
Nehalem - Part 1

What is uOp Cracking?
• uOps are components of larger macro ops.

• uOp cracking is taking CISC like instructions to
RISC like instructions

• it would be good to crack CISC ops in
parallel

• dynamically adjust how we crack a sequence

• memorize the result with a cache

• and re-order uOps into program order by
making that cache store traces.

What is uOp Fusion?

• Fuse certain uOps into sequences.

• MUL r1, r2 -> r3 ; ADD r4, r4, r3

• w/o Fuse: input { r1, r2, r4 } output { r3, r4 }

• w/Fuse: input { r1, r2, r4 } output { r4 }

Tentative but highly likely

May 10th - Computer History Museum visit

What is Memory
Dependence Prediction?

• The problem

• MUL r10,r11, -> r4 ; r10 == 0  
STORE r1, @(r4) 
BLAH  
LOAD_CONSTANT R5, #0 
LOAD r3, @(r5) ;; but r4 == r5!  
ADD r3, r6 -> r7

• Bloom filter solution

FP

• IEEE

• SIMD (XMMS/MMX/blah blah)

How does SMT work?
• Multiprocessing within one core

• Two program counters

• Two register sets?

• Two maps

• Two branch history registers

• Sharing support for lots of stuff

• Cache ports, branch predictor,
completion, etc, etc

How programmers want to
see the world

CPU CPU CPU CPU

Memory

How programmers need to
see the world

CPU CPU CPU CPU

Memory

Cache Cache Cache Cache

Consistency
• Unfortunately for you, hardware doesn’t behave like you think.

• Up until now, we’ve been writing code that will execute correctly on x86, ARM, etc.

• Broadly speaking, there are four consistency models in the world:

• sequential, how you think concurrency works until you’re told it’s not so

• processor, how x86 works, except for where it doesn’t

• release, how ARM works and a few other esoteric ISAs

• scope (used for GPUs).

• The consistency model presented to the programmer is a function of the language. It is more or less
easy to implement that consistency model on different hardware.

• Easy for an academic to say. In practice, it’s the wild west out there and you have to know what
you are working with.

• C11 and C++11 are what is known as SC for DRF programs; or sequentially consistent for “data race
free” programs.

Say what?
int a = 1;
int b = 2;

thread1() {
a = 3;
b = 4;

}

thread 2 {
printf(“%d”, b);
printf(“%d”, a);

}

What are the possible outputs?

Sequential Consistency
A: Wr x,1
A: Wr y,2
A: Wr z,3

B: Wr x,4
B: Wr y,5
B: Wr z,6

C: Wr x,7
C: Wr y,8
C: Wr z,9

tim
e

A: Wr x,1
A: Wr y,2

A: Wr z,3

B: Wr x,4
B: Wr y,5

B: Wr z,6

C: Wr x,7
C: Wr y,8

C: Wr z,9
All processors see all

writes in the same order

This is just one possible SC order.

Processor Consistency
A: Wr x,1
A: Wr y,2
A: Wr z,3

B: Wr x,4
B: Wr y,5
B: Wr z,6

C: Wr x,7
C: Wr y,8
C: Wr z,9

tim
e

A: Wr x,1
A: Wr y,2

A: Wr z,3

B: Wr x,4
B: Wr y,5

B: Wr z,6

C: Wr x,7
C: Wr y,8

C: Wr z,9

A processor sees all writes from another processor
in the order that processor performs them

How A can
see the world

A: Wr x,1

A: Wr y,2

A: Wr z,3

B: Wr x,4

B: Wr y,5

B: Wr z,6

C: Wr x,7

C: Wr y,8
C: Wr z,9

How B can
see the world

Release Consistency
A: Wr x,1
A: Wr y,2
A: Wr z,3

B: Wr x,4
B: Wr y,5
B: Wr z,6

C: Wr x,7
C: Wr y,8
C: Wr z,9

tim
e

A: Wr x,1
A: Wr y,2

A: Wr z,3

B: Wr x,4
B: Wr y,5

B: Wr z,6

C: Wr x,7
C: Wr y,8

C: Wr z,9

More or less, release consistency promises nothing
without a fence

How A can
see the world

A: Wr x,1

A: Wr y,2
A: Wr z,3
B: Wr x,4

B: Wr y,5

B: Wr z,6
C: Wr x,7

C: Wr y,8
C: Wr z,9

How B can
see the world

What would Brian Boitano do?

• Don’t write code that synchronizes outside of existing
synchronization primitives

• Or if you must, wrap your shared memory accesses with
fences: MFENCE (fence it all), LFENCE (load fence), or
SFENCE (store-fence).

• In my experience, this kind of stuff will not make your code run
fast. The problems that hinder parallel code bases are always
much bigger than the micro-scale synchronization that is used.

• Go for maintainability and don’t check in nor allow anyone
else to check in code that uses subtle synchronization.

Parallel Programming Primer

Why do we have more than
one CPU?

• Only so many transistors

• So we can be lazier programmers

• So we can do more than one thing at a time

• Heat

• Cheaper to scale horizontally than vertically

• Speeds of a single core stopped increasing

Topics for today/next week
• Threads

• Locks (Mutex)

• Semaphore

• Reader/Writer lock

• Condition variables

• Barrier

• Monitors

• Lock free (“Live free or Die!”)

• Consistency

• User-mode threads

• OpenMP

• Transactions

What is a thread?
• Lightweight process

• Stack + IP

• Sequential execution of a list of instructions

• Something you can map onto a processor

• Hardware: IP, register set, misc context, address space

• Language: (hopefully) a well defined execution context

• OS: something you can schedule and run

Common bugs with threads

• Failure to join

• Race on start state

• Failure to synchronize on library calls (POSIX 1 vs.
POSIX 1c (1996))

• Using shared memory incorrectly (much more on
this)

Common performance
problems with threads

• Too fine

• Too coarse

• Too few

• Too many

• Move around too much (no affinity)

What is a lock?
• Mechanism to prevent other threads from using a

resource

• Piece of shared memory to achieve mutual exclusion

• Meeting point for threads

• data-structure to maintain ownership

• Something that can be “owned” by only one thread

A (broken) lock
implementation

void lock(int *the_lock) {
while (*the_lock == 1)
;

*the_lock = 1;
}

void unlock(int *the_lock) {
*the_lock = 0;

}

How are locks
implemented?

• Core necessity: Either a bit of private state per acquirer (Petersen
lock), Or, an atomic read/write operation (how we tend to do it in
SM systems)

• Processors tend to support a variety of atomic operations useful for
constructing locks:

• LOCK XCHG # Exchange

• Swap a register and memory location value

• LOCK CMPXCHG # Compare and xchange

• Write to memory a register value if and only if the memory is
equal to a given value

A lock implementation
void lock(int *the_lock) {
while (__sync_val_compare_and_swap(the_lock, 0, 1)
== 1)
;

}

void unlock(int *the_lock) {
*the_lock = 0;

}

A slightly better
implementation

void lock(int *the_lock) {
while (__sync_val_compare_and_swap(the_lock, 0, 1)
== 1)  
asm volatile ("pause");

}

A slightly better
implementation

#define MAX_BACK_OFF (1<<12)

void lock(int *the_lock) {
int back_off = 1, i;
while (__sync_val_compare_and_swap(the_lock, 0, 1)
== 1) {

for (i = 0; i < back_off; i++)
 asm volatile ("pause");

if (back_off <= MAX_BACK_OFF)  
 back_off = back_off << 1;

}

A slightly slightly better
implementation

#define MAX_BACK_OFF (1<<12)

void lock(int *the_lock) {
int back_off = 1, i;
while (1) {
 // TEST
 while (*the_lock != 1) {
 asm volatile (“pause"); // Tell the CPU we are spinning
asm volatile (::: "memory"); // address expose

 }
 // TEST AND SET
 if (__sync_val_compare_and_swap(the_lock, 0, 1) == 0)
 return;
// BACK OFF
for (i = 0; j < back_off; i++)
 asm volatile ("pause");
if (back_off <= MAX_BACK_OFF)  
 back_off = back_off << 1;

}

An even slightly slightly better implementation
#define MAX_BACK_OFF (1<<12)
#define CACHE_LINE_SIZE (64)

typedef union _lock {
 int lock_state;
 char padding[CACHE_LINE_SIZE];
} lock;

void lock(lock *the_lock) {
int back_off = 1, i;
while (1) {
while (the_lock->lock_state != 1) {
 asm volatile ("pause");
asm volatile (::: “memory");

 }
 if (__sync_val_compare_and_swap(the_lock->lock_state, 0, 1) == 0)
 return;
 for (i = 0; j < back_off; i++)
 asm volatile ("pause");
 if (back_off <= MAX_BACK_OFF)  
 back_off = back_off << 1;

}

Common bugs with locks
• Failure to use one

• Failure to initialize them

• Failure to acquire all of them that you need

• Failure to unlock

• Releasing them too early

• Failure to acquire in a consistent order (deadlock)

• Acquiring them twice

• Releasing them when a thread ends abnormally

• Holding a lock over blocking I/O that may block “indefinitely”

You should never deadlock
• It’s possible to write a piece of code known as a “lock

witness”.

• Group locks into classes.

• Classes can only be acquired in order

• An acquisition of locks out of order, regardless of whether
a deadlock occurred, is detectable and should be
signaled to the developer.

• Every large project needs a lock witness. Go take it from
FreeBSD.

Common performance
issues with locks

• Holding them for too long a time

• Holding them for too short a time

• (acquiring/release the same lock in an inner loop)

• Holding more of them than you actually need

• Spinning when you should be queueing

• Queuing when you should be spinning

• Multiple locks in the same cache-line

Reader/Writer locks
• Basic idea: some data-structures support

concurrent reads, but not concurrent writes.

• hash-tables, trees, maps, whatev’s.

• A reader/writer lock permits multiple readers but
only one writer. 
pthread_rwlock_rdlock(pthread_rwlock_t *);  
pthread_rwlock_wrlock(pthread_rwlock_t *);  
pthread_rwlock_unlock(pthread_rwlock_t *);

A good interview
question…

Implement a fair reader/writer lock

Why is this a hard question? 
 
How would you solve it?

Condition Variables
• Probably the least understood but most important

synchronization primitive there is.

• pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *lock);

• Thread must hold the specified lock. The thread
releases the lock and is blocked until the condition is
signaled.

• pthread_cond_signal(pthread_cond_t *cond);

• pthread_cond_broadcast(pthread_cond_t *cond);

Condition variables
• Condition variables are important because they all you to

synchronize without spinning, and hence wasting resources.

• Condition variables can be extremely challenging for
programmers to use but if you follow two simple rules then you
will be fine:

• 1) A signal before wait is lost. Always acquire the mutex
the wait will wait on, and then signal.

• 2) When you are signaled, you are not necessarily assured
the condition you really want to be true is true; it depends
on the condition, the number of waits, what they do, etc.

Barriers
• Barriers synchronize a group of threads.

• Threads are stopped until all threads that should
enter the barrier have done so.

• pthread_barrier_init(pthread_barrier_t *barrier, attr,
unsigned int count);

• pthread_barrier_wait(barrier);

Barriers, continued

• Should barriers support a barrier_signal or
barrier_broadcast, “early release” mechanism?

• Should barriers support a time-out?

Common bugs/issues with
barriers

• A wayward thread never enters

• Perhaps it’s waiting on a lock or data to be produced
from a thread that has already entered the barrier!

• Advice: Barriers are useful at the mesoscale of your code.

• If you enter the barrier from different points in your
code, think hard, but it still might be ok

• If you enter a barrier after executing a giant section of
code, think hard, but it still might be ok.

Lock-Free Algorithms
• There is an important concept in parallel programing, or

rather, a concept some people think is important, known
as lock-free algorithms

• Lock-free does not mean synchronization free

• Lock-free generally means a data-structure is designed
such that synchronization becomes inherent in the
manipulation of the data.

• I’m pushing 1MM lines+ in my lifetime so far. I do not write
lock-free data-structures. I do write “lock free” flags now
and then but less so as I get older and hopefully wiser.

Lock-free issues
• Just being lock-free does not make you fast

• Lock-free is very challenging to get correct. Think of it as the
extreme end of super-fine-grained locking

• Lock-freedom does not mean wait-freedom. Wait-free algorithms
(which are necessarily lock-free) do exist for some things

• People still write papers that appear in top places on lock free
algorithms. Frankly I think they are bit like doing algorithmic
research on quantum computing. Hard, and maybe relevant
some day, but not so much now. (But then again, I’m starting to
get back into QC…)

