
GPU Architecture

History of GPU Computing

 1.0: Compute pretending to be graphics (Fixed Function)

 2.0: Program GPU directly – end of “GPGPU” (Simple Shaders)

 No graphics-based restrictions

 2006: CUDA – general purpose compute language for hybrid GPU systems

 GPUs became more general purpose and programmable.

 3.0: GPU computing ecosystem (Today – Graphics Parallel Core)

 100,000+ active CUDA developers

 Libraries, debuggers and many other tools and support

 Education and research

NVIDIA Fermi Architecture
 Streaming Multiprocessor (SM)

 Objective: optimize for GPU computing

 16 SMs per Fermi chip, 32cores per SM (512 total)

 64KB of configurable cache/shared memory

 Memory Hirarchy

 True cache hierarchy + on-chip shared RAM

 Separate L1 cache for each SM (16/48KB)

 Unified L2 Cache for all SMs (768KB)

 GDDR5 memory interface

 Other Capabilities

 Hierarchically manages many simultaneously active threads

 ECC protection for DRAM, L2, L1, RF

 Unified 40-bit address space for local, shared, global

 5-20x faster atomics

 ISA extensions for C++ (e.g. virtual functions)

AMD GCN Architecture

 Early AMD GPUs consisted of multiple clusters of 16 ALUs specialized to

process VLIW format.

 This led to complex assembly creation and debugging as well as a lack of

flexibility.

 The GCN architecture uses 4 SIMDs x 1 ALU op instead to streamline the

parallelization. Rather than optimizing inner-waveforms, it optimizes inter-

waveforms.

 No longer requires specialized compiler scheduling and assembly as a result.

 Multiple SIMDs coordinated together permits increased vector computing.

 Also upgraded vector register design to have increased bandwidth for data.

The GCN Compute Unit Proper

Scaling to Exascale…

 Key challenges

 Energy to solution is too large

 Fetching operands costs more than computing on them

 Programming parallel machines is too difficult

 Programs not scalable to billion-fold parallelism

 Echelon Project (Extreme-scale Computer Hierarchies with
Efficient Locality-Optimitized Nodes)

 Increase in application execution energy efficiency

 Improve programmer productivity

 Strong scaling to tens of millions of threads

 And so on…

The Future of High Performance

Computing

 Power constraints dictate extreme energy efficiency

 All future interesting problems will be cast as throughput

workloads

 GPUs are evolving to be the general-purpose throughput

processors

 CPUs

