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Pipelining: Some definitions

F Latency: Time to perform a computation
Ì Data in to data out

F Throughput: Input or output data rate
Ì Typically the clock rate

F Combinational delays drive performance
Ì Define d ≡ delay through slowest combinational stage

n ≡ number of stages from input to output
Á Latency µ n _ d   (in sec)
Á Throughput µ 1/d   (in Hz)
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Pipelining: What and why

F What?
Ì Subdivide combinational logic
Ì Add registers between logic blocks

F Why?
Ì Increase clock speed

Á Reduce logic delays
Á But…takes a few cycles to fill

the pipe
Ì Trade latency for throughput

Á Latency worse
Á Throughput better

Ì Increase circuit utilization
Á Simultaneous computations

Logic        Reg

Logic     Reg    Logic     Reg
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Pipelining: When and where

F When?
Ì Throughput more important than latency

Á Signal processing
Ì Logic delays >> flip-flop setup/hold times
Ì No acyclic logic

F Where?
Ì At natural breaks in the combinational logic
Ì Adding registers makes sense

Reg   Logic  Reg
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Pipelining example
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Retiming

F Retiming: Rearrange storage elements
Ì To optimize performance

Á Minimize critical path
Á Optimize logic across register boundaries
Á Reduce register count

Ì Without altering functionality

F Pipelining adds registers
Ì To increase the clock speed

F Retiming moves registers around
Ì Reschedules computations
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Retiming in a nutshell

F Change position of FFs
Ì To optimize an FSM after

assignment/optimization
Á For speed
Á To suit implementation target

F Retiming modifies state assignment
Ì Moving registers alters state codes
Ì Preserves FSM functionality
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Retiming rules

F Fast optimal algorithm
Ì See Leiserson & Saxe, 1983

F Rules:
Ì Remove one register from each input and add one to each output
Ì Remove one register from each output and add one to each input
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Retiming examples

F Reduce register count

F Create simplification opportunities
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Retiming examples (con’t)

F Move logic to suit implementation target

Original Design Retimed Design
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Optimal pipelining

F Add registers
Ì Use retiming to find optimal location
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Example: Digital correlator

F yt = d(xt, a0) + d(xt–1, a1) + d(xt–2, a2) + d(xt–3, a3)
Ì d(x, a) = 1 if x = a; 0 otherwise
Ì d passes x to the right (unchanged)
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Example: Digital correlator (cont’d)

F Delays: Comparator = 3; adder = 7
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Retiming: Step-by-step
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and after a few more . . .

Retiming: step-by-step (cont’d)
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Formal algorithm for retiming

F Represent circuit as a directed graph
Ì Vertices v: Logic gates
Ì Edges e: Connections between logic (0 or more registers)
Ì Delay d: Delay of vertex v
Ì Weight w: Number of registers on edge e

F Problem statement
Ì Given cycle time t and the circuit graph
Ì Adjust weights w (number of registers) so that all path delays d < t

Á Preserving logic functionality

F Approach
Ì Generate matrices for w and d
Ì Iterate to minimize t (use linear programming)
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For you to think about...

F Registers slow the data path
Ì To synchronize delays

F Hard: Use latches instead of registers
Ì Permits faster circuits
Ì Fast data slows down; slow data passes through transparent latch

F Harder: Self-timed datapath
Ì Handshaking decides when data passes

F Hardest: Wave-pipelining
Ì Delete the registers

Á Waves of data flow through circuit
Á Requires equal-delay circuit paths


