Hardware Specialization

The Age of Dark and Bespoke Silicon

Leonardo Aoun Keegan Griffee

Dark Silicon

- What: Silicon that is not used all the time or at its full frequency
- Why: Transistor energy efficiency improves at a slower rate than the improvements of native transistor speeds and transistor density
- Dark Silicon on chip is exponentially increasing
 - PANIC ----- THE APOCALYPSE APPROACHES

The Four Horsemen of the Apocalypse

The Shrinking Horseman

- Building smaller chips
- Price:Size ratio goes higher the smaller the chips get
- Same goes for Temperature
- Most pessimistic Horseman

The Dim Horseman

- Manipulates:
 - Voltage
 - Frequency
 - Duty cycles

To manage power

- Implemented:
 - Turbo Boost 1.0
 - NTVProcessors
 - Bigger caches

The Specialized Horseman

- Power and clock-gate unused cores
- reduce the amount of capacitance per particular operation

for coprocessors

♥ for general-purpose

The Specialized Horseman

- for coprocessors
 for general-purpose
 - => Tower of Babel Problem

The Deus Ex Machina Horseman

- Hope for a breakthrough in semiconductor devices
 - MOSFET-imposed limits
 - Currently at a bottleneck imposed by the laws of physics
- Alternatives to MOSFET transistors
 - Tunnel Field-Effect Transistors (TFETs)
 - Nanoelectromechanical System (NEMS)
- Beyond-CMOS approaches
 - Electron-Spin Memory (C-SPIN)
 - Statistics Models: Nondeterministic (SONIC)

So what?

- Decrease sharing
 - Expensive control logic
 - Additional energy consumption
- Reduce pipelining
 - Increases duty cycle and increases capacitance
 - Increases gap between processing and memory

Bitcoin

- International Cryptocurrency (Began Jan 3rd, 2009)
- Account that allows you to make or receive payments
- System maintains a global, distributed cryptographic ledger of transactions called the blockchain
 - Maintained by computers running a consensus algorithm across the world
 - Algorithm is called mining- integrates transactions into the blockchain
 - Each transaction becomes the new head block and is posted to the block chain

Why Mine

- Each block the miner adds to the block chain:
 - •Block Reward (Started at 50 BTC, halved every 210,000 blocks)
 - •BTC cannot exceed 21 million
 - •In 2032, 99% will be issues
- Rewarded transaction fees attached to the block
 - •The higher the transaction fee the faster the transaction is completed
 - Incentivizes paying to use the service

Why Use Bitcoin

- Can be used internationally
- •Known upper limit to amount of BTC that can be mined
- Users are mostly anonymous and transactions are secure but public to everyone
 - •Can still be traced and subjected to law enforcement

Bitcoin Trend

• Difficulty of mining is dynamically increased as more machines mine to avoid saturating the amount of currency created per day

Bitcoin Stats: May 14th 2017

- •1 BTC = 1,825.40 Dollars
- •Current Block Reward = 12 BTC = 21,904.80 Dollars
- •Bitcoin Mined = 77.76%
- •Total BTC in circulation: 16,330,450
- •Total BTC left to mine: 4,669,550
- Sources
 - http://www.coindesk.com/price/
 - http://www.bitcoinblockhalf.com/

Bitcoin, Bespoke and Dark Silicon

- Cost of cooling and energy is what holds back miners
- Bespoke Silicon
 - Best if the specialized implementation is much smaller than the general purpose case and computation exhibits weak scaling
 - The power of homebrew and crowdsourcing

Thanks for Listening!

Article Sources

- https://cseweb.ucsd.edu/~mbtaylor/papers/bitcoin_tayl or_cases_2013.pdf
- http://cseweb.ucsd.edu/~mbtaylor/papers/taylor_landsc ape_ds_ieee_micro_2013.pdf