
1 TM T H E A R C H I T E C T U R E F O R T H E D I G I T A L W O R L D

The ARM Architecture

2 TM 2 39v10 The ARM Architecture

Agenda

n  Introduction to ARM Ltd

 Programmers Model

 Instruction Set

 System Design

 Development Tools

3 TM 3 39v10 The ARM Architecture
3 of
42

Acorn Computer

•  Acorn Computers Limited, based in Cambridge, England.

•  In 1979, Acorn Atom released. Used the Rockwell 6502 1Mhz 8 bit CPU.
n  Used in Apple II.

•  Acorn makes agreement with the BBC (British Broadcasting Corporation),
for a new computer design

4 TM 4 39v10 The ARM Architecture
4 of
42

BBC micro

•  In 1981, BBC “The Computer Programme”
project need to have a computer to
demonstrate various tasks including
“teletext/telesoftware, comms, controlling
hardware, programming, artificial
intelligence, graphics, sound and music,
etc. “

•  The Acorn team worked very hard to make
a prototype to BBC and finally BBC
accepted their design.

5 TM 5 39v10 The ARM Architecture
5 of
42

Great Success of BBC micro.

n  The BBC micro used in the programme of the BBC. It became popular in
U.K.

n  Many U.K. Schools/research lab brought the BBC micro.

n  More power wanted– Acorn looks for a new processor.

6 TM 6 39v10 The ARM Architecture
6 of
42

The Birth of ARM.

•  As Acorn can’t find any processor ready on the market is acceptable for
their needs, they wanted to design a new processor.

•  Influenced by the Berkeley RISC I CPU.

•  After some custom modifications by Acorn, a new RISC processor was
designed!

•  The ARM (Advanced RISC Machine).

7 TM 7 39v10 The ARM Architecture
7 of
42

Acorn - a Computer Manufacturer
1983:

n  Acorn Limited:
n  Dominant position in UK personal computer market with

Rockwell/MOS Technology 6502 (8- Bit) CPU.
1983:

n  16- Bit CISC CPU´s slower than standard memory ports with
long interrupt latencies

1983- 85:
n  Acorn designed the first commercial RISC CPU:
n  Acorn Risc Machine (ARM)

1990:
n  Advanced Risc Machine was formed to broaden the market

beyond Acorn´s product range

History of ARM Ltd.

8 TM 8 39v10 The ARM Architecture
8 of
42

1990:
n  Startup with 12 engineers and 1 CEO
n  No patents, no customers, very little money

Mid- 1990s:
n  T. I. licensed ARM7
n  Incorporated into a chip for mobile phones

IPO Spring 1998
n  13 millionaires

History of ARM Ltd.

9 TM 9 39v10 The ARM Architecture
9 of
42

Architectural Inheritance from Berkeley RISC

Used:
n  Load- store architecture
n  Fixed- length 32- bit instructions
n  3 address format

Rejected:
n  Register windows=> Costly

n  Use Shadow Registers in ARM
n  Delayed branches
n  Single cycle execution of all instructions
n  Memory Access

n  Multiple Cycles when no separate data and instruction
memory support

n  Auto-indexing Addressing Modes

Result: RISC with a few CISC features

10 TM 10 39v10 The ARM Architecture
10 of
42

What is RISC/CISC?

Reduced Instruction Set Computer
n  Fewer Addressing modes.
n  Fewer Instructions available.
n  For example, ARM, NEC VR series.

Complex Instruction Set Computer
n  More Instructions available
n  Many addressing modes.
n  For example, Intel x86.

11 TM 11 39v10 The ARM Architecture
11 of
42

Advantages of RISC?

•  Smaller die size
n  Simple instructions - simple processor require less transistors.

•  Shorter development time
n  Simple processor take less effort to design.

•  Higher performance?

•  Disadvantages:
n  Complex compiler
n  poor code density

12 TM 12 39v10 The ARM Architecture

ARM Ltd
n  Founded in November 1990

n  Spun out of Acorn Computers

n  Designs the ARM range of RISC processor
cores

n  Licenses ARM core designs to semiconductor
partners who fabricate and sell to their
customers.
n  ARM does not fabricate silicon itself

n  Also develop technologies to assist with the
design-in of the ARM architecture
n  Software tools, boards, debug hardware,

application software, bus architectures,
peripherals etc

13 TM 13 39v10 The ARM Architecture

ARM Partnership Model

14 TM 14 39v10 The ARM Architecture

ARM Powered Products

15 TM 15 39v10 The ARM Architecture

n  ARM provides hard and soft views to licencees
n  RTL and synthesis flows
n  GDSII layout

n  Licencees have the right to use hard or soft views of the IP
n  soft views include gate level netlists
n  hard views are DSMs

n  OEMs must use hard views
n  to protect ARM IP

Intellectual Property

16 TM 16 39v10 The ARM Architecture

Agenda

 Introduction to ARM Ltd

n  Programmers Model

 Instruction Sets

 System Design

 Development Tools

17 TM 17 39v10 The ARM Architecture

Data Sizes and Instruction Sets

n  The ARM is a 32-bit architecture.

n  When used in relation to the ARM:
n  Byte means 8 bits
n  Halfword means 16 bits (two bytes)
n  Word means 32 bits (four bytes)

n  Most ARM’s implement two instruction sets
n  32-bit ARM Instruction Set
n  16-bit Thumb Instruction Set

n  Jazelle cores can also execute Java bytecode

18 TM 18 39v10 The ARM Architecture

The Registers

n  ARM has 37 registers all of which are 32-bits long.
n  1 dedicated program counter
n  1 dedicated current program status register
n  5 dedicated saved program status registers
n  30 general purpose registers

n  The current processor mode governs which of several banks is
accessible. Each mode can access
n  a particular set of r0-r12 registers
n  a particular r13 (the stack pointer, sp) and r14 (the link register, lr)
n  the program counter, r15 (pc)
n  the current program status register, cpsr

 Privileged modes (except System) can also access
n  a particular spsr (saved program status register)

19 TM 19 39v10 The ARM Architecture

Processor Modes

n  The ARM has seven basic operating modes:

n  User : unprivileged mode under which most tasks run

n  FIQ : entered when a high priority (fast) interrupt is raised

n  IRQ : entered when a low priority (normal) interrupt is raised

n  Supervisor : entered on reset and when a Software Interrupt
 instruction is executed

n  Abort : used to handle memory access violations

n  Undef : used to handle undefined instructions

n  System : privileged mode using the same registers as user mode

20 TM 20 39v10 The ARM Architecture

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)
r15 (pc)

cpsr

r13 (sp)"
r14 (lr)"

spsr

r13 (sp)
r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)
r15 (pc)

cpsr

r13 (sp)"
r14 (lr)"

spsr

r13 (sp)
r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

r0
r1
r2
r3
r4
r5
r6
r7

r15 (pc)

cpsr

r13 (sp)"
r14 (lr)"

spsr

r13 (sp)
r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

FIQ Mode IRQ Mode r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12

r15 (pc)

cpsr

r13 (sp)"
r14 (lr)"

spsr

r13 (sp)
r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)
r14 (lr)

Undef Mode r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12

r15 (pc)

cpsr

r13 (sp)"
r14 (lr)"

spsr

r13 (sp)
r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)
r14 (lr)

SVC Mode r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12

r15 (pc)

cpsr

r13 (sp)"
r14 (lr)"

spsr

r13 (sp)
r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)
r14 (lr)

Abort Mode r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12

r15 (pc)

cpsr

r13 (sp)"
r14 (lr)"

spsr

r13 (sp)
r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)
r14 (lr)

The ARM Register Set

21 TM 21 39v10 The ARM Architecture

Register Organization Summary

User
mode

r0-r7,
r15,
and
cpsr

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

spsr

FIQ

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)
r15 (pc)

cpsr

r0
r1
r2
r3
r4
r5
r6
r7

User

r13 (sp)
r14 (lr)

spsr

IRQ

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)"
r14 (lr)"

spsr

Undef

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

SVC

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

Abort

User
mode

r0-r12,
r15,
and
cpsr

Thumb state
Low registers

Thumb state
High registers

Note: System mode uses the User mode register set

22 TM 22 39v10 The ARM Architecture

Program Status Registers

n  Condition code flags
n  N = Negative result from ALU
n  Z = Zero result from ALU
n  C = ALU operation Carried out
n  V = ALU operation oVerflowed

n  Sticky Overflow flag - Q flag
n  Architecture 5TE/J only
n  Indicates if saturation has occurred

n  J bit
n  Architecture 5TEJ only
n  J = 1: Processor in Jazelle state

n  Interrupt Disable bits.
n  I = 1: Disables the IRQ.
n  F = 1: Disables the FIQ.

n  T Bit
n  Architecture xT only
n  T = 0: Processor in ARM state
n  T = 1: Processor in Thumb state

n  Mode bits
n  Specify the processor mode

27 31

N Z C V Q

28 6 7

I F T mode

16 23

8 15

5 4 0 24

f s x c

 U n d e f i n e d J

23 TM 23 39v10 The ARM Architecture

n  When the processor is executing in ARM state:
n  All instructions are 32 bits wide
n  All instructions must be word aligned
n  Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as

instruction cannot be halfword or byte aligned).

n  When the processor is executing in Thumb state:
n  All instructions are 16 bits wide
n  All instructions must be halfword aligned
n  Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as

instruction cannot be byte aligned).

n  When the processor is executing in Jazelle state:
n  All instructions are 8 bits wide
n  Processor performs a word access to read 4 instructions at once

Program Counter (r15)

24 TM 24 39v10 The ARM Architecture

Vector Table

Exception Handling

n  When an exception occurs, the ARM:
n  Copies CPSR into SPSR_<mode>
n  Sets appropriate CPSR bits

n  Change to ARM state
n  Change to exception mode
n  Disable interrupts (if appropriate)

n  Stores the return address in LR_<mode>
n  Sets PC to vector address

n  To return, exception handler needs to:
n  Restore CPSR from SPSR_<mode>
n  Restore PC from LR_<mode>

 This can only be done in ARM state.

Vector table can be at
0xFFFF0000 on ARM720T

 and on ARM9/10 family devices

FIQ
IRQ

(Reserved)
Data Abort

Prefetch Abort
Software Interrupt

Undefined Instruction

Reset

0x1C
0x18

0x14
0x10

0x0C

0x08

0x04

0x00

25 TM 25 39v10 The ARM Architecture

Development of the
ARM Architecture

SA-110

ARM7TDMI

4T

1
Halfword
and signed
halfword /
byte support

System
mode

Thumb
instruction
set

2

4

ARM9TDMI

SA-1110

ARM720T ARM940T

Improved
ARM/Thumb
Interworking

CLZ

5TE

Saturated maths

DSP multiply-
accumulate
instructions

XScale

ARM1020E

ARM9E-S

ARM966E-S

3

Early ARM
architectures

ARM9EJ-S

5TEJ

ARM7EJ-S

ARM926EJ-S

Jazelle

Java bytecode
execution

6

ARM1136EJ-S

ARM1026EJ-S

SIMD Instructions

Multi-processing

V6 Memory
architecture (VMSA)

Unaligned data
support

26 TM 26 39v10 The ARM Architecture

Development of the
ARM Architecture

27 TM 27 39v10 The ARM Architecture

Agenda

 Introduction to ARM Ltd

 Programmers Model

n  Instruction Sets

 System Design

 Development Tools

28 TM 28 39v10 The ARM Architecture

n  ARM instructions can be made to execute conditionally by postfixing
them with the appropriate condition code field.
n  This improves code density and performance by reducing the number of

forward branch instructions.
 CMP r3,#0 CMP r3,#0

 BEQ skip ADDNE r0,r1,r2
 ADD r0,r1,r2
skip

n  By default, data processing instructions do not affect the condition code
flags but the flags can be optionally set by using “S”. CMP does not
need “S”.

 loop
 …
 SUBS r1,r1,#1
 BNE loop if Z flag clear then branch

 decrement r1 and set flags

Conditional Execution and Flags

29 TM 29 39v10 The ARM Architecture

Condition Codes

Not equal
Unsigned higher or same
Unsigned lower
Minus

Equal

Overflow
No overflow
Unsigned higher
Unsigned lower or same

Positive or Zero

Less than
Greater than
Less than or equal
Always

Greater or equal

EQ
NE
CS/HS
CC/LO

PL
VS

HI
LS
GE
LT
GT
LE
AL

MI

VC

Suffix Description

Z=0
C=1
C=0

Z=1
Flags tested

N=1
N=0
V=1
V=0
C=1 & Z=0
C=0 or Z=1
N=V
N!=V
Z=0 & N=V
Z=1 or N=!V

n  The possible condition codes are listed below:
n  Note AL is the default and does not need to be specified

30 TM 30 39v10 The ARM Architecture

Examples of conditional
execution

n  Use a sequence of several conditional instructions
 if (a==0) func(1);

 CMP r0,#0
MOVEQ r0,#1
BLEQ func

n  Set the flags, then use various condition codes
 if (a==0) x=0;
if (a>0) x=1;

 CMP r0,#0
MOVEQ r1,#0
MOVGT r1,#1

n  Use conditional compare instructions
 if (a==4 || a==10) x=0;

 CMP r0,#4
CMPNE r0,#10
MOVEQ r1,#0

31 TM 31 39v10 The ARM Architecture

n  Branch : B{<cond>} label

n  Branch with Link : BL{<cond>} subroutine_label

n  The processor core shifts the offset field left by 2 positions, sign-extends
it and adds it to the PC
n  ± 32 Mbyte range
n  How to perform longer branches?

28 31 24 0

 Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
 1 = Branch with link

23 25 27

Branch instructions

32 TM 32 39v10 The ARM Architecture

Data processing Instructions

n  Consist of :
n  Arithmetic: ADD ADC SUB SBC RSB RSC
n  Logical: AND ORR EOR BIC
n  Comparisons: CMP CMN TST TEQ
n  Data movement: MOV MVN

n  These instructions only work on registers, NOT memory.

n  Syntax:

 <Operation>{<cond>}{S} Rd, Rn, Operand2

n  Comparisons set flags only - they do not specify Rd
n  Data movement does not specify Rn

n  Second operand is sent to the ALU via barrel shifter.

33 TM 33 39v10 The ARM Architecture

The Barrel Shifter

Destination CF 0 Destination CF

LSL : Logical Left Shift ASR: Arithmetic Right Shift

Multiplication by a power of 2 Division by a power of 2,
preserving the sign bit

Destination CF ...0 Destination CF

LSR : Logical Shift Right ROR: Rotate Right

Division by a power of 2 Bit rotate with wrap around
from LSB to MSB

Destination

RRX: Rotate Right Extended

Single bit rotate with wrap around
from CF to MSB

CF

34 TM 34 39v10 The ARM Architecture

Register, optionally with shift operation
n  Shift value can be either be:

n  5 bit unsigned integer
n  Specified in bottom byte of another

register.
n  Used for multiplication by constant

Immediate value
n  8 bit number, with a range of 0-255.

n  Rotated right through even number of
positions

n  Allows increased range of 32-bit
constants to be loaded directly into
registers

Result

Operand
1

Barrel
Shifter

Operand
2

ALU

Using the Barrel Shifter:
The Second Operand

35 TM 35 39v10 The ARM Architecture

n  No ARM instruction can contain a 32 bit immediate constant
n  All ARM instructions are fixed as 32 bits long

n  The data processing instruction format has 12 bits available for operand2

n  4 bit rotate value (0-15) is multiplied by two to give range 0-30 in steps of 2

n  Rule to remember is “8-bits shifted by an even number of bit positions”.

0 7 11 8
immed_8

Shifter
ROR

rot

x2

Quick Quiz:
0xe3a004ff

MOV r0, #???

Immediate constants (1)

36 TM 36 39v10 The ARM Architecture

n  Examples:

n  The assembler converts immediate values to the rotate form:
n  MOV r0,#4096 ; uses 0x40 ror 26
n  ADD r1,r2,#0xFF0000 ; uses 0xFF ror 16

n  The bitwise complements can also be formed using MVN:
n  MOV r0, #0xFFFFFFFF ; assembles to MVN r0,#0

n  Values that cannot be generated in this way will cause an error.

0 31

ror #0

range 0-0xff000000 step 0x01000000 ror #8

range 0-0x000000ff step 0x00000001

range 0-0x000003fc step 0x00000004 ror #30

0

0

0

Immediate constants (2)

37 TM 37 39v10 The ARM Architecture

n  To allow larger constants to be loaded, the assembler offers a pseudo-
instruction:
n  LDR rd, =const

n  This will either:
n  Produce a MOV or MVN instruction to generate the value (if possible).

 or
n  Generate a LDR instruction with a PC-relative address to read the constant

from a literal pool (Constant data area embedded in the code).

n  For example
n  LDR r0,=0xFF => MOV r0,#0xFF
n  LDR r0,=0x55555555 => LDR r0,[PC,#Imm12]

 …
 …
 DCD 0x55555555

n  This is the recommended way of loading constants into a register

Loading 32 bit constants

38 TM 38 39v10 The ARM Architecture

Multiply

n  Syntax:
n  MUL{<cond>}{S} Rd, Rm, Rs Rd = Rm * Rs
n  MLA{<cond>}{S} Rd,Rm,Rs,Rn Rd = (Rm * Rs) + Rn
n  [U|S]MULL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := Rm*Rs
n  [U|S]MLAL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := (Rm*Rs)+RdHi,RdLo

n  Cycle time
n  Basic MUL instruction

n  2-5 cycles on ARM7TDMI
n  1-3 cycles on StrongARM/XScale
n  2 cycles on ARM9E/ARM102xE

n  +1 cycle for ARM9TDMI (over ARM7TDMI)
n  +1 cycle for accumulate (not on 9E though result delay is one cycle longer)
n  +1 cycle for “long”

n  Above are “general rules” - refer to the TRM for the core you are using
for the exact details

39 TM 39 39v10 The ARM Architecture

Single register data transfer

 LDR STR Word
 LDRB STRB Byte
 LDRH STRH Halfword
 LDRSB Signed byte load
 LDRSH Signed halfword load

n  Memory system must support all access sizes

n  Syntax:
n  LDR{<cond>}{<size>} Rd, <address>
n  STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB

40 TM 40 39v10 The ARM Architecture

 Address accessed

n  Address accessed by LDR/STR is specified by a base register plus an
offset

n  For word and unsigned byte accesses, offset can be
n  An unsigned 12-bit immediate value (ie 0 - 4095 bytes).

 LDR r0,[r1,#8]
n  A register, optionally shifted by an immediate value

 LDR r0,[r1,r2]
 LDR r0,[r1,r2,LSL#2]

n  This can be either added or subtracted from the base register:
 LDR r0,[r1,#-8]
 LDR r0,[r1,-r2]
 LDR r0,[r1,-r2,LSL#2]

n  For halfword and signed halfword / byte, offset can be:
n  An unsigned 8 bit immediate value (ie 0-255 bytes).
n  A register (unshifted).

n  Choice of pre-indexed or post-indexed addressing

41 TM 41 39v10 The ARM Architecture

0x5

0x5

r1
0x200 Base

Register 0x200

r0
0x5

Source
Register
for STR

Offset
12 0x20c

r1
0x200

Original
Base

Register
0x200

r0
0x5

Source
Register
for STR

Offset
12 0x20c

r1
0x20c

Updated
Base

Register

Auto-update form: STR r0,[r1,#12]!

Pre or Post Indexed Addressing?

n  Pre-indexed: STR r0,[r1,#12]

n  Post-indexed: STR r0,[r1],#12

42 TM 42 39v10 The ARM Architecture

LDM / STM operation

n  Syntax:
<LDM|STM>{<cond>}<addressing_mode> Rb{!}, <register list>

n  4 addressing modes:
 LDMIA / STMIA increment after
 LDMIB / STMIB increment before
 LDMDA / STMDA decrement after
 LDMDB / STMDB decrement before

IA

r1 Increasing
Address

r4

r0

r1
r4

r0

r1
r4

r0 r1
r4

r0

r10

IB DA DB
LDMxx r10, {r0,r1,r4}
STMxx r10, {r0,r1,r4}

Base Register (Rb)

43 TM 43 39v10 The ARM Architecture

Software Interrupt (SWI)

n  Causes an exception trap to the SWI hardware vector

n  The SWI handler can examine the SWI number to decide what operation
has been requested.

n  By using the SWI mechanism, an operating system can implement a set
of privileged operations which applications running in user mode can
request.

n  Syntax:
n  SWI{<cond>} <SWI number>

28 31 24 27 0

 Cond 1 1 1 1 SWI number (ignored by processor)

23

Condition Field

44 TM 44 39v10 The ARM Architecture

PSR Transfer Instructions

n  MRS and MSR allow contents of CPSR / SPSR to be transferred to / from
a general purpose register.

n  Syntax:
n  MRS{<cond>} Rd,<psr> ; Rd = <psr>
n  MSR{<cond>} <psr[_fields]>,Rm ; <psr[_fields]> = Rm

 where
n  <psr> = CPSR or SPSR
n  [_fields] = any combination of ‘fsxc’

n  Also an immediate form
n  MSR{<cond>} <psr_fields>,#Immediate

n  In User Mode, all bits can be read but only the condition flags (_f) can be
written.

27 31

N Z C V Q

28 6 7

I F T mode

16 23

8 15

5 4 0 24

f s x c

 U n d e f i n e d J

45 TM 45 39v10 The ARM Architecture

ARM Branches and Subroutines

n  B <label>
n  PC relative. ±32 Mbyte range.

n  BL <subroutine>
n  Stores return address in LR
n  Returning implemented by restoring the PC from LR
n  For non-leaf functions, LR will have to be stacked

STMFD sp!,
{regs,lr}

:

BL func2

:

LDMFD sp!,
{regs,pc}

func1 func2

:

:

BL func1

:

:

:

:

:

:

:

MOV pc, lr

46 TM 46 39v10 The ARM Architecture

Thumb
n  Thumb is a 16-bit instruction set

n  Optimised for code density from C code (~65% of ARM code size)
n  Improved performance from narrow memory
n  Subset of the functionality of the ARM instruction set

n  Core has additional execution state - Thumb
n  Switch between ARM and Thumb using BX instruction

0 15

31 0 ADDS r2,r2,#1

ADD r2,#1

32-bit ARM Instruction

16-bit Thumb Instruction

For most instructions generated by compiler:
n  Conditional execution is not used

n  Source and destination registers identical

n  Only Low registers used

n  Constants are of limited size

n  Inline barrel shifter not used

47 TM 47 39v10 The ARM Architecture

Agenda

 Introduction

 Programmers Model

 Instruction Sets

n  System Design

 Development Tools

48 TM 48 39v10 The ARM Architecture

Example ARM-based System

16 bit RAM

8 bit ROM

32 bit RAM

ARM
Core

I/O Peripherals

Interrupt
Controller

nFIQ nIRQ

49 TM 49 39v10 The ARM Architecture

AMBA

B
rid
ge
!

Timer!

On-chip!
RAM!

ARM!

Interrupt!
Controller!

Remap/!
Pause!

TIC!

Arbiter!

Bus Interface"External!
ROM!

External!
RAM!

Reset!

System Bus" Peripheral Bus"

n  AMBA
n  Advanced Microcontroller Bus

Architecture

n  ADK
n  Complete AMBA Design Kit

n  ACT
n  AMBA Compliance Testbench

n  PrimeCell
n  ARM’s AMBA compliant peripherals

AHB or ASB" APB"

External!
Bus!

Interface!

Decoder!

50 TM 50 39v10 The ARM Architecture

Teensy 3.1-Freescale MK20DX256

51 TM 51 39v10 The ARM Architecture

Teensy 3.1-Freescale MK20DX256

52 TM 52 39v10 The ARM Architecture

Specifications: Teensy 3.1

n  USB can be any type of device

n  Freescale MK20DX256 processor, up to 96 MHz

n  Single pushbutton programming

n  Easy to use Teensy Loader application

n  Free software development tools

n  Works with Mac OS X, Linux & Windows

n  Tiny size, perfect for many projects

n  Available with pins for solderless breadboard

n  Very low cost & low cost shipping options

53 TM 53 39v10 The ARM Architecture

ARM Cortex Family

54 TM 54 39v10 The ARM Architecture

ARM Cortex Family

55 TM 55 39v10 The ARM Architecture

ARM Cortex Family

 ARM Cortex-M4 Processor Microarchitecture

n  Backwards compatible with ARM Cortex-M3

n  New features

n  Single cycle MAC (Up to 32 x 32 + 64 -> 64)

n  DSP extensions

n  Single Precision Floating Point Unit

Freescale IP and Innovation

n  On-chip cache for instructions and data

n  Cross-Bar Switch for concurrent multi-master/slave accessing

n  On-chip DMA for CPU off-load

n  Low-leakage Wake-up Unit adds flexibility for low power operation

Architected for Digital Signal Processing

n  Motor Control - advanced algorithms, longer lifespan, power efficiency

n  Automation - high calculation and algorithm bandwidth at a low cost

n  Power management – designed for low/battery powered systems

n  Audio and Video – 5x performance improvement over software, making batteries last longer

