
Nehalem

pt. 2

Sandy Lee
Daniel Starikov

Single-Instruction Multiple-Data (SIMD)

Same instruction is applied simultaneously to different
sets of input operands and requires multiple ALUs

Floating point SIMD

2 double precision or 4 single precision

Retires 4 instructions per cycle

Supports ALU extensive code with SSE

Floating point registers

Separate core registers XMM and MMX

Certain memory areas can be treated as non-temporal,
meaning that they can be used as buffers for vector data,
which is more efficient that requesting them from the
cache

New SSE instructions were introduced with new generations
of micro-architecture

AVX with 256-bit vector processing

Floating-point Processing and Exception

Handling Compliant with IEEE standards which makes FP portable unlike before

Floating point exceptions (FPE) are thrown when an operation is considered invalid
or precision is lost

Detectable exceptions:

IEEE standard: NaN, ∞ - ∞

Zero divide

Numeric overflow

Underflow

Inexact

Simultaneous Multi-Threading (SMT)

A pipeline design that allows multiple hardware threads
to execute simultaneously within each core with
shared resources

In this case, two threads can be executed at the same
time in each core

Increased utilization of functional units , overall
increased throughput of instructions per clock cycle,
and also preservation of energy consumed by idle
states

More efficient in terms of power instead of another core

RISC vs CISC - Continued

Nehalem processors execute instructions in the same manner as RISC processors

The CPU accepts x86 CISC instructions and decodes them into RISC-like micro-ops

The rest of the CPU is indistinguishable from any other RISC-type processor.

This leaves the following questions about RISC vs CISC:

Which one is more efficient for capturing higher-level semantics of applications

Is it more efficient to use a RISC back-end with CISC front-end over a RISC front-end?

What would the performance be like if the back end of the Nehalem was put into a RISC CPU and vice versa?

Could we choose different execution engine types for the same ISA?

Memory Organization in Nehalem Processors

DRAM is cheap, more compact, and slow. SRAM is expensive and takes up lots of physical space.

Nehalem’s solution is to have three levels of cache between a core and main memory

L1 Cache - Level 1 is 32 KiB

L2 Cache - Level 2 is 256 KiB

L3 Cache - Level 3 is 8 MiB

Other memory enhancements

Store Buffers

Store data being written to memory

Load and Store Enhancements

Out-of-order execution of memory operations

Data pre-fetching

Load buffers

And more

The L1 Cache

Private

There is one for each core

Only the core that this cache is associated with can access it

Harvard Style

Separate data and instruction caches

Both data and instruction caches are 32 KiB each with a 64
byte block size.

Instruction cache is 4-way set associative

Data cache is 8-way set associative

The fastest

Access latency to data is 4 clock cycles

Throughput period is 1 clock cycles

If in SMT mode it shared by both hardware threads

The L2 Cache

Private

There is one for each core

Only the core that this caches is associated with can access it

Unified cache - Von Neumann Style

Data and instructions are stored together

256 KiB

8-way set associative

Block size is 64 bytes

Fast

Access latency to data is 10 clock cycles

Write-Back policy

It doesn’t push the changes all the way up to main memory right away.

Non-Inclusive

It doesn’t necessarily have all of the lines stored in the L1 cache.

The L3 Cache
Shared

There is only one L3 cache

All the cores can access this cache

Unified cache - Von Neumann Style

Data and instructions are stored together

8 MiB

16-way set associative

Block size is 64 also bytes

Not so fast

Access latency to data is 35-40+ clock cycles

Write-Back policy

It doesn’t push the changes all the way up to main memory right away.

Inclusive

It has every single block from every sub-cache

It keeps track of if the block is already cached in a sub-cache through a 4-bit valid vector

This allows the L3 cache to handle most snoop traffic where cores/caches watch to see if their blocks of data have
been changed

Other Memory Enhancements
Store buffers in between L1 cache and the core

Allow CPU to continue execution without waiting for write to memory/cache to complete

There are various safeguards in place to ensure that write operations occur in the proper order and that the buffered
data is written to memory in the case of various instructions or exceptions.

Data Load and Stores

Up to one 128-bit load and one 128-bit store per cycle.

Memory operations can be executed out of order

There is logic to perform speculative loads in the case of branches

Loads can be issues before stores if there is no address conflict - there is even speculative logic which can
perform the load even if it is unsure if there will be a conflict.

There are 48 load buffers, 32 store buffers, and 10 fill buffers

Data pre-fetching for L1 caches

Data Cache Unit Prefetcher (DCU) - is triggered on ascending accesses to recently loaded memory and
automatically fetches the next line

Instruction Pointer-based Strided Prefetcher (IPSP) - it keeps tracks of load instructions and when there is a
regular stride, it will prefetch the next address. It can go forwards or backwards and detect up to 2KB strides.

Data pre-fetching for the L2 caches

Keeps track of previous L1 and L2 data cache request patterns to decide when to prefetch blocks of memory.

Store forwarding

If the data being stored to memory is going to be loaded from memory right after, it will be forwarded to the data
requester.

