Operating systems for embedded systems

Embedded operating systems
o How do they differ from desktop operating systems?

Programming model

o Process-based

o Event-based

o How is concurrency handled?

o How are resource conflicts managed?
Programming languages

o C/IC++

o Java/C#

o Memory management

o Atomicity in the presence of interrupts

CSE 466

Embedded Operating Systems

Features of all operating systems
o Abstraction of system resources
o Managing of system resources

o Concurrency model

o Launch applications

Desktop operating systems
o General-purpose — all features may be needed
o Large-scale resources — memory, disk, file systems

Embedded operating systems
o Application-specific — just use features you need, save memory

o Small-scale resources — sensors, communication ports

CSE 466




System Resources on Typical Sensor Nodes

Timers

Sensors

Serial port

Radio communications
Memory

Power management

CSE 466

Abstraction of System Resources

Create virtual components

o E.g., multiple timers from one timer

Allow them to be shared by multiple threads of execution
o E.g., two applications that want to share radio communication
Device drivers provide interface for resource

Encapsulate frequently used functions

Save device state (if any)

Manage interrupt handling

[m]

O

[m]

CSE 466




Very simple device driver

Turn LED on/off
Parameters:

o port pin
API:

o on(port_pin) - specifies the port pin (e.g., port D pin 3)
o off(port_pin)

Interactions:
o only if other devices want to use the same port

CSE 466

Simple device driver

Turning an LED on and off at a fixed rate
Parameters:
o port pin
o rate at which to blink LED
API:
o on(port_pin, rate)
specifies the port pin (e.g., port D pin 3)
specifies the rate to use in setting up the timer (what scale?)
o off(port_pin)
Internal state and functions:
o keep track of state (on or off for a particular pin) of each pin
o interrupt service routine to handle timer interrupt

CSE 466

6




Interesting interactions

What if other devices also need to use timer
(e.g., PWM device)?
o timer interrupts now need to be handled differently depending on
which device’ s alarm is going off

Benefits of special-purpose output compare peripheral
o output compare pins used exclusively for one device
o output compare has a separate interrupt handling routine
What if we don’ t have output compare capability or run
out of output compare units?

CSE 466

Sharing timers

Create a new device driver for the timer unit
o Allow other devices to ask for timer services
o Manage timer independently so that it can service multiple requests
Parameters:
o Time to wait, address to call when timer reaches that value
API:
o set_timer(time_to_wait, call_back_address)
Set call_back_address to correspond to time+time_to_wait
Compute next alarm to sound and set timer
Update in interrupt service routine for next alarm
Internal state and functions:
o How many alarms can the driver keep track of?
o How are they organized? FIFO? priority queue?

CSE 466




Concurrency

CSE 466

Multiple programs interleaved as if parallel

Each program requests access to devices/services
o e.g., timers, serial ports, etc.

Exclusive or concurrent access to devices
o allow only one program at a time to access a device (e.g., serial port)
o arbitrate multiple accesses (e.g., timer)
State and arbitration needed
o keep track of state of devices and concurrent programs using resource
o arbitrate their accesses (order, fairness, exclusivity)
o monitors/locks (supported by primitive operations in ISA - test-and-set)
Interrupts
o disabling may effect timing of programs
o keeping enabled may cause unwanted interactions

Handling concurrency

Traditional operating system

I 1 5 I 5 N

multiple threads or processes

file system

virtual memory and paging

input/output (buffering between CPU, memory, and 1/O devices)
interrupt handling (mostly with 1/0 devices)

resource allocation and arbitration

command interface (execution of programs)

Embedded operating system

Q
Q
[m]
Q

CSE 466

lightweight threads
input/output

interrupt handling
real-time guarantees

10




Embedded operating systems

Lightweight threads
o basic locks
o fast context-switches
Input/output
o API for talking to devices
o buffering
Interrupt handling (with I/O devices and Ul)
o translate interrupts into events to be handled by user code
o trigger new tasks to run (reactive)
Real-time issues
o guarantee task is called at a certain rate
o guarantee an interrupt will be handled within a certain time
o priority or deadline driven scheduling of tasks

CSE 466 11

Some Examples embedded operating
systems typically
reside in ROM (flash)
Pocket PC/WindowsCE/WindowsMobile - changed rarely
o PDA operating system
o spin-off of Windows NT
o portable to a wide variety of processors (e.g., Xscale)
a full-featured OS modularized to only include features as needed
Wind River Systems VxWorks
o one of the most popular embedded OS kernels
o highly portable to an even wider variety of processors (tiny to huge)
o modularized even further than the ones above (basic system under 50K)
TinyOS
o Open-source development environment specifically for small sensors
o Simple (and tiny) operating system
Scheduler/event model of concurrency
Software components for efficient modularity
Software encapsulation for resources of sensor networks
o Programming language and model — nesC

CSE 466 12




Metrics in Real-Time Systems (1/2)

End-to-end latency:
o E.g. worst-case, average-case, variance, distribution

o Can involve multiple hops (across nodes, links, switches and
routers)

o Behavior in the presence or absence of failures

Jitter

Throughput:

o How many X can be processed?

o How many messages can be transmitted?
Survivability:

o How many faults can be tolerated before system failures?
o What functionality gets compromised?

Metrics in Real-Time Systems (2/2)

Security:
o Can the system’s integrity be compromised?
o Can violations be detected?
Safety:
o Is the system “safe”?
Can the system get into an ‘unsafe’ state? Has it been ‘certified’?
Maintainability:
o How does one fix problems?
o How does the system get upgraded?
Dynamism and Adaptability:
What happens when the system mission changes?
What happens when individual elements fail?
Can the system reconfigure itself dynamically?
How does the system behave after re-configuration?

o

0O 0 O




RTOS Considerations

What processor(s) does it run on?

o 8-bit, 16-bit, 32-bit, ...

o Intel Pentium® Processor, PowerPC, Arm/StrongArm-> Intel
Xscale®, MIPS, SuperH, ...

o IBM and Intel® Network Processors
What board(s) does it run on?
&) ComBIete software package for a particular hardware board is called
a BSP (Board Support Package)
What is the software environment?
o Compilers and debuggers
o IDE
Cross-compilation + symbolic debugging on target?
o Profilers (CPU, memory)
o Test coverage tools
o Native simulation/emulation support?

Real-Time Operating Systems

Windows platforms

o Embedded XP, Windows CE, Pocket Windows
VxWorks from Wind River Systems (www.windriver.com)
Linux variants

u Blue Cat Linux (www.lynuxworks.com)

o (Embedded) Red Hat Linux (www.redhat.com)

o FSM RT-Linux (www.fsmlabs.com)

o Monta Vista Linux (www.mvista.com)

o TimeSys Linux (www.timesys.com)

LynxOS (www.lynuxworks.com)

QNX (www.gnx.com)

Solaris real-time extensions

TRON

o Embedded OS specification in Japan

o Has multiple profiles for different classes of devices




Common RTOS Features

Utilities

Bootstrapping support
“Headless” operation
o Display not necessary

APIs (Application Programming Interfaces)

Multiple threads and/or processes

o Fixed priority scheduling is most popular

Mutex/semaphore support likely with priority inheritance support
Inter-process communications

o Message queues

Timers/clock

Graphics support

Device drivers

Network protocol stack

Emerging RTOS Requirements

Full-featured operating system

Support for new processors and devices
Support for Internet protocols and standards
Support for Multimedia protocols and standards
Support for File Systems

Memory protection

Resource protection, security

Development tools and libraries

GUI Environment




Future???

??? Android Layer Cake

APPLICATIONS

Contacts Phone

Browser

APPLICATION FRAMEWORK

Activity Manager Window

Package Manager

Surface Manager
OpenGL | ES

SGL

Display
Driver

Keypad Driver

Manager

Telephony

Resource
Manager

Manager
LIBRARIES

Media SQLite
Framework

FreeType WebKit

SSL libe

Content View
Providers

System

Location

Notification
Manager

Manager
ANDROID RUNTIME

Core Libraries

LINUX KERNEL

Camera Driver

WiFi Driver

Flash Memory Binder (IPC)
Driver Driver

Audio Power
Drivers Management

10



