
Project 3

Project 3 is the beginning of the 3D rendering pipeline. Prior projects (2-a, 2-b) where required
accessory components (DAC, framebuffer, interface). Here we begin the main pipe. We are
going to build the pipeline back to front. That is, we are going to start with the very last stage
and work ourselves backward towards transformation. We are doing this because we can run the
previous stages in software and transmit the results over the serial link to the card (hence, we can
easily test our results). Here is an overall picture of what we are building:

This is a loosely coupled pipeline architecture (like what is used in the Pentium 2,3 & 4). The
idea is you conventionally pipeline each of the fixed length stages (such as transform, light,
drawhline, etc), but between variable length sections you place a FIFO. The goal of each of the
early stages is to keep the FIFO full, but not needlessly so (for example, you could extensively
pipeline the Transform stage, but you may not have to, instead you may want to extensively
parallelize the drawhline stage).

Project 3 is to build the very final stage of this pipe (that is, the FIFO and DrawHLine sections).
You should use your software simulator (or the provided solution) to duplicate all of the prior
stages. Modify your serial interface to accept the commands to dump drawhline commands into
the FIFO (as well as maintaining the framebuffer control – you also want to add a framebuffer
clear command).

Notes:

- You should use 16 bit fixed point math. What’s good enough for GeForce 3 is good
enough for us ;-). Your pipeline is going to use two types of 16 bit numbers. One of
these should be optimized for handling user coordinates and the other optimized for
handling screen coordinates. The switch should occur at the Project stage (a later
assignment). My suggestion – feel free to choose your own path – is to use X * 2^12
for user coordinates and X * 2^4 for screen coordinates. This should give you +/- 8
for user coordinates, and +/- 2048 for screen coordinates. You should TEST the
usefulness of this fixed point system by modifying your software simulator. TRUST
ME – TEST IT BEFORE IMPLEMENTING IT IN HARDWARE.

- The FPGA we are using has 40 hardware multiplies. Each of these is 18 bits (so they
can comfortably produce a 16 bit result).

- Strive for working first, and efficiency second. If you where at a company producing
this hardware you would probably spend a significant amount of time running
simulations to determine exactly how much to parallelize and pipeline each stage in
order to maximum your throughput and efficiency. Alas, we are going to take some
short cuts and just implement it. Feel free to make appropriate decisions about
pipelining.

- BUILD YOUR OWN FIFO. Please do not use one from opencores or elsewhere.
Please make your FIFO parameterizable, since you will (hopefully) be reusing it in
another part of your pipe.

Note, there are a ton of design decisions you will have to make. Simply choose rational options.
Feel free to alter details as you see fit. At a high level, we want to see a working component, but
by all means pour your creativity into the design.

Suggested coarse of action:

I suggest you begin by modifying your serial interface to accept the new commands (switch-
framebuffer, clear-framebuffer, new-hline]. Then build the clear-framebuffer and switch-
framebuffer logic (you should have the switch-framebuffer logic largely in place from project 2-
b). The clear-framebuffer logic needs to zero out the framebuffer and reset the Z-buffer to the
maximum (farthest away) distance.

You may want to have the graphics card ACK back to the PC when it is ready to receive another
command. Although I believe you will still be processing commands far faster than you can
send them, it isn’t clear if this will always be the case. Hence, building that logic in now may
save you time in the future.

Start by sending simple new-hline commands. For example, a dot. Work up to drawing a box at
the same Z distance. Finally, work upwards to eventually sending the entire teapot.

At the end of this assignment you should have a teapot displayed on the screen. Of course, most
of the computation will have been done in software.

Grading

As always we grade upon whether or not it works first. Do strive to make it work first and then
worry about optimizations, tweaks, enhancements, etc.

