
1

CSE 466 1

Operating systems for embedded systems

n  Embedded operating systems
q  How do they differ from desktop operating systems?

n  Programming model
q  Process-based
q  Event-based
q  How is concurrency handled?
q  How are resource conflicts managed?

n  Programming languages
q  C/C++
q  Java/C#
q  Memory management
q  Atomicity in the presence of interrupts

CSE 466 2

Embedded Operating Systems

n  Features of all operating systems
q  Abstraction of system resources
q  Managing of system resources
q  Concurrency model
q  Launch applications

n  Desktop operating systems
q  General-purpose – all features may be needed
q  Large-scale resources – memory, disk, file systems

n  Embedded operating systems
q  Application-specific – just use features you need, save memory
q  Small-scale resources – sensors, communication ports

2

CSE 466 3

System Resources on Typical Sensor Nodes

n  Timers
n  Sensors
n  Serial port
n  Radio communications
n  Memory
n  Power management

CSE 466 4

Abstraction of System Resources

n  Create virtual components
q  E.g., multiple timers from one timer

n  Allow them to be shared by multiple threads of execution
q  E.g., two applications that want to share radio communication

n  Device drivers provide interface for resource
q  Encapsulate frequently used functions
q  Save device state (if any)
q  Manage interrupt handling

3

CSE 466 5

Very simple device driver

n  Turn LED on/off
n  Parameters:

q  port pin

n  API:
q  on(port_pin) - specifies the port pin (e.g., port D pin 3)
q  off(port_pin)

n  Interactions:
q  only if other devices want to use the same port

CSE 466 6

Simple device driver

n  Turning an LED on and off at a fixed rate
n  Parameters:

q  port pin
q  rate at which to blink LED

n  API:
q  on(port_pin, rate)

n  specifies the port pin (e.g., port D pin 3)
n  specifies the rate to use in setting up the timer (what scale?)

q  off(port_pin)
n  Internal state and functions:

q  keep track of state (on or off for a particular pin) of each pin
q  interrupt service routine to handle timer interrupt

4

CSE 466 7

Interesting interactions

n  What if other devices also need to use timer
(e.g., PWM device)?
q  timer interrupts now need to be handled differently depending on

which device’s alarm is going off

n  Benefits of special-purpose output compare peripheral
q  output compare pins used exclusively for one device
q  output compare has a separate interrupt handling routine

n  What if we don’t have output compare capability or run
out of output compare units?

CSE 466 8

Sharing timers

n  Create a new device driver for the timer unit
q  Allow other devices to ask for timer services
q  Manage timer independently so that it can service multiple requests

n  Parameters:
q  Time to wait, address to call when timer reaches that value

n  API:
q  set_timer(time_to_wait, call_back_address)

n  Set call_back_address to correspond to time+time_to_wait
n  Compute next alarm to sound and set timer
n  Update in interrupt service routine for next alarm

n  Internal state and functions:
q  How many alarms can the driver keep track of?
q  How are they organized? FIFO? priority queue?

5

CSE 466 9

Concurrency

n  Multiple programs interleaved as if parallel
n  Each program requests access to devices/services

q  e.g., timers, serial ports, etc.
n  Exclusive or concurrent access to devices

q  allow only one program at a time to access a device (e.g., serial port)
q  arbitrate multiple accesses (e.g., timer)

n  State and arbitration needed
q  keep track of state of devices and concurrent programs using resource
q  arbitrate their accesses (order, fairness, exclusivity)
q  monitors/locks (supported by primitive operations in ISA - test-and-set)

n  Interrupts
q  disabling may effect timing of programs
q  keeping enabled may cause unwanted interactions

CSE 466 10

Handling concurrency

n  Traditional operating system
q  multiple threads or processes
q  file system
q  virtual memory and paging
q  input/output (buffering between CPU, memory, and I/O devices)
q  interrupt handling (mostly with I/O devices)
q  resource allocation and arbitration
q  command interface (execution of programs)

n  Embedded operating system
q  lightweight threads
q  input/output
q  interrupt handling
q  real-time guarantees

6

CSE 466 11

Embedded operating systems

n  Lightweight threads
q  basic locks
q  fast context-switches

n  Input/output
q  API for talking to devices
q  buffering

n  Interrupt handling (with I/O devices and UI)
q  translate interrupts into events to be handled by user code
q  trigger new tasks to run (reactive)

n  Real-time issues
q  guarantee task is called at a certain rate
q  guarantee an interrupt will be handled within a certain time
q  priority or deadline driven scheduling of tasks

CSE 466 12

embedded operating
systems typically
reside in ROM (flash)
- changed rarely

Some Examples

n  Pocket PC/WindowsCE/WindowsMobile
q  PDA operating system
q  spin-off of Windows NT
q  portable to a wide variety of processors (e.g., Xscale)
q  full-featured OS modularized to only include features as needed

n  Wind River Systems VxWorks
q  one of the most popular embedded OS kernels
q  highly portable to an even wider variety of processors (tiny to huge)
q  modularized even further than the ones above (basic system under 50K)

n  TinyOS
q  Open-source development environment specifically for small sensors
q  Simple (and tiny) operating system

n  Scheduler/event model of concurrency
n  Software components for efficient modularity
n  Software encapsulation for resources of sensor networks

q  Programming language and model – nesC

7

Metrics in Real-Time Systems (1/2)

n  End-to-end latency:
q  E.g. worst-case, average-case, variance, distribution
q  Can involve multiple hops (across nodes, links, switches and

routers)
q  Behavior in the presence or absence of failures

n  Jitter
n  Throughput:

q  How many X can be processed?
q  How many messages can be transmitted?

n  Survivability:
q  How many faults can be tolerated before system failures?
q  What functionality gets compromised?

Metrics in Real-Time Systems (2/2)

n  Security:
q  Can the system’s integrity be compromised?
q  Can violations be detected?

n  Safety:
q  Is the system “safe”?

n  Can the system get into an ‘unsafe’ state? Has it been ‘certified’?
n  Maintainability:

q  How does one fix problems?
q  How does the system get upgraded?

n  Dynamism and Adaptability:
q  What happens when the system mission changes?
q  What happens when individual elements fail?
q  Can the system reconfigure itself dynamically?
q  How does the system behave after re-configuration?

8

RTOS Considerations

n  What processor(s) does it run on?
q  8-bit, 16-bit, 32-bit, …
q  Intel Pentium® Processor, PowerPC, Arm/StrongArmà Intel

Xscale®, MIPS, SuperH, …
q  IBM and Intel® Network Processors

n  What board(s) does it run on?
q  Complete software package for a particular hardware board is called

a BSP (Board Support Package)
n  What is the software environment?

q  Compilers and debuggers
q  IDE

n  Cross-compilation + symbolic debugging on target?
q  Profilers (CPU, memory)
q  Test coverage tools
q  Native simulation/emulation support?

Real-Time Operating Systems

n  Windows platforms
q  Embedded XP, Windows CE, Pocket Windows

n  VxWorks from Wind River Systems (www.windriver.com)
n  Linux variants

q  Blue Cat Linux (www.lynuxworks.com)
q  (Embedded) Red Hat Linux (www.redhat.com)
q  FSM RT-Linux (www.fsmlabs.com)
q  Monta Vista Linux (www.mvista.com)
q  TimeSys Linux (www.timesys.com)

n  LynxOS (www.lynuxworks.com)
n  QNX (www.qnx.com)
n  Solaris real-time extensions
n  TRON

q  Embedded OS specification in Japan
q  Has multiple profiles for different classes of devices

9

Common RTOS Features

Utilities
n  Bootstrapping support
n  “Headless” operation

q  Display not necessary

APIs (Application Programming Interfaces)
n  Multiple threads and/or processes

q  Fixed priority scheduling is most popular
n  Mutex/semaphore support likely with priority inheritance support
n  Inter-process communications

q  Message queues
n  Timers/clock
n  Graphics support
n  Device drivers
n  Network protocol stack

Emerging RTOS Requirements

n  Full-featured operating system
n  Support for new processors and devices
n  Support for Internet protocols and standards
n  Support for Multimedia protocols and standards
n  Support for File Systems
n  Memory protection
n  Resource protection, security
n  Development tools and libraries
n  GUI Environment

Do this with low and predictable overheads.

10

CSE 466 Wireless Sensor Networks 19

Future??? Android Layer Cake

