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Single-Instruction Multiple-Data (SIMD)  

Same instruction is applied simultaneously to different 
sets of input operands and requires multiple ALUs 

Floating point SIMD 

2 double precision or 4 single precision 

Retires 4 instructions per cycle 

Supports ALU extensive code with SSE 

Floating point registers 

Separate core registers XMM and MMX 

Certain memory areas can be treated as non-temporal, 
meaning that they can be used as buffers for vector data, 
which is more efficient that requesting them from the 
cache 

New SSE instructions were introduced with new generations 
of micro-architecture 

AVX with 256-bit vector processing 



Floating-point Processing and Exception 

Handling Compliant with IEEE standards which makes FP portable unlike before 

Floating point exceptions (FPE) are thrown when an operation is considered invalid 
or precision is lost 

Detectable exceptions: 

IEEE standard: NaN, ∞ - ∞ 

Zero divide 

Numeric overflow 

Underflow 

Inexact 



Simultaneous Multi-Threading (SMT) 

A pipeline design that allows multiple hardware threads 
to execute simultaneously within each core with 
shared resources 

In this case, two threads can be executed at the same 
time in each core 

Increased utilization of functional units , overall 
increased throughput of instructions per clock cycle, 
and also preservation of energy consumed by idle 
states 

More efficient in terms of power instead of another core 



RISC vs CISC - Continued 

Nehalem processors execute instructions in the same manner as RISC processors 

The CPU accepts x86 CISC instructions and decodes them into RISC-like micro-ops 

The rest of the CPU is indistinguishable from any other RISC-type processor. 

This leaves the following questions about RISC vs CISC: 

Which one is more efficient for capturing higher-level semantics of applications 

Is it more efficient to use a RISC back-end with CISC front-end over a RISC front-end? 

What would the performance be like if the back end of the Nehalem was put into a RISC CPU and vice versa? 

Could we choose different execution engine types for the same ISA? 

 



Memory Organization in Nehalem Processors 

DRAM is cheap, more compact, and slow. SRAM is expensive and takes up lots of physical space.  

Nehalem’s solution is to have three levels of cache between a core and main memory 

L1 Cache - Level 1 is 32 KiB  

L2 Cache - Level 2 is 256 KiB 

L3 Cache - Level 3 is 8 MiB 

Other memory enhancements 

Store Buffers 

Store data being written to memory 

Load and Store Enhancements 

Out-of-order execution of memory operations 

Data pre-fetching 

Load buffers 

And more 



The L1 Cache 

Private 

There is one for each core 

Only the core that this cache is associated with can access it 

Harvard Style 

Separate data and instruction caches 

Both data and instruction caches are 32 KiB each with a 64 
byte block size.  

Instruction cache is 4-way set associative  

Data cache is 8-way set associative 

The fastest 

Access latency to data is 4 clock cycles 

Throughput period is 1 clock cycles 

If in SMT mode it shared by both hardware threads 



The L2 Cache 

Private 

There is one for each core 

Only the core that this caches is associated with can access it 

Unified cache - Von Neumann Style 

Data and instructions are stored together 

256 KiB 

8-way set associative 

Block size is 64 bytes 

Fast 

Access latency to data is 10 clock cycles 

Write-Back policy 

It doesn’t push the changes all the way up to main memory right away. 

Non-Inclusive 

It doesn’t necessarily have all of the lines stored in the L1 cache. 



The L3 Cache 
Shared 

There is only one L3 cache 

All the cores can access this cache 

Unified cache - Von Neumann Style 

Data and instructions are stored together 

8 MiB 

16-way set associative 

Block size is 64 also bytes 

Not so fast 

Access latency to data is 35-40+ clock cycles 

Write-Back policy 

It doesn’t push the changes all the way up to main memory right away. 

Inclusive 

It has every single block from every sub-cache 

It keeps track of if the block is already cached in a sub-cache through a 4-bit valid vector 

This allows the L3 cache to handle most snoop traffic where cores/caches watch to see if their blocks of data have 
been changed 



Other Memory Enhancements 
Store buffers in between L1 cache and the core 

Allow CPU to continue execution without waiting for write to memory/cache to complete 

There are various safeguards in place to ensure that write operations occur in the proper order and that the buffered 
data is written to memory in the case of various instructions or exceptions. 

Data Load and Stores 

Up to one 128-bit load and one 128-bit store per cycle. 

Memory operations can be executed out of order 

There is logic to perform speculative loads in the case of branches 

Loads can be issues before stores if there is no address conflict - there is even speculative logic which can 
perform the load even if it is unsure if there will be a conflict. 

There are 48 load buffers, 32 store buffers, and 10 fill buffers 

Data pre-fetching for L1 caches 

Data Cache Unit Prefetcher (DCU) - is triggered on ascending accesses to recently loaded memory and 
automatically fetches the next line 

Instruction Pointer-based Strided Prefetcher (IPSP) - it keeps tracks of load instructions and when there is a 
regular stride, it will prefetch the next address. It can go forwards or backwards and detect up to 2KB strides. 

Data pre-fetching for the L2 caches 

Keeps track of previous L1 and L2 data cache request patterns to decide when to prefetch blocks of memory. 

Store forwarding 

If the data being stored to memory is going to be loaded from memory right after, it will be forwarded to the data 
requester.   


