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Orientation & Quaternions 

Adapted from: Steve Rotenberg 

Orientation 
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Orientation 

n  We will define ‘orientation’ to mean an object’s 
instantaneous rotational configuration 

n  Think of it as the rotational equivalent of position 

Representing Positions 

n  Cartesian coordinates (x,y,z) are an easy and natural 
means of representing a position in 3D space 

n  There are many other alternatives such as polar notation 
(r,θ,φ) and you can invent others if you want to 
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Representing Orientations 

n  Is there a simple means of representing a 3D 
orientation? (analogous to Cartesian 
coordinates?) 

n  Not really. 
n  There are several popular options though: 

q  Euler angles 
q  Rotation vectors (axis/angle) 
q  3x3 matrices 
q  Quaternions 
q  and more… 

Euler’s Theorem 

n  Euler’s Theorem: Any two independent 
orthonormal coordinate frames can be related by 
a sequence of rotations (not more than three) 
about coordinate axes, where no two successive 
rotations may be about the same axis. 

n  Not to be confused with Euler angles, Euler 
integration, Newton-Euler dynamics, inviscid 
Euler equations, Euler characteristic… 

n  Leonard Euler (1707-1783) 
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Euler Angles 

n  This means that we can represent an orientation with 3 
numbers 

n  A sequence of rotations around principle axes is called 
an Euler Angle Sequence 

n  Assuming we limit ourselves to 3 rotations without 
successive rotations about the same axis, we could use 
any of the following 12 sequences: 

 
 XYZ  XZY   XYX   XZX 
 YXZ  YZX   YXY   YZY 
 ZXY  ZYX   ZXZ   ZYZ 

Euler Angles 

n  This gives us 12 redundant ways to store an orientation 
using Euler angles 

n  Different industries use different conventions for handling 
Euler angles (or no conventions) 



10/21/14 

5 

Euler Angles to Matrix Conversion 

n  To build a matrix from a set of Euler angles, we 
just multiply a sequence of rotation matrices 
together: 
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Euler Angle Order 

n  As matrix multiplication is not commutative, the 
order of operations is important 

n  Rotations are assumed to be relative to fixed 
world axes, rather than local to the object 

n  One can think of them as being local to the 
object if the sequence order is reversed 
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Using Euler Angles 

n  To use Euler angles, one must choose which of the 12 
representations they want 

n  There may be some practical differences between them 
and the best sequence may depend on what exactly you 
are trying to accomplish 

Vehicle Orientation 

n  Generally, for vehicles, it is most convenient to 
rotate in roll (z), pitch (x), and then yaw (y) 

n  In situations where there 
 is a definite ground plane, 
 Euler angles can actually 
 be an intuitive 
 representation 

x

y

z

front of vehicle 
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Gimbal Lock 

n  One potential problem that they can suffer from is 
‘gimbal lock’ 

n  This results when two axes effectively line up, resulting 
in a temporary loss of a degree of freedom 

n  This is related to the singularities in longitude that you 
get at the north and south poles 

Interpolating Euler Angles 

n  One can simply interpolate between the three 
values independently 

n  This will result in the interpolation following a 
different path depending on which of the 12 
schemes you choose 

n  This may or may not be a problem, depending 
on your situation 

n  Interpolating near the ‘poles’ can be 
problematic 

n  Note: when interpolating angles, remember to 
check for crossing the +180/-180 degree 
boundaries 
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Euler Angles 

n  Euler angles are used in a lot of applications, but 
they tend to require some rather arbitrary 
decisions 

n  They also do not interpolate in a consistent way 
(but this isn’t always bad) 

n  They can suffer from Gimbal lock and related 
problems 

n  There is no simple way to concatenate rotations 
n  Conversion to/from a matrix requires several 

trigonometry operations 
n  They are compact (requiring only 3 numbers) 

Rotation Vectors and Axis/Angle 

n  Euler’s Theorem also shows that any two 
orientations can be related by a single rotation 
about some axis (not necessarily a principle 
axis) 

n  This means that we can represent an arbitrary 
orientation as a rotation about some unit axis by 
some angle (4 numbers) (Axis/Angle form) 

n  Alternately, we can scale the axis by the angle 
and compact it down to a single 3D vector 
(Rotation vector) 
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Axis/Angle to Matrix 

n  To generate a matrix as a rotation θ around an arbitrary 
unit axis a: 
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Rotation Vectors 

n  To convert a scaled rotation vector to a matrix, one 
would have to extract the magnitude out of it and then 
rotate around the normalized axis 

n  Normally, rotation vector format is more useful for 
representing angular velocities and angular 
accelerations, rather than angular position (orientation) 
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Axis/Angle Representation 

n  Storing an orientation as an axis and an angle uses 4 
numbers, but Euler’s theorem says that we only need 3 
numbers to represent an orientation 

n  Mathematically, this means that we are using 4 degrees 
of freedom to represent a 3 degrees of freedom value 

n  This implies that there is possibly extra or redundant 
information in the axis/angle format 

n  The redundancy manifests itself in the magnitude of the 
axis vector. The magnitude carries no information, and 
so it is redundant. To remove the redundancy, we 
choose to normalize the axis, thus constraining the extra 
degree of freedom 

Matrix Representation 

n  We can use a 3x3 matrix to represent an 
orientation as well 

n  This means we now have 9 numbers instead of 
3, and therefore, we have 6 extra degrees of 
freedom 

n  NOTE: We don’t use 4x4 matrices here, as 
those are mainly useful because they give us the 
ability to combine translations. We will not be 
concerned with translation today, so we will just 
think of 3x3 matrices. 
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Matrix Representation 

n  Those extra 6 DOFs manifest themselves as 3 scales (x, 
y, and z) and 3 shears (xy, xz, and yz) 

n  If we assume the matrix represents a rigid transform 
(orthonormal), then we can constrain the extra 6 DOFs 
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Matrix Representation 

n  Matrices are usually the most computationally 
efficient way to apply rotations to geometric data, 
and so most orientation representations 
ultimately need to be converted into a matrix in 
order to do anything useful (transform verts…) 

n  Why then, shouldn’t we just always use 
matrices? 
q  Numerical issues 
q  Storage issues 
q  User interaction issues 
q  Interpolation issues 
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Quaternions 

Quaternions 

n  Quaternions are an interesting mathematical 
concept with a deep relationship with the 
foundations of algebra and number theory 

n  Invented by W.R.Hamilton in 1843 
n  In practice, they are most useful to us as a 

means of representing orientations 
n  A quaternion has 4 components 

[ ]3210 qqqq=q



10/21/14 

13 

Quaternions (Imaginary Space) 

n  Quaternions are actually an extension to complex 
numbers 

n  Of the 4 components, one is a ‘real’ scalar number, and 
the other 3 form a vector in imaginary ijk space! 
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Quaternions (Scalar/Vector) 

n  Sometimes, they are written as the combination 
of a scalar value s and a vector value v 

 where 
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Unit Quaternions 

n  For convenience, we will use only unit length 
quaternions, as they will be sufficient for our purposes 
and make things a little easier 

n  These correspond to the set of vectors that form the 
‘surface’ of a 4D hypersphere of radius 1 

n  The ‘surface’ is actually a 3D volume in 4D space, but it 
can sometimes be visualized as an extension to the 
concept of a 2D surface on a 3D sphere 
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Quaternions as Rotations 

n  A quaternion can represent a rotation by an 
angle θ around a unit axis a: 

n  If a is unit length, then q will be also 
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Quaternions as Rotations 
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Quaternion to Matrix 

n  To convert a quaternion to a rotation matrix: 
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Matrix to Quaternion 

n  Matrix to quaternion is not too bad, I just don’t have 
room for it here 

n  It involves a few ‘if’ statements, a square root, three 
divisions, and some other stuff 

n  See Sam Buss’s book (p.305) for the algorithm: 

3D Computer Graphics:  
A Mathematical Introduction with OpenGL 
by Samuel R. Buss  

Spheres 

n  Think of a person standing on the surface of a big 
sphere (like a planet) 

n  From the person’s point of view, they can move in along 
two orthogonal axes (front/back) and (left/right) 

n  There is no perception of any fixed poles or longitude/
latitude, because no matter which direction they face, 
they always have two orthogonal ways to go 

n  From their point of view, they might as well be moving on 
a infinite 2D plane, however if they go too far in one 
direction, they will come back to where they started! 
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Hyperspheres 

n  Now extend this concept to moving in the 
hypersphere of unit quaternions 

n  The person now has three orthogonal directions 
to go 

n  No matter how they are oriented in this space, 
they can always go some combination of 
forward/backward, left/right and up/down 

n  If they go too far in any one direction, they will 
come back to where they started 

Hyperspheres 

n  Now consider that a person’s location on this 
hypersphere represents an orientation 

n  Any incremental movement along one of the 
orthogonal axes in curved space corresponds to 
an incremental rotation along an axis in real 
space (distances along the hypersphere 
correspond to angles in 3D space) 

n  Moving in some arbitrary direction corresponds 
to rotating around some arbitrary axis 

n  If you move too far in one direction, you come 
back to where you started (corresponding to 
rotating 360 degrees around any one axis) 
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Hyperspheres 

n  A distance of x along the surface of the 
hypersphere corresponds to a rotation of angle 
2x radians 

n  This means that moving along a 90 degree arc 
on the hypersphere corresponds to rotating an 
object by 180 degrees 

n  Traveling 180 degrees corresponds to a 360 
degree rotation, thus getting you back to where 
you started 

n  This implies that q and -q correspond to the 
same orientation 

Hyperspheres 

n  Consider what would happen if this was not the 
case, and if 180 degrees along the hypersphere 
corresponded to a 180 degree rotation 

n  This would mean that there is exactly one 
orientation that is 180 opposite to a reference 
orientation 

n  In reality, there is a continuum of possible 
orientations that are 180 away from a reference 

n  They can be found on the equator relative to any 
point on the hypersphere 
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Hyperspheres 

n  Also consider what happens if you rotate a book 180 
around x, then 180 around y, and then 180 around z 

n  You end up back where you started 
n  This corresponds to traveling along a triangle on the 

hypersphere where each edge is a 90 degree arc, 
orthogonal to each other edge 

Quaternion Dot Products 

n  The dot product of two quaternions works in the 
same way as the dot product of two vectors: 

n  The angle between two quaternions in 4D space 
is half the angle one would need to rotate from 
one orientation to the other in 3D space 

ϕcos33221100 qpqp =+++=⋅ qpqpqpqp
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Quaternion Multiplication 

n  We can perform multiplication on quaternions if we 
expand them into their complex number form 

n  If q represents a rotation and q’ represents a rotation, 
then qq’ represents q rotated by q’ 

n  This follows very similar rules as matrix multiplication 
(I.e., non-commutative) 

3210 kqjqiqq +++=q
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Quaternion Multiplication 

n  Note that two unit quaternions multiplied 
together will result in another unit quaternion 

n  This corresponds to the same property of 
complex numbers 

n  Remember that multiplication by complex 
numbers can be thought of as a rotation in the 
complex plane 

n  Quaternions extend the planar rotations of 
complex numbers to 3D rotations in space 
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Quaternion Joints 

n  One can create a skeleton using quaternion 
joints 

n  One possibility is to simply allow a quaternion 
joint type and provide a local matrix function that 
takes a quaternion 

n  Another possibility is to also compute the world 
matrices as quaternion multiplications. This 
involves a little less math than matrices, but may 
not prove to be significantly faster. Also, one 
would still have to handle the joint offsets with 
matrix math 

Quaternions in the Pose Vector 

n  Using quaternions in the skeleton adds some 
complications, as they can’t simply be treated 
as 4 independent DOFs through the rig 

n  The reason is that the 4 numbers are not 
independent, and so an animation system would 
have to handle them specifically as a quaternion 

n  To deal with this, one might have to extend the 
concept of the pose vector as containing an 
array of scalars and an array of quaternions 

n  When higher level animation code blends and 
manipulates poses, it will have to treat 
quaternions specially 
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Quaternion Interpolation 

Linear Interpolation 

n  If we want to do a linear interpolation between two points 
a and b in normal space 

 
  Lerp(t,a,b) = (1-t)a + (t)b 

 
 where t ranges from 0 to 1 

n  Note that the Lerp operation can be thought of as a 
weighted average (convex) 

n  We could also write it in it’s additive blend form: 
 

  Lerp(t,a,b) = a + t(b-a) 



10/21/14 

23 

Spherical Linear Interpolation 

n  If we want to interpolate between two points on a sphere 
(or hypersphere), we don’t just want to Lerp between 
them 

n  Instead, we will travel across the surface of the sphere 
by following a ‘great arc’ 

Spherical Linear Interpolation 

n  We define the spherical linear interpolation of two unit 
vectors in N dimensional space as: 
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Quaternion Interpolation 

n  Remember that there are two redundant vectors in 
quaternion space for every unique orientation in 3D 
space 

n  What is the difference between: 
 

  Slerp(t,a,b)    and    Slerp(t,-a,b)  ? 
 
n  One of these will travel less than 90 degrees while the 

other will travel more than 90 degrees across the sphere 
n  This corresponds to rotating the ‘short way’ or the ‘long 

way’ 
n  Usually, we want to take the short way, so we negate 

one of them if their dot product is < 0 

Bezier Curves in 2D & 3D Space 
n  Bezier curves can be thought of as a higher order 

extension of linear interpolation 
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de Castlejau Algorithm 

n  Find the point x on the 
curve as a function of 
parameter t: p0 

p1 

p2 

p3 

de Castlejau Algorithm 

p0 

q0 

p1 

p2 

p3 

q2 

q1 

( )
( )
( )322

211

100

,,
,,
,,

ppq
ppq
ppq

tLerp
tLerp
tLerp

=

=

=



10/21/14 

26 

de Castlejau Algorithm 
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de Castlejau Algorithm 
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Bezier Curves in Quaternion Space 
n  We can construct Bezier curves on the 4D 

hypersphere by following the exact same 
procedure using Slerp instead of Lerp 

n  It’s a good idea to flip (negate) the input 
quaternions as necessary in order to make it go 
the ‘short way’ 

n  There are other, more sophisticated curve 
interpolation algorithms that can be applied to a 
hypersphere 

Quaternion Summary 

n  Quaternions are 4D vectors that can represent 
3D rigid body orientations 

n  We choose to force them to be unit length 
n  Key animation functions: 

q  Quaternion-to-matrix / matrix-to-quaternion 
q  Quaternion multiplication: faster than matrix 

multiplication 
q  Slerp: interpolate between arbitrary orientations 
q  Spherical curves: de Castlejau algorithm for cubic 

Bezier curves on the hypersphere 
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Quaternion References 

n  “Animating Rotation with Quaternion Curves”, 
Ken Shoemake, SIGGRAPH 1985 

n  “Quaternions and Rotation Sequences”, Kuipers 


