

Branch pred. CSE 471 Autumn 01

Penalty for easiest solution

- · Simple single pipeline machine with 5 stages
 - Stall is 2 cycles hence
 - $-\,$ Contribution to CPI due to branches = $\,2$ x Branch freq. $\approx 2\,*\,0.25$ = 0.5
- · Modern machine with about 20 stages and 4 instructions issued/cycle
 - Stall would be, say, 12 cycles
 - Loss in "instruction issue slots" = $12 * 4 = 48 \dots$ and this would happen every 4-6 instructions!!!!!!!

Branch pred. CSE 471 Autumn 01

3

5

Simple static predictive schemes

- · Predict branch Not -Taken (easy but not the best scheme) - If prediction correct no problem

 - If prediction incorrect, and this is known during EXE cycle, zero out (flush) the pipeline registers of the already fetched instructions following the branch (the number of fetched inst. = delay number of stages between ID and EXE)
 - With this technique, contribution to CPI due to branches: 0.25 * (0.7 * *delay* + 0.3 * 0) (e.g., if delay =2 (10), yields 0.35 (1.75))
 - The problem is that we are optimizing for the less frequent case!
 - Nonetheless it will be the "default" for dynamic branch prediction since it is so easy to implement.

Branch pred, CSE 471 Autumn 01

Static schemes (c'ed)

Predict branch Taken

- Interesting only if target address can be computed before decision is known
- With this technique, contribution to CPI due to branches: 0.25 * (0.7 * 1 + 0.3 * delay) = 0.33 (0.925) if delay = 2 (10)
- The 1 is there because you need to compute the branch address

Branch pred, CSE 471 Autumn 01

Basic idea

- Use a Branch Prediction Buffer (BPB)
 - Also called Branch Prediction Table (BPT), Branch History Table (BHT)
 - Records previous outcomes of the branch instruction
 - How it will be indexed, updated etc. see later
- A prediction using BPB is attempted when the branch instruction is fetched (IF stage or equivalent)
- It is acted upon during ID stage (when we know we have a branch)

Branch pred. CSE 471 Autumn 01

- Has a prediction been made (Y/N)
 If not use default "Not Taken"
- Is it correct or incorrect
- Four cases:
 - Case 1: Yes and the prediction was correct (known at EXE stage)
 - Case 2: Yes and the prediction was incorrect
 - Case 3: No but the default prediction (NT) was correct
 - Case 4: No and the default condition (NT) was incorrect

Branch pred. CSE 471 Autumn 01

Branch pred. CSE 471 Autumn 01

Resume buffer

- In some "old" machines (e.g., IBM 360/91 circa 1967), branch prediction was implemented by fetching both paths (limited to 1 branch)
- Similar idea: "resume buffer" in MIPS R10000.
 - If branch predicted taken, it takes one cycle to compute and fetch the target
 - During that cycle save the Not-Taken sequential instruction in a buffer (4 entries of 4 instructions each).
 - If mispredict, reload from the "resume buffer" thus saving one cycle

Branch pred. CSE 471 Autumn 01