Evolution of implementation technologies

- Logic gates (1950s-60s)
- Regular structures for two-level logic (1960s-70s)
 - muxes and decoders, PLAs
- Programmable sum-of-products arrays (1970s-80s)
 - PLDs, complex PLDs
- Programmable gate arrays (1980s-90s)
 - densities high enough to permit entirely new class of application, e.g., prototyping, emulation, acceleration

Trend toward higher levels of integration
Gate Array Technology (IBM - 1970s)

- Simple logic gates
 - combine transistors to implement combinational and sequential logic
- Interconnect
 - wires to connect inputs and outputs to logic blocks
- I/O blocks
 - special blocks at periphery for external connections
- Add wires to make connections
 - done when chip is fabbed
 - “mask-programmable”
 - construct any circuit
- Coming back as “Structured ASICs”

FPGAs - 2
Field-Programmable Gate Arrays

- **Logic blocks**
 - to implement combinational and sequential logic

- **Interconnect**
 - wires to connect inputs and outputs to logic blocks

- **I/O blocks**
 - special logic blocks at periphery of device for external connections

- **Key questions:**
 - how to make logic blocks programmable?
 - how to connect the wires?
 - *after the chip has been fabbed*
Enabling Technology

- **Cheap/fast fuse connections**
 - small area (can fit lots of them)
 - low resistance wires (fast even if in multiple segments)
 - very high resistance when not connected
 - small capacitance (wires can be longer)

- **Pass transistors (switches)**
 - used to connect wires
 - bi-directional

- **Multiplexors**
 - used to connect one of a set of possible sources to input
 - can be used to implement logic functions
Programming Technologies

- **Fuse and anti-fuse**
 - fuse makes or breaks link between two wires
 - typical connections are 50-300 ohm
 - one-time programmable (testing before programming?)

- **EPROM and EEPROM**
 - high power consumption
 - typical connections are 2K-4K ohm
 - fairly low density

- **RAM-based**
 - memory bit controls a switch that connects/disconnects two wires
 - typical connections are .5K-1K ohm
 - can be programmed and re-programmed easily (tested at factory)
Tradeoffs in FPGAs

- Logic block - how are functions implemented: fixed functions (manipulate inputs) or programmable?
 - support complex functions, need fewer blocks, but they are bigger so less of them on chip
 - support simple functions, need more blocks, but they are smaller so more of them on chip

- Interconnect
 - how are logic blocks arranged?
 - how many wires will be needed between them?
 - are wires evenly distributed across chip?
 - programmability slows wires down - are some wires specialized to long distances?
 - how many inputs/outputs must be routed to/from each logic block?
 - what utilization are we willing to accept? 50%? 20%? 90%?
Altera Cyclone II (Low-cost Stratix-II FPGA)

- LE is basic block
 - LUT + register + configurable routing
- LAB: 16 LEs
 - Internal carry chain
 - Shift register chain
 - Shared control signals:
 - clocks, resets, enables
 - Internal connect
- FPGA: Rows and Columns of LABs
 - With memories and multipliers
 - I/Os and PLLs on periphery

Figure 2-1. Cyclone II EP2C20 Device Block Diagram
Cyclone II LE used for Logic

Figure 2–3. LE in Normal Mode
Figure 2–3. LE in Normal Mode

Combinational Logic

Packed Register Input

Register chain connection

data1

data2

data3

cin (from cout of previous LE)
data4

Four-Input LUT

Clock (LAB Wide)

ena (LAB Wide)

aclr (LAB Wide)

sload (LAB Wide)

sclear (LAB Wide)

Q

Row, Column, and Direct Link Routing

Row, Column, and Direct Link Routing

Local routing

Register chain output

FPGAs - 9
Registered Logic

Figure 2-3. LE in Normal Mode
“Packed” Mode – LUT and Register

Figure 2–3. LE in Normal Mode

- data1
- data2
- data3
- cin (from cout of previous LE)
- data4

- Packed Register Input
- Register chain connection
- Four-Input LUT
- ENA
- CLRN
- Q
- Row, Column, and Direct Link Routing
- Local routing
- Register chain output
Shift Register Mode + Logic

Figure 2–3. LE in Normal Mode

FPGAs - 12
Cyclone II LE used for Arithmetic

Figure 2–4. LE in Arithmetic Mode

Combinational option not shown
Full Cyclone II LE

Figure 2–2. Cyclone II LE

FPGAs - 14
Stratix II ALM
Stritix III/IV ALM
LAB Local Interconnect – Local connections

Figure 2–5. Cyclone II LAB Structure

Direct link interconnect from adjacent block

Direct link interconnect to adjacent block

Row Interconnect

Column Interconnect

Direct link interconnect from adjacent block

Direct link interconnect to adjacent block

LAB

Local Interconnect

FPGAs - 17
Local Interconnect – Connect to adjacent LABs

Figure 2–5. Cyclone II LAB Structure
Local Interconnect – Connect to Row/Column Interconnect

Figure 2–5. Cyclone II LAB Structure
Lab Control Signals

- Shared by LEs in LAB
- Constraint on placement

Figure 2–7. LAB-Wide Control Signals
Row Interconnect

- R4 Interconnects span 4 columns
- R24 Interconnects span width of device
- LABs, memories, multipliers can drive R4s

Figure 2-8. R4 Interconnect Connections
Column Interconnect

- C4 - spans 4 LAB rows
- C16 - spans 16 LAB rows
- LABs directly connected via row interconnect
 - indirectly via column interconnect
Clocks

Figure 2–12. EP2C15 & Larger PLL, CLK[], DPCLK[] & Clock Control Block Locations
Clocks

- Dedicated clock pins
 - low-skew
- Dual-purpose clock pins
 - have programmable delays
 - drive clock control block
- 8 – 16 global clocks
 - Used for all high-fanout control signals
 - clock, reset, enable
 - Driven by clock control block
 - Also locally by logic
Clock Control Block

- Selects global clock input
- One per global clock

Figure 2–13. Clock Control Block
PLL

Figure 2–16. Cyclone II PLL

Note (1)
4K Memory Block

Table 2–6. M4K Memory Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum performance (1)</td>
<td>250 MHz</td>
</tr>
<tr>
<td>Total RAM bits per M4K block (including parity bits)</td>
<td>4,608</td>
</tr>
</tbody>
</table>
| Configurations supported | 4K × 1
2K × 2
1K × 4
512 × 8
512 × 9
256 × 16
256 × 18
128 × 32 (not available in true dual-port mode)
128 × 36 (not available in true dual-port mode) |
| Parity bits | One parity bit for each byte. The parity bit, along with internal user logic, can implement parity checking for error detection to ensure data integrity. |
| Byte enable | M4K blocks support byte writes when the write port has a data width of 1, 2, 4, 8, 9, 16, 18, 32, or 36 bits. The byte enables allow the input data to be masked so the device can write to specific bytes. The unwritten bytes retain the previous written value. |
| Packed mode | Two single-port memory blocks can be packed into a single M4K block if each of the two independent block sizes are equal to or less than half of the M4K block size, and each of the single-port memory blocks is configured in single-clock mode. |
| Address clock enable | M4K blocks support address clock enable, which is used to hold the previous address value for as long as the signal is enabled. This feature is useful in handling misses in cache applications. |
| Memory initialization file (.milf) | When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents. |
| Power-up condition | Outputs cleared |
| Register clears | Output registers only |
| Same-port read-during-write | New data available at positive clock edge |
| Mixed-port read-during-write | Old data available at positive clock edge |
4K Memory

<table>
<thead>
<tr>
<th>Memory Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-port memory</td>
<td>M4K blocks support single-port mode, used when simultaneous reads and writes are not required. Single-port memory supports non-simultaneous reads and writes.</td>
</tr>
<tr>
<td>Simple dual-port memory</td>
<td>Simple dual-port memory supports a simultaneous read and write.</td>
</tr>
<tr>
<td>Simple dual-port with mixed width</td>
<td>Simple dual-port memory mode with different read and write port widths.</td>
</tr>
<tr>
<td>True dual-port memory</td>
<td>True dual-port mode supports any combination of two-port operations: two reads, two writes, or one read and one write at two different clock frequencies.</td>
</tr>
<tr>
<td>True dual-port with mixed width</td>
<td>True dual-port mode with different read and write port widths.</td>
</tr>
<tr>
<td>Embedded shift register</td>
<td>M4K memory blocks are used to implement shift registers. Data is written into each address location at the falling edge of the clock and read from the address at the rising edge of the clock.</td>
</tr>
<tr>
<td>ROM</td>
<td>The M4K memory blocks support ROM mode. A MIF initializes the ROM contents of these blocks.</td>
</tr>
<tr>
<td>FIFO buffers</td>
<td>A single clock or dual clock FIFO may be implemented in the M4K blocks. Simultaneous read and write from an empty FIFO buffer is not supported.</td>
</tr>
</tbody>
</table>
Figure 2-17. M4K RAM Block LAB Row Interface
Figure 2-18. Multiplier Block Architecture

```
Multiplier

Data A

Data B

Input Register

Output Register

FPGAs - 30

embedding_multiplier_FGPAs_30
```
Multiplier Connections

Figure 2-19. Embedded Multiplier LAB Row Interface

- C4 Interconnects
- Direct Link Interconnect from Adjacent LAB
- R4 Interconnects
- 18 Direct Link Outputs to Adjacent LABs
- Direct Link Interconnect from Adjacent LAB
- LAB Block Interconnect Region
- Embedded Multiplier to LAB Row Interface Block Interconnect Region
- 36 Inputs per Row
- 36 Outputs per Row
- LAB Block Interconnect Region
- C4 Interconnects

FFGAS - 31
I/O Block

- Output pin
 - Combinational
 - Registered
- Input pin
 - Combinational
 - Registered
- In/Out (tri-state) pin
 - Mix of both

Figure 2–20. Cyclone II IOE Structure

FPGAs - 32
Connections to I/O Block (5 pins)
More I/O Detail

Figure 2-25. Cyclone II IOE in Bidirectional I/O Configuration
Configurable I/Os

- Single-ended and differential
- Voltage and current mode
 - External reference voltage
- Range of voltages: 1.5v, 1.8v, 2.0v, 2.5v, 3.3v
- Range of standards: LVTTL, LVCMOS, SSTL, HSTL, LVDS, LVPECL
- Programmable drive strength: 4 - 20 mA
 - Interface requirement
 - Slew rate control

- I/Os arranged in Banks
 - 4 - 8 per chip
 - Banks each have a different power bus
Cyclone Floorplan

Figure 2–1. Cyclone II EP2C20 Device Block Diagram

FPGAs - 36
Support for Memory Interfaces

Figure 2–27. DDR SDRAM Interfacing

DDR write clock

DDR Data write

DDR Data read

FPGAs - 37
Details of One Xilinx Virtex Slice

Figure 5: Detailed View of Virtex-E Slice
Implements any Two 4-input Functions

4-input function

3-input function; registered

Figure 5: Detailed View of Virtex-E Slice
IMPLEMENTS ANY 5-INPUT FUNCTION

Figure 5: Detailed View of Virtex-E Slice

Xilinx FPGAs - 40
Two Slices: Any 6-input Function

Figure 5: Detailed View of Virtex-E Slice
Fast Carry Chain: Add two bits per slice

Figure 5: Detailed View of Virtex-E Slice
Lookup Tables used as memory (16 x 2) [Distributed Memory]

Figure 5: Detailed View of Virtex-E Slice
Computer-aided Design

- Can't design FPGAs by hand
 - way too much logic to manage, hard to make changes

- Hardware description languages
 - specify functionality of logic at a high level

- Validation - high-level simulation to catch specification errors
 - verify pin-outs and connections to other system components
 - low-level to verify mapping and check performance

- Logic synthesis
 - process of compiling HDL program into logic gates and flip-flops

- Technology mapping
 - map the logic onto elements available in the implementation technology (LUTs for Xilinx FPGAs)
CAD Tool Path (cont’d)

- Placement and routing
 - assign logic blocks to functions
 - make wiring connections
- Timing analysis - verify paths
 - determine delays as routed
 - look at critical paths and ways to improve
- Partitioning and constraining
 - if design does not fit or is unroutable as placed split into multiple chips
 - if design is too slow prioritize critical paths, fix placement of cells, etc.
 - few tools to help with these tasks exist today
- Generate programming files - bits to be loaded into chip for configuration
CAD Tools

- Verilog (or VHDL) use to specify logic at a high-level
 - combine with schematics, library components
- Synthesis: Synopsys/Synplicity/Quartus/ISE/Precision
 - compiles Verilog to logic
 - maps logic to the FPGA cells
 - optimizes logic
- APR - automatic place and route (simulated annealing)
 - provides controllability through constraints
 - handles global signals
- STA - measure delay properties of mapping and aid in iteration
Applications of FPGAs

- Implementation of random logic
 - easier changes at system-level (one device is modified)
 - can eliminate need for full-custom chips

- Prototyping
 - ensemble of gate arrays used to emulate a circuit to be manufactured
 - get more/better/faster debugging done than possible with simulation

- Reconfigurable hardware
 - one hardware block used to implement more than one function
 - functions must be mutually-exclusive in time
 - can greatly reduce cost while enhancing flexibility
 - RAM-based only option

- Special-purpose computation engines
 - hardware dedicated to solving one problem (or class of problems)
 - accelerators attached to general-purpose computers