
1

CSE 466 Wireless Sensor Networks 1

Operating systems for embedded systems

  Embedded operating systems
  How do they differ from desktop operating systems?

  Programming model
  Process-based
  Event-based
  How is concurrency handled?
  How are resource conflicts managed?

  Programming languages
  C/C++
  Java/C#
  Memory management
  Atomicity in the presence of interrupts

CSE 466 Wireless Sensor Networks 2

Embedded Operating Systems

  Features of all operating systems
  Abstraction of system resources
  Managing of system resources
  Concurrency model
  Launch applications

  Desktop operating systems
  General-purpose – all features may be needed
  Large-scale resources – memory, disk, file systems

  Embedded operating systems
  Application-specific – just use features you need, save memory
  Small-scale resources – sensors, communication ports

2

CSE 466 Wireless Sensor Networks 3

System Resources on Typical Sensor Nodes

  Timers
  Sensors
  Serial port
  Radio communications
  Memory
  Power management

CSE 466 Wireless Sensor Networks 4

Abstraction of System Resources

  Create virtual components
  E.g., multiple timers from one timer

  Allow them to be shared by multiple threads of execution
  E.g., two applications that want to share radio communication

  Device drivers provide interface for resource
  Encapsulate frequently used functions
  Save device state (if any)
  Manage interrupt handling

3

CSE 466 Wireless Sensor Networks 5

Very simple device driver

  Turn LED on/off
  Parameters:

  port pin

  API:
  on(port_pin) - specifies the port pin (e.g., port D pin 3)
  off(port_pin)

  Interactions:
  only if other devices want to use the same port

CSE 466 Wireless Sensor Networks 6

Simple device driver

  Turning an LED on and off at a fixed rate
  Parameters:

  port pin
  rate at which to blink LED

  API:
  on(port_pin, rate)

  specifies the port pin (e.g., port D pin 3)
  specifies the rate to use in setting up the timer (what scale?)

  off(port_pin)
  Internal state and functions:

  keep track of state (on or off for a particular pin) of each pin
  interrupt service routine to handle timer interrupt

4

CSE 466 Wireless Sensor Networks 7

Interesting interactions

  What if other devices also need to use timer
(e.g., PWM device)?
  timer interrupts now need to be handled differently depending on

which device’s alarm is going off

  Benefits of special-purpose output compare peripheral
  output compare pins used exclusively for one device
  output compare has a separate interrupt handling routine

  What if we don’t have output compare capability or run
out of output compare units?

CSE 466 Wireless Sensor Networks 8

Sharing timers

  Create a new device driver for the timer unit
  Allow other devices to ask for timer services
  Manage timer independently so that it can service multiple requests

  Parameters:
  Time to wait, address to call when timer reaches that value

  API:
  set_timer(time_to_wait, call_back_address)

  Set call_back_address to correspond to time+time_to_wait
  Compute next alarm to sound and set timer
  Update in interrupt service routine for next alarm

  Internal state and functions:
  How many alarms can the driver keep track of?
  How are they organized? FIFO? priority queue?

5

CSE 466 Wireless Sensor Networks 9

Concurrency

  Multiple programs interleaved as if parallel
  Each program requests access to devices/services

  e.g., timers, serial ports, etc.
  Exclusive or concurrent access to devices

  allow only one program at a time to access a device (e.g., serial port)
  arbitrate multiple accesses (e.g., timer)

  State and arbitration needed
  keep track of state of devices and concurrent programs using resource
  arbitrate their accesses (order, fairness, exclusivity)
  monitors/locks (supported by primitive operations in ISA - test-and-set)

  Interrupts
  disabling may effect timing of programs
  keeping enabled may cause unwanted interactions

CSE 466 Wireless Sensor Networks 10

Handling concurrency

  Traditional operating system
  multiple threads or processes
  file system
  virtual memory and paging
  input/output (buffering between CPU, memory, and I/O devices)
  interrupt handling (mostly with I/O devices)
  resource allocation and arbitration
  command interface (execution of programs)

  Embedded operating system
  lightweight threads
  input/output
  interrupt handling
  real-time guarantees

6

CSE 466 Wireless Sensor Networks 11

Embedded operating systems

  Lightweight threads
  basic locks
  fast context-switches

  Input/output
  API for talking to devices
  buffering

  Interrupt handling (with I/O devices and UI)
  translate interrupts into events to be handled by user code
  trigger new tasks to run (reactive)

  Real-time issues
  guarantee task is called at a certain rate
  guarantee an interrupt will be handled within a certain time
  priority or deadline driven scheduling of tasks

CSE 466 Wireless Sensor Networks 12

embedded operating
systems typically
reside in ROM (flash)
- changed rarely

Some Examples

  Pocket PC/WindowsCE/WindowsMobile
  PDA operating system
  spin-off of Windows NT
  portable to a wide variety of processors (e.g., Xscale)
  full-featured OS modularized to only include features as needed

  Wind River Systems VxWorks
  one of the most popular embedded OS kernels
  highly portable to an even wider variety of processors (tiny to huge)
  modularized even further than the ones above (basic system under 50K)

  TinyOS
  Open-source development environment specificall for small sensors
  Simple (and tiny) operating system

  Scheduler/event model of concurrency
  Software components for efficient modularity
  Software encapsulation for resources of sensor networks

  Programming language and model – nesC

7

Metrics in Real-Time Systems (1/2)

  End-to-end latency:
  E.g. worst-case, average-case, variance, distribution
  Can involve multiple hops (across nodes, links, switches and

routers)
  Behavior in the presence or absence of failures

  Jitter
  Throughput:

  How many X can be processed?
  How many messages can be transmitted?

  Survivability:
  How many faults can be tolerated before system failures?
  What functionality gets compromised?

Metrics in Real-Time Systems (2/2)

  Security:
  Can the system’s integrity be compromised?
  Can violations be detected?

  Safety:
  Is the system “safe”?

  Can the system get into an ‘unsafe’ state? Has it been ‘certified’?
  Maintainability:

  How does one fix problems?
  How does the system get upgraded?

  Dynamism and Adaptability:
  What happens when the system mission changes?
  What happens when individual elements fail?
  Can the system reconfigure itself dynamically?
  How does the system behave after re-configuration?

8

RTOS Considerations

  What processor(s) does it run on?
  8-bit, 16-bit, 32-bit, …
  Intel Pentium® Processor, PowerPC, Arm/StrongArm Intel

Xscale®, MIPS, SuperH, …
  IBM and Intel® Network Processors

  What board(s) does it run on?
  Complete software package for a particular hardware board is called

a BSP (Board Support Package)
  What is the software environment?

  Compilers and debuggers
  IDE

  Cross-compilation + symbolic debugging on target?
  Profilers (CPU, memory)
  Test coverage tools
  Native simulation/emulation support?

Real-Time Operating Systems

  Windows platforms
  Embedded XP, Windows CE, Pocket Windows

  VxWorks from Wind River Systems (www.windriver.com)
  Linux variants

  Blue Cat Linux (www.lynuxworks.com)
  (Embedded) Red Hat Linux (www.redhat.com)
  FSM RT-Linux (www.fsmlabs.com)
  Monta Vista Linux (www.mvista.com)
  TimeSys Linux (www.timesys.com)

  LynxOS (www.lynuxworks.com)
  QNX (www.qnx.com)
  Solaris real-time extensions
  TRON

  Embedded OS specification in Japan
  Has multiple profiles for different classes of devices

9

Common RTOS Features

Utilities
  Bootstrapping support
  “Headless” operation

  Display not necessary

APIs (Application Programming Interfaces)
  Multiple threads and/or processes

  Fixed priority scheduling is most popular
  Mutex/semaphore support likely with priority inheritance support
  Inter-process communications

  Message queues
  Timers/clock
  Graphics support
  Device drivers
  Network protocol stack

Emerging RTOS Requirements

  Full-featured operating system
  Support for new processors and devices
  Support for Internet protocols and standards
  Support for Multimedia protocols and standards
  Support for File Systems
  Memory protection
  Resource protection, security
  Development tools and libraries
  GUI Environment

Do this with low and predictable overheads.

10

CSE 466 Wireless Sensor Networks 19

Future??? Android Layer Cake

