
NUMA coherence CSE 471 Aut 01 1

Cache Coherence in NUMA Machines

• Snooping is not possible on media other than bus/ring

• Broadcast / multicast is not that easy
– In Multistage Interconnection Networks (MINs), potential for

blocking is very large

– In mesh-like networks, broadcast to every node is very inefficient

• How to enforce cache coherence
– Having no caches (Tera MTA)

– By software: disallow/limiting caching of shared variables (Cray
3TD)

– By hardware: having a data structure (a directory) that records the
state of each block

NUMA coherence CSE 471 Aut 01 2

Information Needed for Cache Coherence

• What information should the directory contain
– At the very least whether a block is cached or not

– Whether the cache copy – or copies – is clean or dirty

• Where are the copies of the block
– Directory structure associated with the block in memory

– Linked list of all copies in the caches, including the one in memory

NUMA coherence CSE 471 Aut 01 3

Full Directory

• Full information associated with each block in memory
• Entry in the directory: state vector associated with the

block
– For an n processor system, an (n+1) bit vector
– Bit 0, clean/dirty
– Bits 1-n: “location” vector ; Bit i set if ith cache has a copy
– Protocol is write-invalidate

• Memory overhead:
– For a 64 processor system, 65 bits / block
– If a block is 64 bytes, overhead = 65 / (64 * 8) i.e., over 10%
– This data structure is not scalable (but see later)

NUMA coherence CSE 471 Aut 01 4

Home Node

• Definition
– Home node: the node that contains the initial value of the block as

determined by its physical address

– Home node contains the directory entry for a block

– Remote node: any other node

• On a cache miss (read and write), the request for data will
be sent to the home node

• If a block has to be evicted from a cache, and it is dirty, its
value should be written back in the home node

NUMA coherence CSE 471 Aut 01 5

Basic Protocol – Read Miss on
Uncached/clean Block

• Cache i has a read miss on an uncached block (state vector
full of 0’s)
– The home node responds with the data

– Add entry in directory (set clean and ith bit)

• Cache i has a read miss on a clean block (clean bit on; at
least one of the other bits on)
– The home node responds with the data

– Add entry in directory (set ith bit)

NUMA coherence CSE 471 Aut 01 6

Basic Protocol – Read Miss on Dirty Block

• Cache i has a read miss on a dirty block
– If dirty block is in home node, say node j (dirty and jth bits on)

home node:
• Updates memory (write back from its own cache j)

• Changes the block encoding (dirty -> clean and set ith bit);

• Sends data to cache i (1-hop)

– If dirty block is not in home node but is in cache k (dirty and kth
bits on), home node

• Asks cache k to send the block and updates memory

• Change entry in directory (dirty -> clean and set ith bit);

• Sends the data (2-hops)

NUMA coherence CSE 471 Aut 01 7

Basic Protocol – Write Miss on
Uncached/clean Block

• Cache i has a write miss on an uncached block (state
vector full of 0’s)
– The home node responds with the data
– Add entry in directory (set dirty and ith bits)

• Cache i has a write miss on a clean block (clean bit on; at
least one of the other bits on)
– Home node sends an invalidate message to all caches whose bits

are on in the state vector (this is a series of messages)
– The home node responds with the data
– Change entry in directory (clean -> dirty and set ith bit)

• Note : the memory is not up-to-date

NUMA coherence CSE 471 Aut 01 8

Basic Protocol – Write Miss on Dirty Block

• Cache i has a write miss on a dirty block
– If dirty block is in home node, say node j (dirty and jth bits on)

home node:
• Updates memory (write back from its own cache j)

• Changes the block encoding (clear jth bit and set ith bit);

• Sends data to cache i (1-hop)

– If dirty block is not in home node but is in cache k (dirty and kth
bits on), home node

• Asks cache k to send the block and updates memory

• Change entry in directory (clear kth bit and set ith bit);

• Sends the data (2-hops)

NUMA coherence CSE 471 Aut 01 9

Basic Protocol – Request to Write a Clean
Block

• Cache i wants to write one of its block which is clean
– This implies that clean/dirty bits also exist in the cache metadata

– Perform as in write miss on a clean block except that the memory
does not have to send the data

NUMA coherence CSE 471 Aut 01 10

Basic Protocol - Replacing a Block

• What happens when a block is replaced
– If dirty, it is of course written back and its state becomes a vector

of 0’s

– If clean could either “do nothing” but then encoding is wrong
leading to possibly unneeded invalidations (and acks) or could
send message and modify state vector accordingly (reset
corresponding bit)

– Acks are necessary to ensure correctness mostly if messages can be
delivered out of order

NUMA coherence CSE 471 Aut 01 11

The Most Economical (Memory-wise)
Protocol

• Recall the minimal number of states needed
– Not cached anywhere (i.e., valid in home memory)
– Cached in one or more caches but not modified (clean)
– Cached in one cache and modified (dirty)

• Simply encode the states (2-bit protocol) and perform
broadcast invalidations (expensive because most often the
data is not shared by many processors)

• Fourth state to enhance performance, say valid-exclusive:
– Cached in one cache only and still clean: no need to broadcast

invalidations on a request to write a clean block but the cache has
to know that it is in v-e state (metadata in the cache)

NUMA coherence CSE 471 Aut 01 12

2-bit Protocol

• Differences with full directory protocol
– Of course no bit setting in “location” vector

– On a read miss to uncached block go to state valid-exclusive

– On “request to write a clean block” from a cache that has the block
in valid-exclusive state, if the block is still in valid-exclusive state
in the directory, no need to broadcast invalidations

– On a read miss to a valid-exclusive block, change state to clean

– On a write miss to clean block and to valid-exclusive block from
another cache and read/write miss to dirty block, need to send a
broadcast invalidate signal to all processors; in the case of dirty,
the one with the copy of the block will send it back along with its
ack.

NUMA coherence CSE 471 Aut 01 13

Need for Partial Directories

• Full directory not scalable.
– Location vector depends on number of processors

– Might become too much memory overhead

• 2-bit protocol invalidations are costly

• Observation: Sharing is often limited to a small number of
processors
– Instead of full directory, have room for a limited number of

processor id’s.

NUMA coherence CSE 471 Aut 01 14

Examples of Partial Directories

• Coarse bit-vector
– Share a “location” bit among 2 or 4 or 8 processors etc.

– Advantage: scalable since fixed amount of memory/block

• Dynamic pointer (many variations)
– Directory for a block has 1 bit for local cache, one or more fields

for a limited number of other caches, and possibly a pointer to a
linked list in memory for overflow.

– Need to “reclaim” pointers on clean replacements and/or to
invalidate blindly if there is overflow

– Protocols are DiriB (i pointers and broadcast) or DiriNB (i pointers
and No Broadcast, i.e., forced invalidations)

NUMA coherence CSE 471 Aut 01 15

Directories in the Cache -- The SCI Approach

• Copies of blocks residing in various caches are linked via a
doubly linked list
– Doubly linked so that it is easy to insert/delete

• Header in the block’s home
– Insertions “between” home node and new cache

• Economical in memory space
– Proportional to cache space rather than memory space

• Invalidations can be lengthy (list traversal)

NUMA coherence CSE 471 Aut 01 16

A Caveat about Cache Coherence Protocols

• They are more complex in the details than they look!

• Snoopy protocols
– Writes are not atomic (first detect write miss and send request on

the bus; then get block and write data -- only then should the block
become dirty)

– The cache controller must implement “pending states” for
situations which would allow more than one cache to write data in
a block, or replace a dirty block, i.e., write in memory

– Things become more complex for split-transaction buses

– Things become even more complex for lock-up free caches (but
it’s manageable)

NUMA coherence CSE 471 Aut 01 17

Subtleties in Directory Protocols

• No transaction is atomic.
• If they were treated as atomic, deadlock could occur

– Assume block A from home node X is dirty in P1
– Assume block B from home node Y is dirty in P2
– P1 reads miss on B and P2 reads miss on A
– Home node Y generates a “purge” for B in P2 and Home node X

generates a “purge” for A in P1
– Both P1 and P2 wait for their read misses and cannot answer the

home node purges hence deadlock.

• So assume non-atomicity of transactions and allow only
one in-flight transaction per block (nack any other while
one is in progress)

NUMA coherence CSE 471 Aut 01 18

Problems with Buffering

• Directory and cache controllers might have to send/receive
many messages at the same time
– Protocols must take into account finite amount of buffers

– This leads to possibility of deadlocks

– This is even more important for 2-bit protocol with lots of
broadcasts

– Solutions involve one or more of the following
• separate networks for requests and replies so that requests don’t block

replies which free buffer space

• each request reserves buffer room for its reply

• use of nacks and of retries

