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Cache Coherence in NUMA Machines

• Snooping is not possible on media other than bus/ring

• Broadcast / multicast is not that easy
– In Multistage Interconnection Networks (MINs), potential for

blocking is very large

– In mesh-like networks, broadcast to every node is very inefficient

• How to enforce cache coherence
– Having no caches (Tera MTA)

– By software: disallow/limiting caching of shared variables (Cray
3TD)

– By hardware: having a data structure (a directory) that records the
state of each block
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Information Needed for Cache Coherence

• What information should the directory contain
– At the very least whether a block is cached or not

– Whether the cache copy – or copies – is clean or dirty

• Where are the copies of the block
– Directory structure associated with the block in memory

– Linked list of all copies in the caches, including the one in memory
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Full Directory

• Full information associated with each block in memory
• Entry in the directory: state vector associated with the

block
– For an  n processor system, an (n+1) bit vector
– Bit 0, clean/dirty
– Bits 1-n: “location” vector ; Bit i set if ith cache has a copy
– Protocol is write-invalidate

• Memory overhead:
– For a 64 processor system, 65 bits / block
– If a block is 64 bytes, overhead = 65 / (64 * 8) i.e., over 10%
– This data structure is not scalable (but see later)
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Home Node

• Definition
– Home node: the node that contains the initial value of the block as

determined by its physical address

– Home node contains the directory entry for a block

– Remote node: any other node

• On a cache miss (read and write), the request for data will
be sent to the home node

• If a block has to be evicted from a cache, and it is dirty, its
value should be written back in the home node
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Basic Protocol – Read Miss on
Uncached/clean Block

• Cache i has  a read miss on an uncached block (state vector
full of 0’s)
– The home node responds with the data

– Add entry in directory (set clean and ith bit)

• Cache i has  a read miss on a clean block (clean bit on; at
least one of the other bits on)
– The home node responds with the data

– Add entry in directory (set ith bit)
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Basic Protocol – Read Miss on Dirty Block

• Cache i has a read miss on a dirty block
– If dirty block is in home node, say node j (dirty and jth bits on)

home node:
• Updates memory (write back from its own cache j)

• Changes the block encoding (dirty -> clean and set ith bit);

• Sends data to cache i (1-hop)

– If dirty block is not in home node but is in cache k (dirty and kth
bits on), home node

• Asks cache k to send the block and updates memory

• Change entry in directory (dirty -> clean and set ith bit);

• Sends the data (2-hops)
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Basic Protocol – Write Miss on
Uncached/clean Block

• Cache i has  a write miss on an uncached block (state
vector full of 0’s)
– The home node responds with the data
– Add entry in directory (set dirty and ith bits)

• Cache i has  a write miss on a clean block (clean bit on; at
least one of the other bits on)
– Home node sends an invalidate message to all caches whose bits

are on in the state vector (this is a series of messages)
– The home node responds with the data
– Change entry in directory (clean -> dirty and set ith bit)

• Note : the memory is not up-to-date
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Basic Protocol – Write Miss on Dirty Block

• Cache i has a write miss on a dirty block
– If dirty block is in home node, say node j (dirty and jth bits on)

home node:
• Updates memory (write back from its own cache j)

• Changes the block encoding (clear jth bit and set ith bit);

• Sends data to cache i (1-hop)

– If dirty block is not in home node but is in cache k (dirty and kth
bits on), home node

• Asks cache k to send the block and updates memory

• Change entry in directory (clear kth bit and set ith bit);

• Sends the data (2-hops)
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Basic Protocol – Request to Write a Clean
Block

• Cache i  wants to write one of its block which is clean
– This implies that clean/dirty bits also exist in the cache metadata

– Perform as in write miss on a clean block except that the memory
does not have to send the data
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Basic Protocol  - Replacing a Block

• What happens when a block is replaced
– If dirty, it is of course written back and its state becomes a vector

of 0’s

– If clean could either “do nothing” but then encoding is wrong
leading to possibly unneeded invalidations (and acks) or could
send message and modify state vector accordingly (reset
corresponding bit)

– Acks are necessary to ensure correctness mostly if messages can be
delivered out of order
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The Most Economical (Memory-wise)
Protocol

• Recall the minimal number of states needed
– Not cached anywhere (i.e., valid in home memory)
– Cached in one or more caches but not modified (clean)
– Cached in one cache and modified (dirty)

• Simply encode the states (2-bit protocol) and perform
broadcast invalidations (expensive because most often the
data is not shared by many processors)

• Fourth state to enhance performance, say valid-exclusive:
– Cached in one cache only and still clean: no need to broadcast

invalidations on a request to write a clean block but the cache has
to know that it is in v-e state (metadata in the cache)
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2-bit Protocol

• Differences with full directory protocol
– Of course no bit setting in “location” vector

– On a read miss to uncached block go to state valid-exclusive

– On “request to write a clean block” from a cache that has the block
in valid-exclusive state, if the block is still in valid-exclusive state
in the directory, no need to broadcast invalidations

– On a read miss to a valid-exclusive block, change state to clean

– On a write miss to clean block and to valid-exclusive block from
another cache  and read/write miss to dirty block, need to send a
broadcast invalidate signal to all processors; in the case of dirty,
the one with the copy of the block will send it back along with its
ack.
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Need for Partial Directories

• Full directory not scalable.
– Location vector depends on number of processors

– Might become too much memory overhead

• 2-bit protocol invalidations are costly

• Observation: Sharing is often limited to a small number of
processors
– Instead of full directory, have room for a limited number of

processor id’s.
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Examples of Partial Directories

• Coarse bit-vector
– Share a “location” bit among 2 or 4 or 8 processors etc.

– Advantage: scalable since fixed amount of memory/block

• Dynamic pointer (many variations)
– Directory for a block has 1 bit for local cache, one or more fields

for a limited number of other caches, and possibly a pointer to a
linked list in memory for overflow.

– Need to “reclaim” pointers on clean replacements and/or to
invalidate blindly if there is overflow

– Protocols are DiriB (i pointers and broadcast) or DiriNB (i pointers
and No Broadcast, i.e., forced invalidations)
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Directories in the Cache -- The SCI Approach

• Copies of blocks residing in various caches are linked via a
doubly linked list
– Doubly linked so that it is easy to insert/delete

• Header in the block’s home
– Insertions “between” home node and new cache

• Economical in memory space
– Proportional to cache space rather than memory space

• Invalidations can be lengthy (list traversal)
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A Caveat about Cache Coherence Protocols

• They are more complex in the details than they look!

• Snoopy protocols
– Writes are not atomic (first detect write miss and send request on

the bus; then get block and write data -- only then should the block
become dirty)

– The cache controller must implement “pending states” for
situations which would allow more than one cache to write data in
a block, or replace a dirty block,  i.e., write in memory

– Things become more complex for split-transaction buses

– Things become even more complex for lock-up free caches (but
it’s manageable)
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Subtleties in Directory Protocols

• No transaction is atomic.
• If they were treated as atomic, deadlock could occur

– Assume block A from home node X is dirty in P1
– Assume block B from home node Y is dirty in P2
– P1 reads miss on B and P2 reads miss on A
– Home node Y generates a “purge” for B in P2 and Home node X

generates a “purge” for A in P1
– Both P1 and P2 wait for their read misses and cannot answer the

home node purges hence deadlock.

• So assume non-atomicity of transactions and allow only
one in-flight transaction per block (nack any other while
one is in progress)
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Problems with Buffering

• Directory and cache controllers might have to send/receive
many messages at the same time
– Protocols must take into account finite amount of buffers

– This leads to possibility of deadlocks

– This is even more important for 2-bit protocol with lots of
broadcasts

– Solutions involve one or more of the following
• separate networks for requests and replies so that requests don’t block

replies which free buffer space

• each request reserves buffer room for its reply

• use of nacks and of retries


