
10/22/12 www.embedded.com/Home/PrintView?contentItemId=4024443

1/5www.embedded.com/Home/PrintView?contentItemId=4024443

The Goertzel Algorithm

Kevin Banks - August 28, 2002

The Goertzel Algorithm 

The Goertzel algorithm can perform tone detection using much less CPU horsepower than the
Fast Fourier Transform, but many engineers have never heard of it. This article attempts to
change that.

Most engineers are familiar with the Fast Fourier Transform (FFT) and would have little trouble using
a "canned" FFT routine to detect one or more tones in an audio signal. What many don't know,
however, is that if you only need to detect a few frequencies, a much faster method is available. It's
called the Goertzel algorithm.

Tone detection

Many applications require tone detection, such as:

DTMF (touch tone) decoding
Call progress (dial tone, busy, and so on) decoding
Frequency response measurements (sending a tone while simultaneously reading back the
result)-if you do this for a range of frequencies, the resulting frequency response curve can be
informative. For example, the frequency response curve of a telephone line tells you if any load
coils (inductors) are present on that line.

Although dedicated ICs exist for the applications above, implementing these functions in software
costs less. Unfortunately, many embedded systems don't have the horsepower to perform continuous
real-time FFTs. That's where the Goertzel algorithm comes in.

In this article, I describe what I call a basic Goertzel and an optimized Goertzel.

The basic Goertzel gives you real and imaginary frequency components as a regular Discrete Fourier
Transform (DFT) or FFT would. If you need them, magnitude and phase can then be computed from
the real/imaginary pair.

The optimized Goertzel is even faster (and simpler) than the basic Goertzel, but doesn't give you the
real and imaginary frequency components. Instead, it gives you the relative magnitude squared. You
can take the square root of this result to get the relative magnitude (if needed), but there's no way
to obtain the phase.

In this short article, I won't try to explain the theoretical background of the algorithm. I do give some
links at the end where you can find more detailed explanations. I can tell you that the algorithm
works well, having used it in all of the tone detection applications previously listed (and others).

A basic Goertzel

First a quick overview of the algorithm: some intermediate processing is done in every sample. The
actual tone detection occurs every Nth sample. (I'll talk more about N in a minute.)

As with the FFT, you work with blocks of samples. However, that doesn't mean you have to process
the data in blocks. The numerical processing is short enough to be done in the very interrupt service
routine (ISR) that is gathering the samples (if you're getting an interrupt per sample). Or, if you're
getting buffers of samples, you can go ahead and process them a batch at a time.



10/22/12 www.embedded.com/Home/PrintView?contentItemId=4024443

www.embedded.com/Home/PrintView?contentItemId=4024443

Before you can do the actual Goertzel, you must do some preliminary calculations:

1. Decide on the sampling rate.
2. Choose the block size, N.
3. Precompute one cosine and one sine term.
4. Precompute one coefficient.

These can all be precomputed once and then hardcoded in your program, saving RAM and ROM
space; or you can compute them on-the-fly.

Sampling rate

Your sampling rate may already be determined by the application. For example, in telecom
applications, it's common to use a sampling rate of 8kHz (8,000 samples per second). Alternatively,
your analog-to-digital converter (or CODEC) may be running from an external clock or crystal over
which you have no control.

If you can choose the sampling rate, the usual Nyquist rules apply: the sampling rate will have to be
at least twice your highest frequency of interest. I say "at least" because if you are detecting
multiple frequencies, it's possible that an even higher sampling frequency will give better results.
What you really want is for every frequency of interest to be an integer factor of the sampling rate.

Block size

Goertzel block size N is like the number of points in an equivalent FFT. It controls the frequency
resolution (also called bin width). For example, if your sampling rate is 8kHz and N is 100 samples,
then your bin width is 80Hz.

This would steer you towards making N as high as possible, to get the highest frequency resolution.
The catch is that the higher N gets, the longer it takes to detect each tone, simply because you
have to wait longer for all the samples to come in. For example, at 8kHz sampling, it will take 100ms
for 800 samples to be accumulated. If you're trying to detect tones of short duration, you will have
to use compatible values of N.

The third factor influencing your choice of N is the relationship between the sampling rate and the
target frequencies. Ideally you want the frequencies to be centered in their respective bins. In other
words, you want the target frequencies to be integer multiples of sample_rate/N.

The good news is that, unlike the FFT, N doesn't have to be a power of two.

Precomputed constants

Once you've selected your sampling rate and block size, it's a simple five-step process to compute
the constants you'll need during processing:

w = (2*π/N)*k
cosine = cos w
sine = sin w
coeff = 2 * cosine

For the per-sample processing you're going to need three variables. Let's call them Q0, Q1, and Q2.

Q1 is just the value of Q0 last time. Q2 is just the value of Q0 two times ago (or Q1 last time).

Q1 and Q2 must be initialized to zero at the beginning of each block of samples. For every sample,

you need to run the following three equations:



Q0 = coeff * Q1 - Q2 + sample

Q2 = Q1

Q1 = Q0

After running the per-sample equations N times, it's time to see if the tone is present or not.

real = (Q1 - Q2 * cosine)

imag = (Q2 * sine)

magnitude2 = real2 + imag2

A simple threshold test of the magnitude will tell you if the tone was present or not. Reset Q2 and Q1

to zero and start the next block.

An optimized Goertzel

The optimized Goertzel requires less computation than the basic one, at the expense of phase
information.

The per-sample processing is the same, but the end of block processing is different. Instead of
computing real and imaginary components, and then converting those into relative magnitude
squared, you directly compute the following:

magnitude2 = Q1
2 + Q2

2-Q1*Q2*coeff

This is the form of Goertzel I've used most often, and it was the first one I learned about.

Pulling it all together

Listing 1 shows a short demo program I wrote to enable you to test-drive the algorithm. The code
was written and tested using the freely available DJGPP C/C++ compiler. You can modify the
#defines near the top of the file to try out different values of N, sampling_rate, and
target_frequency.

The program does two demonstrations. In the first one, both forms of the Goertzel algorithm are used
to compute relative magnitude squared and relative magnitude for three different synthesized
signals: one below the target_frequency, one equal to the target_frequency, and one above the
target_frequency.

You'll notice that the results are nearly identical, regardless of which form of the Goertzel algorithm is
used. You'll also notice that the detector values peak near the target frequency.

In the second demonstration, a simulated frequency sweep is run, and the results of just the basic
Goertzel are shown. Again, you'll notice a clear peak in the detector output near the target
frequency. Figure 1 shows the output of the code in Listing 1.

Figure 1: Demo output

For SAMPLING_RATE = 8000.000000 N = 205 and FREQUENCY = 941.000000, k = 24 and coeff =
1.482867

For test frequency 691.000000:
real = -360.392059 imag = -45.871609
Relative magnitude squared = 131986.640625
Relative magnitude = 363.299652
Relative magnitude squared = 131986.640625
Relative magnitude = 363.299652

ftp://ftp.embedded.com/pub/2002/09banks
ftp://ftp.embedded.com/pub/2002/09banks


10/22/12 www.embedded.com/Home/PrintView?contentItemId=4024443

4/5www.embedded.com/Home/PrintView?contentItemId=4024443

For test frequency 941.000000:
real = -3727.528076 imag = -9286.238281
Relative magnitude squared = 100128688.000000
Relative magnitude = 10006.432617
Relative magnitude squared = 100128680.000000
Relative magnitude = 10006.431641

For test frequency 1191.000000:
real = 424.038116 imag = -346.308716
Relative magnitude squared = 299738.062500
Relative magnitude = 547.483398
Relative magnitude squared = 299738.062500
Relative magnitude = 547.483398

Freq= 641.0rel mag^2= 146697.87500rel mag= 383.01160

Freq= 656.0rel mag^2= 63684.62109rel mag= 252.35812

Freq= 671.0rel mag^2= 96753.92188rel mag= 311.05292

Freq= 686.0rel mag^2= 166669.90625rel mag= 408.25226

Freq= 701.0rel mag^2= 5414.02002rel mag= 73.58002

Freq= 716.0rel mag^2= 258318.37500rel mag= 508.25031

Freq= 731.0rel mag^2= 178329.68750rel mag= 422.29099

Freq= 746.0rel mag^2= 71271.88281rel mag= 266.96796

Freq= 761.0rel mag^2= 437814.90625rel mag= 661.67584

Freq= 776.0rel mag^2= 81901.81250rel mag= 286.18494

Freq= 791.0rel mag^2= 468060.31250rel mag= 684.14935

Freq= 806.0rel mag^2= 623345.56250rel mag= 789.52234

Freq= 821.0rel mag^2= 18701.58984rel mag= 136.75375

Freq= 836.0rel mag^2= 1434181.62500rel mag= 1197.57324

Freq= 851.0rel mag^2= 694211.75000rel mag= 833.19373

Freq= 866.0rel mag^2= 1120359.50000rel mag= 1058.47034

Freq= 881.0rel mag^2= 4626623.00000rel mag= 2150.95874

Freq= 896.0rel mag^2= 160420.43750rel mag= 400.52521

Freq= 911.0rel mag^2= 19374364.00000rel mag= 4401.63184

Freq= 926.0rel mag^2= 81229848.00000rel mag= 9012.76074

Freq= 941.0rel mag^2= 100128688.00000rel mag= 10006.43262

Freq= 956.0rel mag^2= 43694608.00000rel mag= 6610.18994

Freq= 971.0rel mag^2= 1793435.75000rel mag= 1339.19226

Freq= 986.0rel mag^2= 3519388.50000rel mag= 1876.00330

Freq= 1001.0rel mag^2= 3318844.50000rel mag= 1821.76965

Freq= 1016.0rel mag^2= 27707.98828rel mag= 166.45717

Freq= 1031.0rel mag^2= 1749922.62500rel mag= 1322.84644

Freq= 1046.0rel mag^2= 478859.28125rel mag= 691.99658

Freq= 1061.0rel mag^2= 284255.81250rel mag= 533.15643

Freq= 1076.0rel mag^2= 898392.93750rel mag= 947.83594

Freq= 1091.0rel mag^2= 11303.36035rel mag= 106.31726

Freq= 1106.0rel mag^2= 420975.65625rel mag= 648.82635

Freq= 1121.0rel mag^2= 325753.78125rel mag= 570.74841

Freq= 1136.0rel mag^2= 36595.78906rel mag= 191.30026

Freq= 1151.0rel mag^2= 410926.06250rel mag= 641.03516

Freq= 1166.0rel mag^2= 45246.58594rel mag= 212.71245

Freq= 1181.0rel mag^2= 119967.59375rel mag= 346.36337

Freq= 1196.0rel mag^2= 250361.39062rel mag= 500.36127



Freq= 1211.0rel mag^2= 1758.44263rel mag= 41.93379

Freq= 1226.0rel mag^2= 190195.57812rel mag= 436.11417

Freq= 1241.0rel mag^2= 74192.23438rel mag= 272.38251

To avoid false detections in production code, you will probably want to qualify the raw detector
readings by using a debouncing technique, such as requiring multiple detections in a row before
reporting a tone's presence to the user.

As you can see, the Goertzel algorithm deserves to be added to your signal processing toolbox.

Kevin Banks has been developing embedded systems for 19 years, as a consultant and as an
employee at companies including SCI, TxPORT, DiscoveryCom, and Nokia. Currently he is back in
consulting mode. He can be reached at kbanks@hiwaay.net.

References

Here are some links to other resources you may find useful:

www.numerix-dsp.com/goertzel.html

ptolemy.eecs.berkeley.edu/papers/96/dtmf_ict/www/node3.html

www.analogdevices.com/library/dspManuals/Using_ADSP-2100_Vol1_books.html

www.analogdevices.com/library/dspManuals/pdf/Volume1/Chapter_14.pdf

www.analogdevices.com/library/dspManuals/Using_ADSP-2100_Vol2_books.html

www.analogdevices.com/library/dspManuals/pdf/2100Chapter_8.pdf

www.delorie.com/djgpp/

Return to the September 2002 Table of Contents 

mailto:kbanks@hiwaay.net
http://www.numerix-dsp.com/goertzel.html
http://ptolemy.eecs.berkeley.edu/papers/96/
http://www.analogdevices.com/library/dspManuals/Using_ADSP-2100_Vol1_books.html
http://www.analogdevices.com/library/dspManuals/pdf/Volume1/Chapter_14.pdf
http://www.analogdevices.com/library/dspManuals/Using_ADSP-2100_Vol2_books.html
http://www.analogdevices.com/library/dspManuals/pdf/2100Chapter_8.pdf
http://www.delorie.com/djgpp/
http://www.embedded.com/2002/0209

