Applications of FPGAs

- Implementation of random logic
 - easier changes at system-level (one device is modified)
 - can eliminate need for full-custom chips
- Prototyping
 - ensemble of gate arrays used to emulate a circuit to be manufactured
 - get more/better/faster debugging done than possible with simulation
- Reconfigurable hardware
 - one hardware block used to implement more than one function
 - functions must be mutually-exclusive in time
 - can greatly reduce cost while enhancing flexibility
 - RAM-based only option
- Special-purpose computation engines
 - hardware dedicated to solving one problem (or class of problems)
 - accelerators attached to general-purpose computers
Evolution of implementation technologies

- Logic gates (1950s-60s)
- Regular structures for two-level logic (1960s-70s)
 - muxes and decoders, PLAs
- Programmable sum-of-products arrays (1970s-80s)
 - PLDs, complex PLDs
- Programmable gate arrays (1980s-90s)
 - densities high enough to permit entirely new class of application, e.g., prototyping, emulation, acceleration

Trend toward higher levels of integration
Gate Array Technology (IBM - 1970s)

- Simple logic gates
 - combine transistors to implement combinational and sequential logic
- Interconnect
 - wires to connect inputs and outputs to logic blocks
- I/O blocks
 - special blocks at periphery for external connections
- Add wires to make connections
 - done when chip is fabbed
 - “mask-programmable”
 - construct any circuit
Field-Programmable Gate Arrays

- Logic blocks
 - to implement combinational and sequential logic
- Interconnect
 - wires to connect inputs and outputs to logic blocks
- I/O blocks
 - special logic blocks at periphery of device for external connections

Key questions:
- how to make logic blocks programmable?
- how to connect the wires?
- after the chip has been fabbed
Enabling Technology

- Cheap/fast fuse connections
 - small area (can fit lots of them)
 - low resistance wires (fast even if in multiple segments)
 - very high resistance when not connected
 - small capacitance (wires can be longer)
- Pass transistors (switches)
 - used to connect wires
 - bi-directional
- Multiplexors
 - used to connect one of a set of possible sources to input
 - can be used to implement logic functions
Programming Technologies

- Fuse and anti-fuse
 - fuse makes or breaks link between two wires
 - typical connections are 50-300 ohm
 - one-time programmable (testing before programming?)
- EPROM and EEPROM
 - high power consumption
 - typical connections are 2K-4K ohm
 - fairly low density
- RAM-based
 - memory bit controls a switch that connects/disconnects two wires
 - typical connections are .5K-1K ohm
 - can be programmed and re-programmed easily (tested at factory)
Tradeoffs in FPGAs

- Logic block - how are functions implemented: fixed functions (manipulate inputs) or programmable?
 - support complex functions, need fewer blocks, but they are bigger so less of them on chip
 - support simple functions, need more blocks, but they are smaller so more of them on chip

- Interconnect
 - how are logic blocks arranged?
 - how many wires will be needed between them?
 - are wires evenly distributed across chip?
 - programmability slows wires down – are some wires specialized to long distances?
 - how many inputs/outputs must be routed to/from each logic block?
 - what utilization are we willing to accept? 50%? 20%? 90%?
Xilinx Programmable Gate Arrays

- CLB - Configurable Logic Block
 - 5-input, 1 output function
 - or 2 4-input, 1 output functions
 - optional register on outputs
- Built-in fast carry logic
- Can be used as memory
- Three types of routing
 - direct
 - general-purpose
 - long lines of various lengths
- RAM-programmable
 - can be reconfigured
Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)
Two 4-input functions, registered output

Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)
5-input function, combinational output

Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)
Figure 4: 16x2 (or 16x1) Edge-Triggered Single-Port RAM
Fast Carry Logic
Figure 28: Single- and Double-Length Lines, with Programmable Switch Matrices (PSMs)
Figure 26: Programmable Switch Matrix (PSM)
Xilinx 4000 Interconnect Details
Xilinx 4000 IOB

Diagram showing a circuit with components labeled as follows:
- T
- Out
- Output Clock
- I_1
- I_2
- Clock Enable
- Input Clock
- Slew Rate Control
- Passive Pull-Up/Pull-Down
- Output Buffer
- Input Buffer
- Delay
- Pad
Xilinx FPGA Combinational Logic Examples

- Key: Functions are limited to 5 inputs (4 even better)
 - No limitation on function complexity
- Examples:
 - 5-input parity generator implemented with 1 CLB
 \[F = (A \oplus B \oplus C \oplus D \oplus E)' \]
 - 2-bit comparator: \(A B = C D \) or \(A B > C D \) implemented with 1 CLB
 \[
 (GT) \quad F = A' C' + A B D' + B C' D' \\
 (EQ) \quad G = A' B' C' D' + A' B C' D + A B' C D' + A B C D
 \]
Examples

- n-input majority function: 1 whenever n/2 or more inputs are 1

5-input Majority Circuit

7-input Majority Circuit
Xilinx FPGA Combinational Logic

- Examples
 - n-input parity function: 5 input = 1 CLB, 2 levels yield up to 25 inputs
Xilinx FPGA Adder Example

- Example
 - 2-bit binary adder - inputs: A1, A0, B1, B0, CIN
 outputs: S0, S1, Cout

3 CLB solution
single CLB delay for Cout of second bit

2 CLB solution
double CLB delay for Cout of second bit
Computer-aided Design

- Can't design FPGAs by hand
 - way too much logic to manage, hard to make changes
- Hardware description languages
 - specify functionality of logic at a high level
- Validation - high-level simulation to catch specification errors
 - verify pin-outs and connections to other system components
 - low-level to verify mapping and check performance
- Logic synthesis
 - process of compiling HDL program into logic gates and flip-flops
- Technology mapping
 - map the logic onto elements available in the implementation technology (LUTs for Xilinx FPGAs)
CAD Tool Path (cont’d)

- Placement and routing
 - assign logic blocks to functions
 - make wiring connections
- Timing analysis - verify paths
 - determine delays as routed
 - look at critical paths and ways to improve
- Partitioning and constraining
 - if design does not fit or is unroutable as placed split into multiple chips
 - if design it too slow prioritize critical paths, fix placement of cells, etc.
 - few tools to help with these tasks exist today
- Generate programming files - bits to be loaded into chip for configuration