
1Pipelining and retiming

Pipelining: Some definitions

F Latency: Time to perform a computation
Ì Data in to data out

F Throughput: Input or output data rate
Ì Typically the clock rate

F Combinational delays drive performance
Ì Define d ≡ delay through slowest combinational stage

n ≡ number of stages from input to output
Á Latency µ n _ d (in sec)
Á Throughput µ 1/d (in Hz)

2Pipelining and retiming

Pipelining: What and why

F What?
Ì Subdivide combinational logic
Ì Add registers between logic blocks

F Why?
Ì Increase clock speed

Á Reduce logic delays
Á But…takes a few cycles to fill

the pipe
Ì Trade latency for throughput

Á Latency worse
Á Throughput better

Ì Increase circuit utilization
Á Simultaneous computations

Logic Reg

Logic Reg Logic Reg

3Pipelining and retiming

Pipelining: When and where

F When?
Ì Throughput more important than latency

Á Signal processing
Ì Logic delays >> flip-flop setup/hold times
Ì No acyclic logic

F Where?
Ì At natural breaks in the combinational logic
Ì Adding registers makes sense

Reg Logic Reg

4Pipelining and retiming

Pipelining example

5Pipelining and retiming

Retiming

F Retiming: Rearrange storage elements
Ì To optimize performance

Á Minimize critical path
Á Optimize logic across register boundaries
Á Reduce register count

Ì Without altering functionality

F Pipelining adds registers
Ì To increase the clock speed

F Retiming moves registers around
Ì Reschedules computations

6Pipelining and retiming

_

b

a

?

a

a

b

b

a

b

Retiming in a nutshell

F Change position of FFs
Ì To optimize an FSM after

assignment/optimization
Á For speed
Á To suit implementation target

F Retiming modifies state assignment
Ì Moving registers alters state codes
Ì Preserves FSM functionality

7Pipelining and retiming

Retiming rules

F Fast optimal algorithm
Ì See Leiserson & Saxe, 1983

F Rules:
Ì Remove one register from each input and add one to each output
Ì Remove one register from each output and add one to each input

8Pipelining and retiming

a

b
x

c

D Q

D Q

D Q

x

c

a

b

D Q

D Q

Retiming examples

F Reduce register count

F Create simplification opportunities

a
b

c

d
xD Q

a

b d
x

D Q

D Q

9Pipelining and retiming

Retiming examples (con’t)

F Move logic to suit implementation target

Original Design Retimed Design

10Pipelining and retiming

871310

56

871310

56

Optimal pipelining

F Add registers
Ì Use retiming to find optimal location

11Pipelining and retiming

++

dd

+

d d

host

yt

xt
a0 a1 a2 a3

Example: Digital correlator

F yt = d(xt, a0) + d(xt–1, a1) + d(xt–2, a2) + d(xt–3, a3)
Ì d(x, a) = 1 if x = a; 0 otherwise
Ì d passes x to the right (unchanged)

12Pipelining and retiming

++

dd

+

d d

host

++

dd

+

d d

host

cycle time = 24

cycle time = 13

Example: Digital correlator (cont’d)

F Delays: Comparator = 3; adder = 7

13Pipelining and retiming

77

33

7

3 3

0

0 0
0

1
1

1 1

0

77

33

7

3 3

0

0 0
0

1
1

0 2

0

77

33

7

3 3

0

0 0
0

1
1

0 1

1

0 00

0 10

0 10

Retiming: Step-by-step

14Pipelining and retiming

77

33

7

3 3

0

0 1
0

1
1

0 1

00 00

77

33

7

3 3

0

0 1
0

2
0

0 1

00 01

77

33

7

3 3

0

1 1
0

1
0

0 1

00 01

and after a few more . . .

Retiming: step-by-step (cont’d)

15Pipelining and retiming

Formal algorithm for retiming

F Represent circuit as a directed graph
Ì Vertices v: Logic gates
Ì Edges e: Connections between logic (0 or more registers)
Ì Delay d: Delay of vertex v
Ì Weight w: Number of registers on edge e

F Problem statement
Ì Given cycle time t and the circuit graph
Ì Adjust weights w (number of registers) so that all path delays d < t

Á Preserving logic functionality

F Approach
Ì Generate matrices for w and d
Ì Iterate to minimize t (use linear programming)

16Pipelining and retiming

For you to think about...

F Registers slow the data path
Ì To synchronize delays

F Hard: Use latches instead of registers
Ì Permits faster circuits
Ì Fast data slows down; slow data passes through transparent latch

F Harder: Self-timed datapath
Ì Handshaking decides when data passes

F Hardest: Wave-pipelining
Ì Delete the registers

Á Waves of data flow through circuit
Á Requires equal-delay circuit paths

