDC 6600 was not pipelined but conceptually the

scoreboard does not depend on pipelining

• The scoreboard decides if an instruction can be issued
– Either the first time it sees it (no hazard) or, if not, at every cycle

thereafter

• The scoreboard decides if an instruction can store its result
– This is to prevent WAR hazards

10/24/01 Dyn. Sched. CSE 471 Autumn 01 7

An instruction goes through 5 steps

• We assume that the instruction has been successfully
fetched

• 1. Issue
– The execution unit must be free (no structural hazard)

– There should be no WAW hazard

– If either of these conditions is false the instruction stalls. No
further issue is allowed

• There can be more fetches if there is an instruction fetch buffer (like
there was in the CDC 6660)

10/24/01 Dyn. Sched. CSE 471 Autumn 01 8

Execution steps under scoreboard control

• 2. Dispatch (Read operands)
– When the instruction is issued, the execution unit is reserved

(becomes busy)

– Operands are read in the execution unit when they are both ready
(i.e., are not results of still executing instructions). This prevents
RAW hazards (this conservative approach was taken because the
CDC 6600 was not pipelined)

• 3. Execution
– One or more cycles depending on functional unit latency

– When execution completes, the unit notifies the scoreboard it’s
ready to write the result

10/24/01 Dyn. Sched. CSE 471 Autumn 01 9

Execution steps under scoreboard control
(c’ed)

• 4. Write result
– Before writing, check for WAR hazards. If one exists, the unit is

stalled until all WAR hazards are cleared (note that an instruction
in progress, i.e., whose operands have been read, won’t cause a
WAR)

• 5. Delay (you can forget about this one)
– Because forwarding is not implemented, there should be one unit

of delay between writing and reading the same register (this
restriction seems artificial to me and is “historical”).

– Similarly, it takes one unit of time between the release of a unit
and its possible next occupancy

10/24/01 Dyn. Sched. CSE 471 Autumn 01 10

Optimizations and Simplifications

• There are opportunities for optimization such as:
– Forwarding

– Buffering for one copy of source operands in execution units (this
allows reading of operands one at a time and minimizing the WAR
hazards)

• We have assumed that there could be concurrent updates to
(different) registers.
– Can be solved (dynamically) by grouping execution units together

and preventing concurrent writes in the same group

10/24/01 Dyn. Sched. CSE 471 Autumn 01 11

What is needed in the scoreboard

• Status of each functional unit
– Free or busy
– Operation to be performed
– The names of the result Fi and source Fj, Fk registers
– Flags Rj, Rk indicating whether the source registers are ready
– Names Qj,Qk of the units (if any) producing values for Fj, Fk

• Status of result registers
– For each Fi the name of the unit (if any), say Pi that will produce

its contents (redundant but easy to check)

• The instruction status
– Been issued, dispatched, in execution, ready to write, finished?

10/24/01 Dyn. Sched. CSE 471 Autumn 01 12

Condition checking and scoreboard setting

• Issue step
– Unit free, say Ua and no

WAW

• Dispatch (Read operand)step
– Rj and Rk must be free

• Execution step
– At end ask for writing

permission (no WAR)

• Write result
– Check if Pi is an Fj, Fk(Rj ,

Rk= no) in preceding instrs. If
yes stall.

• Issue step
– Ua busy and record Fi,Fj,Fk

– Record Qj, Qk and Rj,Rk

– Record Pi = Ua

• Dispatch (Read operand) step

• Execution step

• Write result
– For subsequent instrs, if

Qj(Qk) = Ua, set Rj(Rk) to yes

– Ua free and Pi = 0

10/24/01 Dyn. Sched. CSE 471 Autumn 01 13

Example

Load F6, 34(r2) Load f-p register F6

Load F2, 45(r3) Load latency 1 cycle

MulF F0,F2,F4 Mult latency 10 cycles

Sub F8, F6,F2 Add/sub latency 2 cycles

DivF F10,F0,F6 Divide latency 40 cycles

Add F6,F8,F2

Assume that the 2 Loads have been issued, the first one completed, the
second ready to write. The next 3 instructions have been issued (but
not dispatched).

RAW

WAR

10/24/01 Dyn. Sched. CSE 471 Autumn 01 14

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes

Mul F0, F2, F4 yes

Sub F8, F6, F2 yes

Div F10, F0, F6 yes

Add F6,F8,F2
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int yes F2 r3

2 Mul yes F0 F2 F4 1 No Y

4 Add yes F8 F6 F2 1 Y No
3 Mul no

5 Div yes F10 F0 F6 2 No Y

Register result status

 F0 (2) F2 (1) F4 () F6() F8 (4) F10 (5) F12 ...

10/24/01 Dyn. Sched. CSE 471 Autumn 01 15

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes

Sub F8, F6, F2 yes yes

Div F10, F0, F6 yes

Add F6,F8,F2
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul yes F0 F2 F4 Y Y

4 Add yes F8 F6 F2 Y Y
3 Mul no

5 Div yes F10 F0 F6 2 No Y

Register result status

 F0 (2) F2 () F4 () F6() F8 (4) F10 (5) F12 ...

1 cycle after 2nd load has
written its result

10/24/01 Dyn. Sched. CSE 471 Autumn 01 16

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes in progress

Sub F8, F6, F2 yes yes yes yes

Div F10, F0, F6 yes

Add F6,F8,F2 yes yes yes
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul yes F0 F2 F4 Y Y

4 Add yes F6 F8 F2 Y Y
3 Mul no

5 Div yes F10 F0 F6 2 No Y

Register result status

 F0 (2) F2 () F4 () F6(4) F8 () F10 (5) F12 ...

6 cycles later; Mul in
execution; Sub has
completed;Div issues; Add
waits for writing

10/24/01 Dyn. Sched. CSE 471 Autumn 01 17

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes yes yes

Sub F8, F6, F2 yes yes yes yes

Div F10, F0, F6 yes yes

Add F6,F8,F2 yes yes yes
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul no

4 Add yes F6 F8 F2 Y Y
3 Mul no

5 Div yes F10 F0 F6 Y Y

Register result status

 F0 () F2 () F4 () F6(4) F8 () F10 (5) F12 ...

4 cycles later (I think!)
Mul is finished; Div can
dispatch; Add will write at
next cycle

10/24/01 Dyn. Sched. CSE 471 Autumn 01 18

Instruction Issue Dispatch Executed Result written

Load F6, 34(r2) yes yes yes yes

Load F2, 45(r3) yes yes yes yes

Mul F0, F2, F4 yes yes yes yes

Sub F8, F6, F2 yes yes yes yes

Div F10, F0, F6 yes yes

Add F6,F8,F2 yes yes yes yes
Functional Unit status

No Name Busy Fi Fj Fk Qj Qk Rj Rk

1 Int no

2 Mul no

4 Add no
3 Mul no

5 Div yes F10 F0 F6 Y Y

Register result status

 F0 () F2 () F4 () F6() F8 () F10 (5) F12 ...

1 cycle later. Only Div is
not finished

10/24/01 Dyn. Sched. CSE 471 Autumn 01 19

Tomasulo’s algorithm

• “Weaknesses” in scoreboard:
– Centralized control

– No forwarding (more RAW than needed)

• Tomasulo’s algorithm as implemented first in IBM 360/91
– Control decentralized at each functional unit

– Forwarding

– Concept and implementation of renaming registers that eliminates
WAR and WAW hazards

10/24/01 Dyn. Sched. CSE 471 Autumn 01 20

Reservation stations

• With each functional unit, have a set of buffers or
reservation stations
– Keep operands and function to perform

– Operands can be values or names of units that will produce the
value (register renaming) with appropriate flags

• Not both operands have to be “ready” at the same time

• When both operands have values, functional unit can
execute on that pair of operands

• When a functional unit computes a result, it broadcasts its
name and the value.

10/24/01 Dyn. Sched. CSE 471 Autumn 01 21

Tomasulo’s solution to resolve hazards

• Structural hazards
– No free reservation station (stall at issue time). No further issue

• RAW dependency (detected in each functional unit --
decentralized)
– The instruction with the dependency is stalled (but others might be

issued)

• No WAR and WAW hazards
– Because of register renaming through reservation stations

• Forwarding
– Done at end of execution by use of a common (broadcast) data bus

10/24/01 Dyn. Sched. CSE 471 Autumn 01 22

Example machine (cf. Figure 4.8)
From memory From I-unit

Fp registersLoad
buffers

Store
buffers

To memory

Reservation
stations

F-p units

Common
data
bus

10/24/01 Dyn. Sched. CSE 471 Autumn 01 23

An instruction goes through 3 steps

• Assume the instruction has been fetched

• 1. Issue, dispatch, and read operands
– Check for structural hazard (no free reservation station or no free

load-store buffer for a memory operation). If there is one, stall until
it is not present any longer

– Reserve the next reservation station

– Read source operands

• If they have values, put the values in the reservation station

• If they have names, store their names in the reservation station

– Rename result register with the name of the functional unit that
will compute it

10/24/01 Dyn. Sched. CSE 471 Autumn 01 24

An instruction goes through 3 steps (c‘ed)

• 2. Execute
– If any of the source operands is not ready (i.e., the reservation

station holds a name), monitor the bus for broadcast of a result
– When both operands have values, execute

• 3. Write result
– Broadcast name of the unit and value computed. Any reservation

station/result register with that name grabs the value

• Note two more sources of structural hazard:
– Two reservation stations in the same functional unit are ready to

execute in the same cycle: choose the “first” one
– Two functional units want to broadcast at the same time. Priority is

encoded in the hardware

10/24/01 Dyn. Sched. CSE 471 Autumn 01 25

Implementation

• All registers (except load buffers) contain a pair
{value,tag}

• The tag (or name) can be:
– Zero (or a special pattern) meaning that the value is indeed a value

– The name of a load buffer

– The name of a reservation station within a functional unit

• A reservation station consists of :
– The operation to be performed

– 2 pairs (value,tag) (Vj,Qj) (Vk,Qk)

– A flag indicating whether the accompanying f-u is busy or not

10/24/01 Dyn. Sched. CSE 471 Autumn 01 26

Instruction Issue Execute Write result

Load F6, 34(r2) yes yes yes

Load F2, 45(r3) yes yes

Mul F0, F2, F4 yes

Sub F8, F6, F2 yes

Div F10, F0, F6 yes

Add F6,F8,F2 yes
Reservation Stations

Name Busy Fm Vj Vk Qj Qk

Add 1 yes Sub (Load1) Load2

Add2 yes Add Add1 Load2

Mul1 yes Mul (F4) Load2
Add3 no

Mul2 yes Div (Load1) Mul1

Register status

F0 (Mul1) F2 (Load2) F4 () F6(Add2) F8 (Add1) F10 (Mul2) F12...

Initial: waiting for F2 to
be loaded from memory

(x) Means a value:
contents of x

10/24/01 Dyn. Sched. CSE 471 Autumn 01 27

Instruction Issue Execute Write result

Load F6, 34(r2) yes yes yes

Load F2, 45(r3) yes yes yes

Mul F0, F2, F4 yes yes

Sub F8, F6, F2 yes yes

Div F10, F0, F6 yes

Add F6,F8,F2 yes
Reservation Stations

Name Busy Fm Vj Vk Qj Qk

Add 1 yes Sub (Load1) (Load2)

Add2 yes Add (Load2) Add1

Mul1 yes Mul (Load2) (F4)
Add3 no

Mul2 yes Div (Load1) Mul1

Register status

F0 (Mul1) F2 () F4 () F6(Add2) F8 (Add1) F10 (Mul2) F12...

Cycle after 2nd
load has written
its result

10/24/01 Dyn. Sched. CSE 471 Autumn 01 28

Instruction Issue Execute Write result

Load F6, 34(r2) yes yes yes

Load F2, 45(r3) yes yes yes

Mul F0, F2, F4 yes yes

Sub F8, F6, F2 yes yes yes

Div F10, F0, F6 yes

Add F6,F8,F2 yes yes
Reservation Stations

Name Busy Fm Vj Vk Qj Qk

Add 1 no

Add2 yes Add (Add1) (Load2)

Mul1 yes Mul (Load2) (F4)
Add3 no

Mul2 yes Div (Load1) Mul1

Register status

F0 (Mul1) F2 () F4 () F6(Add2) F8 () F10 (Mul2) F12...

Cycle after sub
has written its
result

10/24/01 Dyn. Sched. CSE 471 Autumn 01 29

Instruction Issue Execute Write result

Load F6, 34(r2) yes yes yes

Load F2, 45(r3) yes yes yes

Mul F0, F2, F4 yes yes

Sub F8, F6, F2 yes yes yes

Div F10, F0, F6 yes

Add F6,F8,F2 yes yes yes
Reservation Stations

Name Busy Fm Vj Vk Qj Qk

Add 1 no

Add2 no

Mul1 yes Mul (Load2) (F4)
Add3 no

Mul2 yes Div (Load1) Mul1

Register status

F0 (Mul1) F2 () F4 () F6() F8 () F10 (Mul2) F12...

Cycle after add
has written its
result

10/24/01 Dyn. Sched. CSE 471 Autumn 01 30

Instruction Issue Execute Write result

Load F6, 34(r2) yes yes yes

Load F2, 45(r3) yes yes yes

Mul F0, F2, F4 yes yes yes

Sub F8, F6, F2 yes yes yes

Div F10, F0, F6 yes yes

Add F6,F8,F2 yes yes yes
Reservation Stations

Name Busy Fm Vj Vk Qj Qk

Add 1 no

Add2 no

Mul1 no
Add3 no

Mul2 yes Div (Mul1) (Load1)

Register status

F0 () F2 () F4 () F6() F8 () F10 (Mul2) F12...

Cycle after mul
has written its
result

10/24/01 Dyn. Sched. CSE 471 Autumn 01 31

Other checks/possibilities

• In the example in the book there is no load/store
dependencies but since they can happen
– Load/store buffers must keep the addresses of the operands
– On load, check if there is a corresponding address in store buffers.

If so, get the value/tag from there (load buffers have tags)
– Better yet, have load/store functional units (still needs checking)

• The Tomasulo engine was intended only for f-p operations.
We need to generalize to include
– Handling branches, exceptions etc
– In-order completion
– More general register renaming mechanisms
– Multiple instruction issues

