
2/23/10

1

Android 101

Introduction to Android

•  Installing the SDK
•  Introduction to an android Activity/

App.
•  Layouts
•  The manifest.xml
•  Intro. to Intents

2/23/10

2

Most important Websites

  SDK :
  http://developer.android.com

  Android source:
  http://source.android.com/

Additional Website

  Google groups:
  http://groups.google.com

  Android Developers
  android-platform

2/23/10

3

Supported Operating Systems

  Linux (tested on Linux Ubuntu Dapper
Drake)

  Windows XP (32-bit) or Vista (32- or 64-bit)

  Mac OS X 10.4.8 or later (x86 only)

Pre install Requirements

  Eclipse 3.3 (Europa), 3.4 (Ganymede)
  Eclipse Classic IDE package is not

supported.
  JDK 5 or JDK 6 (JRE alone is not

sufficient)
  Apache Ant 1.6.5 or later for Linux and

Mac, 1.7 or later for Windows???

2/23/10

4

Install SDK
  http://developer.android.com/sdk/index.html

  Example I created directory called android...
  /Users/bruce/android/android-sdk-mac_86

Setup development env.
  On Linux, edit your ~/.bash_profile or ~/.bashrc file. Look

for a line that sets the PATH environment variable and
add the full path to the tools/ directory to it. If you don't
see a line setting the path, you can add one: export
PATH=${PATH}:<your_sdk_dir>/tools

  On a Mac, look in your home directory for .bash_profile
and proceed as for Linux. You can create
the .bash_profile if you haven't already set one up on
your machine.

  On Windows, right-click on My Computer, and select
Properties. Under the Advanced tab, hit the Environment
Variables button, and in the dialog that comes up, double-
click on Path (under System Variables). Add the full path
to the tools/ directory to the path.

2/23/10

5

Test your setup

  In the command window type adb
  You should see the following
  Android Debug Bridge version 1.0.20

  Now we're ready for eclipse!

Install Eclipse

  http://www.eclipse.org/downloads/

2/23/10

6

Eclipse 3.4 (Ganymede) setup

  After you install eclipse
  Start Eclipse, then select Help > Software Updates....
  In the dialog that appears, click the Available Software

tab.
  Click Add Site...
  Enter the Location:
  https://dl-ssl.google.com/android/eclipse/

  If you have trouble aqcuiring the plugin, try using
"http" in the Location URL, instead of "https" (https is
preferred for security reasons).

  Click OK.

Eclipse 3.4 setup
  Back in the Available Software view, you should

see the plugin listed by the URL, with "Developer
Tools" nested within it. Select the checkbox next
to Developer Tools and click Install...

  On the subsequent Install window, "Android
DDMS" and "Android Development Tools" should
both be checked. Click Next.

  Read and accept the license agreement, then
click Finish.

  Restart Eclipse.

2/23/10

7

Introduction to the Android
Environment

  Start Eclipse.
  Click File->New->android project
  Click Create project from existing
  Location : <SDK>platforms/

android-1.5/samples/NotePad
  Click Android 1.5 If its not

selected
  Click Finish
  Project is created

Compile Android Example

2/23/10

8

Starting the emulator
  Click Run->Run
  Select Android app click ok

Emulator will Start

2/23/10

9

Running your application

  Once the application
launches select menu.

  Click on add note

  Thats It.....

Introduction to the Android OS

2/23/10

10

What Android is not

•  A Java ME implementation
•  An application Layer (UIQ or S60)
•  A handset
•  Google’s Answer to iPhone…
•  … nor a way of locking people into Google

apps.

Openness of Android
•  “The first truly open and comprehensive platform for

mobile devices…”
•  Android Components:

–  A hrdw. reference design describing the min.
requirements to support the stack

–  Linux Kernel
–  Open Source Libraries
–  Run time environment (Dalvik)
–  Application Framework
–  A user interface framework
–  Set of pre-installed applications (a fully functioning Smart

Phone)
–  Software devel. kit (Tools, plug-ins, and documentation)

2/23/10

11

Android Applications

•  An eMail client (GMail)
•  SMS management app.
•  PIM (Google calendar, etc)
•  Google Maps App.
•  WebKit based browser
•  Instant Messaging Client (GChat, AIM, MSN)
•  Music Player and Picture viewer
•  Android Market Place

Android SDK Features
•  Open platform (no fees, no licensing)
•  Wi-fi hrdw. acess
•  Full comm. stack (GSM, EDGE, 3G, Bluetooth)
•  GPS
•  Multimedia (playback and recording of audio, video, etc)
•  APIs to accel. And compass hrdwr.
•  IPC messaging
•  Share Data stores
•  Web-Kit browser
•  P2P via Google Talk
•  Eventually hwrd. accel. 3D graphics (Open GL ES)
•  Media Libraries (Licensed for MP3, etc…)
•  And open Application Framework (reuse and replacement)

2/23/10

12

Platform Features

•  Agnostic Access to Hardware (GPS,
accel., 3D, Geocoding, etc.)

•  Background services
•  SQLite DB
•  Share data and Interapp. Communication
•  P2P service with Google Talk
•  Extensive Media Support
•  Optimized Mem. and Process Mngmnt.

Android Layer Cake
H

A
L

C
O

R
E A

N
D

R
O

ID
 +

 LIB
R

A
R

IES

HAL

Mul$media	 /	 Graphics	 	

TCMD	

MBM	 /	 Boot	 loader	

CONNECTIVITY	
USB	

BLUETOOTH	
Wi-‐Fi	

CONNECTIVITY	
MODEM	 +	 RIL	

K
ER

N
EL+

B
SP

GPS	

2/23/10

13

Linux Kernel

•  Works as a HAL
•  Device drivers
•  Memory management
•  Process management
•  Networking

Libraries

•  C/C++ libraries
•  Interface through Java
•  Surface manager – Handling UI Windows
•  2D and 3D graphics
•  Media codecs, SQLite, Browser engine

2/23/10

14

Android Runtime

•  Dalvik VM
– Dex files
– Compact and efficient than class files
– Limited memory and battery power

•  Core Libraries
– Java 5 Std edition
– Collections, I/O etc…

Application Framework

•  API interface
•  Activity manager – manages application

life cycle.

2/23/10

15

Applications

•  Built in and user apps
•  Can replace built in apps

The Android Activity

2/23/10

16

Activities and Tasks

•  Dan Morrill’s definition:
– An Activity is a “molecule”: a discrete chunk of

functionality
– A task is a collection of Activities
– A “process” is a standard Linux process

Activities

•  Typically correspond to one UI screen
•  But, they can:

– Be faceless
– Be in a floating window
– Return a value

2/23/10

17

IntentReceivers

•  Components that respond to broadcast
‘Intents’

•  Way to respond to external notification or
alarms

•  Apps can invent and broadcast their own
Intent

Intents

•  Think of Intents as a verb and object; a
description of what you want done
– E.g. VIEW, CALL, PLAY etc..

•  System matches Intent with Activity that
can best provide the service

•  Activities and IntentReceivers describe
what Intents they can service

2/23/10

18

Intents

GMail

Contacts

Home

Blogger

Chat
Client component makes a
request for a specific action

“Pick photo”
Picasa

System picks best
component for that action

New components can use
existing functionality

Blogger

Photo Gallery

Services

•  Faceless components that run in the
background
– E.g. music player, network download etc…

2/23/10

19

ContentProviders

•  Enables sharing of data across
applications
– E.g. address book, photo gallery

•  Provides uniform APIs for:
– querying
– delete, update and insert.

•  Content is represented by URI and MIME
type

Activities vs Tasks (Apps)
•  A concrete class in the

API
•  An encapsulation of a

particular operation
•  They run in the process

of the .APK which
installed them

•  Optionally associated
with a window (UI)

•  An execution Context

•  More of a notion than a
concrete API entity

•  A collection of related
Activities

•  Capable of spanning
multiple processes

•  Associated with their own
UI history stack

•  What users on other
platforms know as
“applications”

2/23/10

20

Process Basics

•  How does it all of this relate to the Unix
roots of Android?
– Android process == Linux process (w/ its own

unique UID)
– By default, 1 process per APK
– By default, 1 thread per process
– Most components interleave events into the

main thread

Application Lifecycle

•  Application run in their own processes
(VM, PID)

•  Processes are started and stopped as
needed to run an application's
components

•  Processes may be killed to reclaim
resources

2/23/10

21

Android Activity Life Cycle

•  Activities have
several states

•  Lifecycle methods are
called on transitions

•  You typically don’t
need to use them all,
but they are there

Life Cycle example (Child Activity)

•  Call sequence:
– onCreate()
– onStart()
– onResume()
– onFreeze()
– onPause()
– onStop()
– onRestart()
– onStart(), onResume(), ...

2/23/10

22

Android Application Building Blocks
•  Activities: Building block of the UI. Every screen in your application will be

an extension of the Activity class. You can think of an activity as being
analogous to a window or dialog in a desktop environment.

•  Services: Headless (non-UI) application that runs in the background. They
are designed to keep running independent of any activity.

•  Content Providers: Provide a level of abstraction for any data stored on
the device that is accessible by multiple applications.

•  Intents: A simple message passing framework. Using intents you can
broadcast messages system-wide or to a target Activity or Service.

•  Broadcast Receivers: Intent broadcast consumers. By registering a
broadcast receiver your application an listen for broadcast Intents that
match specific filter criteria.

•  Notifications: User notification framework. Let you signal users without
interrupting their current activity. For instance an incoming call can alert you
with flashing lights, making sounds, or showing a dialog.

Hello World!!
1. Create a new Android Project

–  Select File > New >
Android Project

2. Fill out the project details
–  Enter HelloWorld for Project

Name
–  Select “Create new project

in workspace”
–  Enter HelloWorld in App

name.
–  Enter

com.uwandroids.HelloWorld
in Package Name

–  Enter HelloWorld in Activity
name (and yes we want to
create an Activity)

2/23/10

23

Project Properties
Project Name This is the name of the directory or folder on your computer

that you want to contain the project.
Package Name This is the package namespace (following the same rules as

for packages in the Java programming language) that you
want all your source code to reside under. This also sets the
package name under which the stub Activity will be
generated. The package name you use in your application
must be unique across all packages installed on the system;
for this reason, it's very important to use a standard domain-
style package for your applications. In the example above,
we used the package domain "com.chicagoandroids".

Activity Name This is the name for the class stub that will be generated by
the plug-in. This will be a subclass of Android's Activity class.
An Activity is simply a class that can run and do work. It can
create a UI if it chooses, but it doesn't need to.

Application Name This is the human-readable title for your application.

The Activity/App. Layout

2/23/10

24

The Automatic* Portions…

•  Left: Manifest (* not that automatic)
•  Right: R class and the android library (no need to touch)

The Automatic* Portions…

•  Left: Source directories, where your classes go…
•  Right: Resources (this is what gets automatically build

into the R class)

2/23/10

25

A word about the emulator
•  You can create different

Run configurations for
different target devices.

•  It is possible to target
different resolutions
(HVGA, HVGA-P, HVGA-
L, etc)

•  Network speed and
latency, etc.

•  Use the AVD manager
and the ‘Run->Run
configurations’ to
manipulate

Run hello world

•  Select the root of the
project.

•  Click in the ‘green
play icon’.

•  Pick Android Project
•  That will get the

emulator going…

2/23/10

26

Activity Layouts

•  Where do they live?
•  Why? Dynamic instantiation is possible,

but it is discourage (compile vs dynamic).
•  What are they? An XML-based layout is a

specification of widget’s relationships to
each other encoded in XML.

Layout’s most basic example…
<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/button"
 android:text=""
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"/>

In this example Button is the root element…but a container would be
more typical.

Containers pour a collection of widegets (and maybe child containers)
into a specific layout. More on that in the future

2/23/10

27

Intents (The Basics)

So, what can you Intent to do?

Intents are system messages that notify
applications of various events:
–  Activity events (launch app, press button)
–  Hardware state changes (acceleration change, screen

off, etc)
–  Incoming data (Receiving call, SMS arrived)

You can also create your own to launch
applications, etc.
–  Inter-activity communications (open an app when you

get to a location, etc)

2/23/10

28

Intent most basic example…
public class NowRedux extends Activity
implements View.OnClickListener {
Button btn;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);

 btn=(Button)findViewById(R.id.button);
 btn.setOnClickListener(this);
 updateTime();
 }

 public void onClick(View view) {
 updateTime();
 }

 private void updateTime() {
 btn.setText(new Date().toString());
 }

}

The Application’s Manifest

2/23/10

29

The manifest

•  Declares the permissions the application will
need (uses-permission)

•  Declare permissions that activities or services
might require to use your app (permission)

•  Provides instrumentations elements
(instrumentation)

•  Defines the guts of the application
•  Provides hooks to connect to optional Android

components such as mapping (uses-library)

Default AndroidManifest.xml
•  One application node. Application properties include icon and application label in

home screen.
•  One Activity node. Activity name is abbreviated to .Sample. Tells Android which Java

class to load. The activity label is the title for that activity in the titlebar.
•  Intent-filter tags specify which Intents launch the Activity. In order for an application

to be available from the launcher it must include an Intent Filter listening for the MAIN
action and the LAUNCHER category.

<manifest xmlns:android-http://schemas.android.com/apk/res/android
 package=“com.motorola.Sample”>

 <application android:icon="@drawable/icon“
 android:label="@string/app_name">

 <activity android:name=".Sample"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

2/23/10

30

Android Manifest (cont)
<manifest xmlns:android-http://schemas.android.com/apk/res/android

 package=“com.mydomain.myapp”>

 <application android:icon=“@drawable/icon”
 android:theme=“@style/my_theme”>

 <activity android:name=“.MyActiv” android:label=“@string/app_name”>
 <intent-filter> . . . </intent-filter>
 </activity>

 <service android:enables=“true” android:name=“MyService”>
 <intent-filter> . . . </intent-filter>
 </service>

 <provider android:permission=“com.paad.MY_PERMISSION” . . .>
 </provider>

 <receiver android:enabled=“true”
 android:label=“My Broadcast Receiver”
 android:name=“.MyBroadcastReceiver”>
 </receiver>
 </application>

</manifest>

Android Manifest (cont)
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bikerolas"
 android:versionCode="30"
 android:versionName="1.2">
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <uses-permission android:name="android.permission.ACCESS_LOCATION />
 <uses-permission android:name="android.permission.ACCESS_GPS" />
 <uses-permission android:name="android.permission. ACCESS_CELL_ID />

 <application android:icon="@drawable/flingicn1" android:label="@string/app_name" android:debuggable="false">
 <activity android:name=".Fling"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
<service android:name=".FlingService" />
<receiver android:name=".FlingServiceManager"

android:permission="android.permission.RECEIVE_BOOT_COMPLETED">
<intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
</intent-filter>
</receiver>
</application>

<uses-sdk android:minSdkVersion="2"></uses-sdk>
</manifest>

2/23/10

31

Citation

•  This presentation contains references from the
following sources:
–  The Busy Coder’s Guide to Android Development (by

Mark L. Murphy)
–  Inside the Android Application Framework (by Dan

Morrill)
http://sites.google.com/site/io/inside-the-android-
application-framework

–  Dalvik VM Internal (by Dan Bornstein)
http://sites.google.com/site/io/dalvik-vm-internals

