
GPU Architecture 



History of GPU Computing 

 1.0: Compute pretending to be graphics (Fixed Function) 

 2.0: Program GPU directly – end of “GPGPU” (Simple Shaders) 

 No graphics-based restrictions 

 2006: CUDA – general purpose compute language for hybrid GPU systems 

 GPUs became more general purpose and programmable. 

 3.0: GPU computing ecosystem (Today – Graphics Parallel Core) 

 100,000+ active CUDA developers 

 Libraries, debuggers and many other tools and support 

 Education and research 



NVIDIA Fermi Architecture 
 Streaming Multiprocessor (SM) 

 Objective: optimize for GPU computing 

 16 SMs per Fermi chip, 32cores per SM (512 total) 

 64KB of configurable cache/shared memory 

 Memory Hirarchy 

 True cache hierarchy + on-chip shared RAM 

 Separate L1 cache for each SM (16/48KB) 

 Unified L2 Cache for all SMs (768KB) 

 GDDR5 memory interface 

 Other Capabilities 

 Hierarchically manages many simultaneously active threads 

 ECC protection for DRAM, L2, L1, RF 

 Unified 40-bit address space for local, shared, global 

 5-20x faster atomics 

 ISA extensions for C++ (e.g. virtual functions) 



AMD GCN Architecture 

 Early AMD GPUs consisted of multiple clusters of 16 ALUs specialized to 

process VLIW format. 

 This led to complex assembly creation and debugging as well as a lack of 

flexibility. 

 The GCN architecture uses 4 SIMDs x 1 ALU op instead to streamline the 

parallelization. Rather than optimizing inner-waveforms, it optimizes inter-

waveforms. 

 No longer requires specialized compiler scheduling and assembly as a result. 

 Multiple SIMDs coordinated together permits increased vector computing. 

 Also upgraded vector register design to have increased bandwidth for data. 



The GCN Compute Unit Proper 



Scaling to Exascale… 

 Key challenges 

 Energy to solution is too large 

 Fetching operands costs more than computing on them 

 Programming parallel machines is too difficult  

 Programs not scalable to billion-fold parallelism 

 Echelon Project (Extreme-scale Computer Hierarchies with 
Efficient Locality-Optimitized Nodes) 

 Increase in application execution energy efficiency 

 Improve programmer productivity 

 Strong scaling to tens of millions of threads 

 And so on… 



The Future of High Performance 

Computing 

 Power constraints dictate extreme energy efficiency 

 All future interesting problems will be cast as throughput 

workloads 

 GPUs are evolving to be the general-purpose throughput 

processors 

 CPUs 


