
10/21/14

1

Orientation & Quaternions

Adapted from: Steve Rotenberg

Orientation

10/21/14

2

Orientation

n  We will define ‘orientation’ to mean an object’s
instantaneous rotational configuration

n  Think of it as the rotational equivalent of position

Representing Positions

n  Cartesian coordinates (x,y,z) are an easy and natural
means of representing a position in 3D space

n  There are many other alternatives such as polar notation
(r,θ,φ) and you can invent others if you want to

10/21/14

3

Representing Orientations

n  Is there a simple means of representing a 3D
orientation? (analogous to Cartesian
coordinates?)

n  Not really.
n  There are several popular options though:

q  Euler angles
q  Rotation vectors (axis/angle)
q  3x3 matrices
q  Quaternions
q  and more…

Euler’s Theorem

n  Euler’s Theorem: Any two independent
orthonormal coordinate frames can be related by
a sequence of rotations (not more than three)
about coordinate axes, where no two successive
rotations may be about the same axis.

n  Not to be confused with Euler angles, Euler
integration, Newton-Euler dynamics, inviscid
Euler equations, Euler characteristic…

n  Leonard Euler (1707-1783)

10/21/14

4

Euler Angles

n  This means that we can represent an orientation with 3
numbers

n  A sequence of rotations around principle axes is called
an Euler Angle Sequence

n  Assuming we limit ourselves to 3 rotations without
successive rotations about the same axis, we could use
any of the following 12 sequences:

 XYZ XZY XYX XZX
 YXZ YZX YXY YZY
 ZXY ZYX ZXZ ZYZ

Euler Angles

n  This gives us 12 redundant ways to store an orientation
using Euler angles

n  Different industries use different conventions for handling
Euler angles (or no conventions)

10/21/14

5

Euler Angles to Matrix Conversion

n  To build a matrix from a set of Euler angles, we
just multiply a sequence of rotation matrices
together:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+

+−

−

=

yxzxzyxzxzyx

yxzxzyxzxzyx

yzyzy

cccssscsscsc
csccssssccss
ssccc

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=⋅⋅

100
0
0

0
010

0

0
0

001

zz

zz

yy

yy

xx

xxzyx cs
sc

cs

sc

cs
scRRR

Euler Angle Order

n  As matrix multiplication is not commutative, the
order of operations is important

n  Rotations are assumed to be relative to fixed
world axes, rather than local to the object

n  One can think of them as being local to the
object if the sequence order is reversed

10/21/14

6

Using Euler Angles

n  To use Euler angles, one must choose which of the 12
representations they want

n  There may be some practical differences between them
and the best sequence may depend on what exactly you
are trying to accomplish

Vehicle Orientation

n  Generally, for vehicles, it is most convenient to
rotate in roll (z), pitch (x), and then yaw (y)

n  In situations where there
 is a definite ground plane,
 Euler angles can actually
 be an intuitive
 representation

x

y

z

front of vehicle

10/21/14

7

Gimbal Lock

n  One potential problem that they can suffer from is
‘gimbal lock’

n  This results when two axes effectively line up, resulting
in a temporary loss of a degree of freedom

n  This is related to the singularities in longitude that you
get at the north and south poles

Interpolating Euler Angles

n  One can simply interpolate between the three
values independently

n  This will result in the interpolation following a
different path depending on which of the 12
schemes you choose

n  This may or may not be a problem, depending
on your situation

n  Interpolating near the ‘poles’ can be
problematic

n  Note: when interpolating angles, remember to
check for crossing the +180/-180 degree
boundaries

10/21/14

8

Euler Angles

n  Euler angles are used in a lot of applications, but
they tend to require some rather arbitrary
decisions

n  They also do not interpolate in a consistent way
(but this isn’t always bad)

n  They can suffer from Gimbal lock and related
problems

n  There is no simple way to concatenate rotations
n  Conversion to/from a matrix requires several

trigonometry operations
n  They are compact (requiring only 3 numbers)

Rotation Vectors and Axis/Angle

n  Euler’s Theorem also shows that any two
orientations can be related by a single rotation
about some axis (not necessarily a principle
axis)

n  This means that we can represent an arbitrary
orientation as a rotation about some unit axis by
some angle (4 numbers) (Axis/Angle form)

n  Alternately, we can scale the axis by the angle
and compact it down to a single 3D vector
(Rotation vector)

10/21/14

9

Axis/Angle to Matrix

n  To generate a matrix as a rotation θ around an arbitrary
unit axis a:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−−+−

+−−+−−

−−+−−+

)1()1()1(
)1()1()1(
)1()1()1(

22

22

22

zzxzyyzx

xzyyyzyx

yzxzyxxx

acasacaasacaa
sacaaacasacaa
sacaasacaaaca

θθθθθ

θθθθθ

θθθθθ

Rotation Vectors

n  To convert a scaled rotation vector to a matrix, one
would have to extract the magnitude out of it and then
rotate around the normalized axis

n  Normally, rotation vector format is more useful for
representing angular velocities and angular
accelerations, rather than angular position (orientation)

10/21/14

10

Axis/Angle Representation

n  Storing an orientation as an axis and an angle uses 4
numbers, but Euler’s theorem says that we only need 3
numbers to represent an orientation

n  Mathematically, this means that we are using 4 degrees
of freedom to represent a 3 degrees of freedom value

n  This implies that there is possibly extra or redundant
information in the axis/angle format

n  The redundancy manifests itself in the magnitude of the
axis vector. The magnitude carries no information, and
so it is redundant. To remove the redundancy, we
choose to normalize the axis, thus constraining the extra
degree of freedom

Matrix Representation

n  We can use a 3x3 matrix to represent an
orientation as well

n  This means we now have 9 numbers instead of
3, and therefore, we have 6 extra degrees of
freedom

n  NOTE: We don’t use 4x4 matrices here, as
those are mainly useful because they give us the
ability to combine translations. We will not be
concerned with translation today, so we will just
think of 3x3 matrices.

10/21/14

11

Matrix Representation

n  Those extra 6 DOFs manifest themselves as 3 scales (x,
y, and z) and 3 shears (xy, xz, and yz)

n  If we assume the matrix represents a rigid transform
(orthonormal), then we can constrain the extra 6 DOFs

bac
acb
cba
cba

×=

×=

×=

=== 1

Matrix Representation

n  Matrices are usually the most computationally
efficient way to apply rotations to geometric data,
and so most orientation representations
ultimately need to be converted into a matrix in
order to do anything useful (transform verts…)

n  Why then, shouldn’t we just always use
matrices?
q  Numerical issues
q  Storage issues
q  User interaction issues
q  Interpolation issues

10/21/14

12

Quaternions

Quaternions

n  Quaternions are an interesting mathematical
concept with a deep relationship with the
foundations of algebra and number theory

n  Invented by W.R.Hamilton in 1843
n  In practice, they are most useful to us as a

means of representing orientations
n  A quaternion has 4 components

[]3210 qqqq=q

10/21/14

13

Quaternions (Imaginary Space)

n  Quaternions are actually an extension to complex
numbers

n  Of the 4 components, one is a ‘real’ scalar number, and
the other 3 form a vector in imaginary ijk space!

3210 kqjqiqq +++=q

jiijk
ikkij
kjjki

ijkkji

−==

−==

−==

−==== 1222

Quaternions (Scalar/Vector)

n  Sometimes, they are written as the combination
of a scalar value s and a vector value v

 where

[]321

0

qqq
qs

=

=

v

vq ,s=

10/21/14

14

Unit Quaternions

n  For convenience, we will use only unit length
quaternions, as they will be sufficient for our purposes
and make things a little easier

n  These correspond to the set of vectors that form the
‘surface’ of a 4D hypersphere of radius 1

n  The ‘surface’ is actually a 3D volume in 4D space, but it
can sometimes be visualized as an extension to the
concept of a 2D surface on a 3D sphere

12
3

2
2

2
1

2
0 =+++= qqqqq

Quaternions as Rotations

n  A quaternion can represent a rotation by an
angle θ around a unit axis a:

n  If a is unit length, then q will be also
2

sin,
2

cos

2
sin

2
sin

2
sin

2
cos

θθ

θθθθ

aq

q

=

⎥⎦

⎤
⎢⎣

⎡=

or

aaa zyx

10/21/14

15

Quaternions as Rotations

()

11
2

sin
2

cos
2

sin
2

cos

2
sin

2
cos

2
sin

2
sin

2
sin

2
cos

22222

22222

2222222

2
3

2
2

2
1

2
0

==

+=+=

+++=

+++=

+++=

θθθθ

θθ

θθθθ

a

q

zyx

zyx

aaa

aaa

qqqq

Quaternion to Matrix

n  To convert a quaternion to a rotation matrix:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−+

+−−−

−+−−

2
2

2
110322031

1032
2
3

2
13021

20313021
2
3

2
2

2212222
2222122
2222221

qqqqqqqqqq
qqqqqqqqqq
qqqqqqqqqq

10/21/14

16

Matrix to Quaternion

n  Matrix to quaternion is not too bad, I just don’t have
room for it here

n  It involves a few ‘if’ statements, a square root, three
divisions, and some other stuff

n  See Sam Buss’s book (p.305) for the algorithm:

3D Computer Graphics:
A Mathematical Introduction with OpenGL
by Samuel R. Buss

Spheres

n  Think of a person standing on the surface of a big
sphere (like a planet)

n  From the person’s point of view, they can move in along
two orthogonal axes (front/back) and (left/right)

n  There is no perception of any fixed poles or longitude/
latitude, because no matter which direction they face,
they always have two orthogonal ways to go

n  From their point of view, they might as well be moving on
a infinite 2D plane, however if they go too far in one
direction, they will come back to where they started!

10/21/14

17

Hyperspheres

n  Now extend this concept to moving in the
hypersphere of unit quaternions

n  The person now has three orthogonal directions
to go

n  No matter how they are oriented in this space,
they can always go some combination of
forward/backward, left/right and up/down

n  If they go too far in any one direction, they will
come back to where they started

Hyperspheres

n  Now consider that a person’s location on this
hypersphere represents an orientation

n  Any incremental movement along one of the
orthogonal axes in curved space corresponds to
an incremental rotation along an axis in real
space (distances along the hypersphere
correspond to angles in 3D space)

n  Moving in some arbitrary direction corresponds
to rotating around some arbitrary axis

n  If you move too far in one direction, you come
back to where you started (corresponding to
rotating 360 degrees around any one axis)

10/21/14

18

Hyperspheres

n  A distance of x along the surface of the
hypersphere corresponds to a rotation of angle
2x radians

n  This means that moving along a 90 degree arc
on the hypersphere corresponds to rotating an
object by 180 degrees

n  Traveling 180 degrees corresponds to a 360
degree rotation, thus getting you back to where
you started

n  This implies that q and -q correspond to the
same orientation

Hyperspheres

n  Consider what would happen if this was not the
case, and if 180 degrees along the hypersphere
corresponded to a 180 degree rotation

n  This would mean that there is exactly one
orientation that is 180 opposite to a reference
orientation

n  In reality, there is a continuum of possible
orientations that are 180 away from a reference

n  They can be found on the equator relative to any
point on the hypersphere

10/21/14

19

Hyperspheres

n  Also consider what happens if you rotate a book 180
around x, then 180 around y, and then 180 around z

n  You end up back where you started
n  This corresponds to traveling along a triangle on the

hypersphere where each edge is a 90 degree arc,
orthogonal to each other edge

Quaternion Dot Products

n  The dot product of two quaternions works in the
same way as the dot product of two vectors:

n  The angle between two quaternions in 4D space
is half the angle one would need to rotate from
one orientation to the other in 3D space

ϕcos33221100 qpqp =+++=⋅ qpqpqpqp

10/21/14

20

Quaternion Multiplication

n  We can perform multiplication on quaternions if we
expand them into their complex number form

n  If q represents a rotation and q’ represents a rotation,
then qq’ represents q rotated by q’

n  This follows very similar rules as matrix multiplication
(I.e., non-commutative)

3210 kqjqiqq +++=q

()()
vvvvvv

qq
×+ʹ′+ʹ′ʹ′⋅−ʹ′=

ʹ′+ʹ′+ʹ′+ʹ′+++=ʹ′

ssss
qkqjqiqkqjqiqq

,
32103210

Quaternion Multiplication

n  Note that two unit quaternions multiplied
together will result in another unit quaternion

n  This corresponds to the same property of
complex numbers

n  Remember that multiplication by complex
numbers can be thought of as a rotation in the
complex plane

n  Quaternions extend the planar rotations of
complex numbers to 3D rotations in space

10/21/14

21

Quaternion Joints

n  One can create a skeleton using quaternion
joints

n  One possibility is to simply allow a quaternion
joint type and provide a local matrix function that
takes a quaternion

n  Another possibility is to also compute the world
matrices as quaternion multiplications. This
involves a little less math than matrices, but may
not prove to be significantly faster. Also, one
would still have to handle the joint offsets with
matrix math

Quaternions in the Pose Vector

n  Using quaternions in the skeleton adds some
complications, as they can’t simply be treated
as 4 independent DOFs through the rig

n  The reason is that the 4 numbers are not
independent, and so an animation system would
have to handle them specifically as a quaternion

n  To deal with this, one might have to extend the
concept of the pose vector as containing an
array of scalars and an array of quaternions

n  When higher level animation code blends and
manipulates poses, it will have to treat
quaternions specially

10/21/14

22

Quaternion Interpolation

Linear Interpolation

n  If we want to do a linear interpolation between two points
a and b in normal space

 Lerp(t,a,b) = (1-t)a + (t)b

 where t ranges from 0 to 1

n  Note that the Lerp operation can be thought of as a
weighted average (convex)

n  We could also write it in it’s additive blend form:

 Lerp(t,a,b) = a + t(b-a)

10/21/14

23

Spherical Linear Interpolation

n  If we want to interpolate between two points on a sphere
(or hypersphere), we don’t just want to Lerp between
them

n  Instead, we will travel across the surface of the sphere
by following a ‘great arc’

Spherical Linear Interpolation

n  We define the spherical linear interpolation of two unit
vectors in N dimensional space as:

()() ()

()ba

baba

⋅=

+
−

=

−1cos:

sin
sin

sin
1sin),,(

θ

θ
θ

θ
θ

where

tttSlerp

10/21/14

24

Quaternion Interpolation

n  Remember that there are two redundant vectors in
quaternion space for every unique orientation in 3D
space

n  What is the difference between:

 Slerp(t,a,b) and Slerp(t,-a,b) ?

n  One of these will travel less than 90 degrees while the

other will travel more than 90 degrees across the sphere
n  This corresponds to rotating the ‘short way’ or the ‘long

way’
n  Usually, we want to take the short way, so we negate

one of them if their dot product is < 0

Bezier Curves in 2D & 3D Space
n  Bezier curves can be thought of as a higher order

extension of linear interpolation

10/21/14

25

de Castlejau Algorithm

n  Find the point x on the
curve as a function of
parameter t: p0

p1

p2

p3

de Castlejau Algorithm

p0

q0

p1

p2

p3

q2

q1

()
()
()322

211

100

,,
,,
,,

ppq
ppq
ppq

tLerp
tLerp
tLerp

=

=

=

10/21/14

26

de Castlejau Algorithm

q0

q2

q1

r1

r0

()
()211

100

,,
,,
qqr
qqr

tLerp
tLerp

=

=

de Castlejau Algorithm

r1 x

r0 •

()10 ,, rrx tLerp=

10/21/14

27

de Castlejau Algorithm

x
•

de Castlejau Algorithm

()
()
()322

211

100

,,
,,
,,

ppq
ppq
ppq

tLerp
tLerp
tLerp

=

=

=
()
()211

100

,,
,,
qqr
qqr

tLerp
tLerp

=

=
()10 ,, rrx tLerp=

3

2

1

0

p
p
p
p

10/21/14

28

Bezier Curves in Quaternion Space
n  We can construct Bezier curves on the 4D

hypersphere by following the exact same
procedure using Slerp instead of Lerp

n  It’s a good idea to flip (negate) the input
quaternions as necessary in order to make it go
the ‘short way’

n  There are other, more sophisticated curve
interpolation algorithms that can be applied to a
hypersphere

Quaternion Summary

n  Quaternions are 4D vectors that can represent
3D rigid body orientations

n  We choose to force them to be unit length
n  Key animation functions:

q  Quaternion-to-matrix / matrix-to-quaternion
q  Quaternion multiplication: faster than matrix

multiplication
q  Slerp: interpolate between arbitrary orientations
q  Spherical curves: de Castlejau algorithm for cubic

Bezier curves on the hypersphere

10/21/14

29

Quaternion References

n  “Animating Rotation with Quaternion Curves”,
Ken Shoemake, SIGGRAPH 1985

n  “Quaternions and Rotation Sequences”, Kuipers

