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Digital Filters
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What is a filter?

� Take input and 
create
output

� Programs are filters
� People are filters
� Physics is filters

� That’s too general.
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Filters

� Filters shape the frequency spectrum of 
a sound signal. 
� Filters generally do not add frequency 

components to a signal that are not there 
to begin with.

� Boost or attenuate selected frequency 
regions
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Which of the Following is not a Filter?

� Graphic Equalizer on a stereo system
� Tone control on a stereo system
� Microphone
� Mixing Board
� Loudspeaker
� Vocal Tract
� Ear
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Definition

� A filter is any operation on a signal 
(From Rabiner et al, “Terminology in Digital Signal 
Processing.”

� Commonly, we limit the term filter to 
devices (hardware or software) that 
were designed specifically to boost or 
attenuate regions of a signal spectrum.
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Linear Time-Invariant Filters
� 95% of what we need will be:
� Linear

� Homogeneity: Input and output scales at the same 
rate.

� If filter(x) = y then filter(a*x)=a*y    (a is a real number) 
� Superposition: The sum of two inputs is the sum of 

two outputs.
� If filter(x1)=y1 and filter(x2)=y2 then filter(x1+x2)=y1+y2

� Time Invariant
� Time delayed inputs yield time delayed output without 

change of the filter
� If filter(x(now))=y(now)then filter(x(now+time))=y(now+time)
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Filter types: frequency response
� Functions which take one sequence of 

numbers (the input signal) and produces a 
new sequence of numbers (the filtered 
output signal)

� The Four Basic Types
1. Lowpass
2. Highpass
3. Bandpass
4. Band reject

cutoff frequency 
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Lowpass
� lets through low 

frequencies 
� Stops high 

frequencies
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Highpass
� lets through high 

frequencies 
� Stops low 

frequencies
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Bandpass
� combinations of 

lowpass and 
highpass filters

� lets through only 
frequencies above a 
certain point and 
below another, so 
there is a band of 
frequencies that get 
through 
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Band Reject
� combinations of 

lowpass and highpass
filters

� stops a band of 
frequencies 

� sometimes called notch
filters, because they 
can notch out a 
particular part of a 
sound
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Defining Filter Properties
� Cutoff Frequency

� Defined at the half-power point (filtered output 
amplitude at 0.707 of original signal)

� Bandwidth (in Bandpass filters) is distance (in 
Hz) between half-power points

� Center Frequency is point of maximum 
amplitude.

� Slope of filter (or rolloff) is usually described 
in dB/octave.
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Passband & Stopband
� Passband

� The area where frequencies are passed
� Stopband

� The area where frequencies are stopped
� The center frequency

� the frequency in the middle of the band
� The filter's bandwidth 

� The width of the band is called
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Slope, passband, stopband

Bandpass Filter
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Cutoff Frequency
� Real filters can't just stop all frequencies 

at a certain point
� Instead the ways that frequencies die 

out according to a sort of curve around 
the corner of their cutoff frequency

� the pictures in the figures above (the 
four different types of filter) don't have 
right-angles at the cutoff frequencies
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Transition Band
� The area between where a filter "turns the 

corner" and where it "hits the bottom“
� The steepness of the slope in the transition 

band
� important in defining the sound of a particular filter
� If the slope is very steep, the filter is said to be 

"sharp”
� If the slope is more gradual, the filter is "soft" or 

"gentle"
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More on Slope
� The number of delayed samples a filter “looks 

back” to mix with new input gives the filter’s 
order. 
� 1 sample = first order; 2 samples = second order, 

etc.
� Each order represents an additional 6 dB/octave 

increase in slope.
� The greater the slope (more dB/octave 

change), the greater the phase distortion of 
the filter. 
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Filter Q (Bandpass and Notch)

� Q represents the “quality” of the filter, 
represented by the equation:

Q = fcenter

fhighcutoff − f lowcutoff
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The Impulse
� An impulse is a very short pulse—a waveform 

that has significant amplitude only for a very 
short time. (usually unipolar)

� For filters, we use a one-sample pulse, or unit 
impulse.

� The response of the filter to the unit impulse 
is the filter’s Impulse Response (IR).
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Impulse Response

� Impulse response describes filter 
behavior completely.

� Why? At all time delays response will be 
the same and input can be chopped into 
infinite stream of impulses. Sum of 
impulse inputs -> Total response
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Impulses: FIR and IIR

� Delaying the input signal creates a 
Finite Impulse Response filter (FIR).

� Delaying the output signal creates an 
Infinite Impulse Response filter (IIR).
� IIR filter is essentially a feedback loop.
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Impulses: FIR and IIR
� Filters work by using one or both of the 

following methods:

� Delay a copy of the input signal (by x number of 
samples), and combine the delayed input signal 
with the new input signal.

� (Finite Impulse Response, FIR, or feedforward filter)

� Delay a copy of the output signal (by x number of 
samples), and combine it with the new input 
signal.

� (Infinite Impulse Response, IIR, feedback filter)
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The Math
� First, how we label things:

� x is the input signal
� y is the output signal
� n is the sample index (all samples are numbered, 

or indexed)

� x[0] is the first sample of input; y[0] is the first 
sample of output. x[n] is the current sample; 
x[n - 1] is the previous sample.
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FIR: What does this do? 
� Add time-delayed

signal to itself

� Can we find out properties?

� This is a feed-forward filter. Why?

z -1 +x y
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Finite Impulse Response (FIR)
� Delaying a signal and averaging (in a wide variety of 

ways) the delayed signal and the non-delayed one 
� Delays mean that the sound that comes out at a 

given time uses some of the previous samples
� The sound has been delayed before it gets used
� FIR comes out uses a finite number of samples, and 

a sample only has a finite effect 
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FIR Math [0]

� Simple Lowpass Filter (averaging):
� output = half_of_current_input + 

half_of_previous_input
� y[n] = (0.5  x x[n]) + (0.5  x x[n - 1]) 

� Simple Highpass Filter (difference):
� output = half_of_current input  -

half_of_previous_input
� y[n] = (0.5  x x[n])  — (0.5  x x[n - 1]) 
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� Filters generally use more than one sample 
delay, with independently determined 
coefficients.

� ai is the last coefficient in the series, and x[n - i] is 
the last delayed sample

� The Order of the filter is equal to the number of 
samples you look back. Generally, the higher the 
order—the more samples you look back to take an 
average or difference—the more attenuation of 
frequencies.

FIR Math[1]

��
y[n] = (a0 × x[n]) ± (a1 × x[n −1]) ±�(ai × n[n − i])
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�Tapped-delay line 
(N-1) delays
�N multipliers
�1 adder (N inputs)

Basic Structure for FIR
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FIR 
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FIR Code for 56300 DSP
� Filter order ‘n’
� Input and Output in accumulator ‘a’
� r0: samples, r4: coefs,  m0 & m4: n-1

move a,x(r0)

clr a x:(r0)+,x0 y:(r4)+,y0

rep #n-1

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0

macr x0,y0,a (r0)-
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IIR: How about this one? 

� Remember &
� “accumulate” output

� Any exciting properties?
� A feedback filter?
� Real-world examples?

z -1+x y
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IIR Math[0]
� The feedback loop introduced creates the 

possibility of an infinite impulse (delayed sample).
� The simple averaging filter becomes an 

Exponential Time Averaging Filter (ETA Filter), 
equivalent to an infinitely long FIR filter.

��

y[n] = (0.5 × x[n])+ (0.5 × y[n − 1])

y[n] = (1/2 × x[n])+ (1/ 4 × x[n −1]) + (1/ 8 + x[n − 2])�
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Basic Structure for IIR

•Tapped-delay line (N or M) 
delays
•N + M + 1 multipliers
•2 adders (N and M+1
inputs)
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IIR
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IIR Filters
� IIR (infinite impulse response) filters allow 

zeros and poles; FIR allow zeros only.  IIR 
can be more selective for a given filter order

� IIR also called recursive filters:  output 
depends on past inputs and past outputs

� IIR designs are not guaranteed to be stable
� IIR filters can be particularly sensitive to 

coefficient quantization 
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IIR Issues: Stability and Sensitivity
� Finite precision of coefficients can lead to 

several issues:
� In order to be unconditionally stable and causal, 

all system poles must be inside the unit circle 
(|z|<1).  Coefficient roundoff may inadvertently 
move a pole outside unit circle

� Finite coefficient precision “quantizes” pole 
locations:  may change frequency response from 
ideal case even if still stable
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Overflow Issues

� Gain from input to storage nodes in the 
filter may exceed unity.  This can cause 
filter state to be saturated (clipped), 
resulting in distortion

� Typically must scale down (attenuate) 
the input signal, then scale up (amplify) 
by an equal amount on the output
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Q and Gain

� High-Q filters can self-oscillate when fed 
frequencies near their center frequency.

� Gain is the amount of boost or 
attenuation of a frequency band. 
� Care must be taken with high Q filters so 

that the gain at the center frequency does 
not distort. 
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IIR Filters and Resonance

� Because of the feedback loop, IIR filters 
can provide an amplitude increase 
around the cutoff or center frequency.

� This amplitude increase is usually 
referred to as resonance. 

� IIR filters also provide steeper slopes 
with less computation.
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Second-Order Sections

� High-order filter polynomials involve 
terms that are products and sums 
involving many poles and zeros.  Small 
roundoff errors when implementing filter 
can lead to large response errors

� As with analog filters, it is typical to 
reduce sensitivity by using second-order 
sections
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Implementing 2nd Order Sections
� 2nd Order (bi-quad) expression

� Numerator implements 2 zeros, 
denominator implements 2 poles
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Direct Form Bi-Quad
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IIR Code for 56300
� Direct Form II, with equations:

w(n)=x(n)-ai1w(n-1)-ai2w(n-2)
y(n)=w(n)+bi1w(n-1)+bi2w(n-2)

� Since ai1 and bi1 may be > 1, need to divide 
all coefs by 2, then use special scaling mode
for ×2 on read from accumulator:
ori #$08,MR

→ sets “scale up”: 1-bit left shift on acc read
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IIR for 56300 (cont.)
� N = number of second-order sections
� Filter state (w) in X memory:  r0
� Filter coefs (a,b) in Y memory:  r4

� Coefs stored in order:
� a12/2, a11/2, b12/2, b11/2, a22/2, … bN2/2

� State (data) stored in order:
� w1(n-2), w1(n-1), w2(n-2), w2(n-1), … wN(n-1)

� m0 = 2*N-1,  m4 = 4*N-1 
� Initial gain in y1, input in y0, output in ‘a’
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IIR for 56300 (cont.)
mpy y0,y1,a x:(r0)+,x0 y:(r4)+,y0 
do #N,end_cell
mac -x0,y0,a x:(r0)-,x1 y:(r4)+,y0
macr -x1,y0,a x1,x:(r0)+ y:(r4)+,y0
mac x0,y0,a a,x:(r0)+ y:(r4)+,y0

mac x1,y0,a x:(r0)+,x0 y:(r4)+,y0
end_cell
rnd a
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Other Filter Structures

� Direct Form I and Direct Form II
� Cascade and Parallel Realizations
� Transpose Forms
� Lattice Forms
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Care and Handling
� Care has to be taken with any feedback 

system.
� Feedback coefficients have to remain below 1.0, 

or the  filter becomes unstable.
� IIR filters are computationally less expensive 

than FIR filters for greater shaping potential. 
� drawbacks: phase distortion and ringing.

� FIR filters are always stable, and prevent 
phase distortion.
� drawbacks: more computation than an IIR with 

similar effect.
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Complicated Filters

� More complicated filters can generally 
be built by using combinations of 
second-order IIR filters, or combinations 
of FIR and IIR filters.
� feedforward paths (FIR) usually contribute 

notches to the frequency spectrum.
� feedback paths (IIR) usually contribute 

peaks.


