GPU Architecture



History of GPU Computing

» 1.0: Compute pretending to be graphics (Fixed Function)
» 2.0: Program GPU directly - end of “GPGPU” (Simple Shaders)
» No graphics-based restrictions
» 2006: CUDA - general purpose compute language for hybrid GPU systems
» GPUs became more general purpose and programmable.
» 3.0: GPU computing ecosystem (Today - Graphics Parallel Core)
» 100,000+ active CUDA developers
» Libraries, debuggers and many other tools and support

» Education and research




NVIDIA Fermi Architecture

» Streaming Multiprocessor (SM)

Core Core Core

» Objective: optimize for GPU computing
» 16 SMs per Fermi chip, 32cores per SM (512 total) |EESEES
» 64KB of configurable cache/shared memory Gore Core Core

» Memory Hirarchy
» True cache hierarchy + on-chip shared RAM
» Separate L1 cache for each SM (16/48KB)

>

Core Core

Unified L2 Cache for all SMs (768KB) 64K Configurable

Cache/Shared Mem

» GDDR5 memory interface Uniferm Cache

» Other Capabilities

>

Hierarchically manages many simultaneously active threads
ECC protection for DRAM, L2, L1, RF

Unified 40-bit address space for local, shared, global

5-20x faster atomics

ISA extensions for C++ (e.g. virtual functions)

HOST I/F

DRAM I/F

4/l Nvydd

4/l Nvydd

d4/1 AVyd

d/1 NvVyd

diF HE EF HF HFE BHF HFE EIFE



AMD GCN Architecture

» Early AMD GPUs consisted of multiple clusters of 16 ALUs specialized to
process VLIW format.

» This led to complex assembly creation and debugging as well as a lack of
flexibility.

» The GCN architecture uses 4 SIMDs x 1 ALU op instead to streamline the
parallelization. Rather than optimizing inner-waveforms, it optimizes inter-
waveforms.

» No longer requires specialized compiler scheduling and assembly as a result.
» Multiple SIMDs coordinated together permits increased vector computing.

» Also upgraded vector register design to have increased bandwidth for data.




The GCN Compute Unit Proper

Figure 3: GCN Compute Unit

Message Bus
SIMDO Branch & '

PC&IB - - Message Unit
10 Wave
‘ Export/GDS Decode

&= Vector MemoryDecode T T T T =

; L Scalar Unit SIMDO SIMD1 SIMD2 SIMD3 Export
Scalar calar uni Read/ Bus

Decode 8 KB Registers 64 KB 64 KB 64 KB 54 KB Write
Registers 4m) Registers 4 Registers @ Registers Read/
- Write

Integer ALU ~ Data
L2 Cache

Input Data (PC/State/Vector Register/Scalar Register)

SIMD1
PC&IB -
10 Wave

4

SIMD2
PC&IB =
10 Wave

4

SIMD3 16KB
PC&IB ¢

10 Wave LDS 64 KB LDS Memory h
Decode

MPp MP Mp P L1
Cache

uoie.giqiy uonon.gsu|

c
o
s
m
£
S|
[
<
L
g
P
W
uw
L
g
3
&
7]
=

4 CU Shared 16KB Scalar Read Only L1 Cache Read/

Pt write
4 CU Shared 32KB Instruction L1 Cache L2 Cache




Scaling to Exascale...

» Key challenges

» Energy to solution is too large
» Fetching operands costs more than computing on them

» Programming parallel machines is too difficult
» Programs not scalable to billion-fold parallelism

» Echelon Project (Extreme-scale Computer Hierarchies with
Efficient Locality-Optimitized Nodes)

» Increase in application execution energy efficiency
» Improve programmer productivity

» Strong scaling to tens of millions of threads

» And so on...




The Future of High Performance
Computing

» Power constraints dictate extreme energy efficiency

» All future interesting problems will be cast as throughput
workloads

» GPUs are evolving to be the general-purpose throughput
processors

» CPUs




