Nehalem
pt. 2

Sandy Lee
Daniel Starikov



Single-Instruction Multiple-Data (SIMD)

Same instruction is applied simultaneously to different

sets of input operands and requires multiple ALUs o o

i
e

Floating point SIMD

\

2 double precision or 4 single precision

8 80-bit x87 Floating-Paint
data registers

Retires 4 instructions per cycle 54 bits

’,—)\

\

¢ ]
: : —
Supports ALU extensive code with SSE — :
I S 16 128-bit XMM
I data registers
]
I B
L ]

Floating point registers

8 64-bit MMX
data registers

Separate core registers XMM and MMX

Certain memory areas can be treated as non-temporal,
meaning that they can be used as buffers for vector data,
which is more efficient that requesting them from the



Floating-point Processing and Exception

H@GQQJJIQ gith IEEE standards which makes FP portable unlike before

Floating point exceptions (FPE) are thrown when an operation is considered invalid
or precision is lost

Detectable exceptions:
[EEE standard: NaN, o - o
Zero divide
Numeric overflow
Underflow

Inexact



Simultaneous Multi-Threading (SMT)

A pipeline design that allows multiple hardware threads SMT
to execute simultaneously within each core with disabled

shared resources

In this case, two threads can be executed at the same

time in each core

Increased utilization of functional units , overall

)
=
3
o

=)
S
o
o

Ny
Q
®

NI

increased throughput of instructions per clock cycle,
and also preservation of energy consumed by idle

states Each block represents
an execution unit in the
Nehalem core
More efficient in terms of power instead of another core « blue 1° thread

= green 2™ thread




RISC vs CISC - Continued

Nehalem processors execute instructions in the same manner as RISC processors
The CPU accepts x86 CISC instructions and decodes them into RISC-like micro-ops
The rest of the CPU is indistinguishable from any other RISC-type processor.

This leaves the following questions about RISC vs CISC:
Which one is more efficient for capturing higher-level semantics of applications

Is it more efficient to use a RISC back-end with CISC front-end over a RISC front-end?

ATk at virn11lA +h 6 ~orfAaranco ko 13-4 i €£+ho MWarl oA AfF +h 6 NTalbhalart virac m11f 391 FA o RICOC CDTIT arnA xrmro vrovead



Memory Organization in Nehalem Processors

DRAM is cheap, more compact, and slow. SRAM is expensive and takes up lots of physical space.

Nehalem’s solution is to have three levels of cache between a core and main memory
L1 Cache - Level 1 is 32 KiB
L2 Cache - Level 2 is 256 KiB
L3 Cache - Level 3 is 8 MiB
Other memory enhancements
Store Buffers
Store data being written to memory

Load and Store Enhancements

Y N ~ 1 L. ~



The L1 Cache

Private
There is one for each core

Only the core that this cache is associated with can access it

Harvard Style
Separate data and instruction caches

Both data and instruction caches are 32 KiB each with a 64
byte block size.

Instruction cache is 4-way set associative

Data cache is 8-way set associative

The fastest

Front-End
Instruction
Pipeline

s

Qut-of-Order
Execution
Engine

. 16B/Hz
& 448 GiB/s

e
o

Instr TLBy 4-way Instr TLBy

4KiB pages large pages
64 entries / thread 7 entries/ thread
128/core fully-associative

L1 Instruction Cache, 32kiB
4-way associative
Integrated
Memory
Controller

2M Level UTLB,

4KiB pages q
4-way-associative ;2 Cache ZE?BFIB L3 Cache, 8MiB
512 Entry AIET/E RIS 16-way associative

64B block size
unified

3 64B block size
(M mory Ord r-Buff r (MOB) Shared
| 48 load buffers 7

| 32 store buffers

10 fill buffers

4KiB pages
64 entries
Data TLB,

huge pages
32 entries

0+ cycles latency|

L1 Data Cache 32kiB,
8-way set asspciative
64B block size



The L2 Cache

Private

There is one for each core

Only the core that this caches is associated with can access it
Unified cache - Von Neumann Style

Data and instructions are stored together

256 KiB

8-way set associative

Block size is 64 bytes

Fast



The L3 Cache

Shared
There is only one L3 cache
All the cores can access this cache
Unified cache - Von Neumann Style
Data and instructions are stored together
8 MiB
16-way set associative
Block size is 64 also bytes
Not so fast

Access latency to data is 35-40+ clock cycles



Other Memory Enhancements

Store buffers in between L1 cache and the core
Allow CPU to continue execution without waiting for write to memory/cache to complete

There are various safeguards in place to ensure that write operations occur in the proper order and that the buffered
data is written to memory in the case of various instructions or exceptions.

Data Load and Stores
Up to one 128-bit load and one 128-bit store per cycle.
Memory operations can be executed out of order
There is logic to perform speculative loads in the case of branches

Loads can be issues before stores if there is no address conflict - there is even speculative logic which can
perform the load even if it is unsure if there will be a conflict.

There are 48 load buffers, 32 store buffers, and 10 fill buffers

Data pre-fetching for L1 caches



