
CSE 466 Communication 1

Serial case studies

  RS-232 (IEEE standard)
  serial protocol for point-to-point, low-cost, low-speed applications for PCs

  I2C (Philips) TWI (Atmel)
  up to 400Kbits/sec, serial bus for connecting multiple components

  Ethernet (popularized by Xerox)
  most popular local area network protocol with distributed arbitration

  IrDA (Infrared Data Association)
  up to 115kbps wireless serial (Fast IrDA up to 4Mbs)

  Firewire (Apple – now IEEE1394)
  12.5-50Mbytes/sec, consumer electronics (video cameras, TVs, audio, etc.)

  SPI (Motorola)
  10Mbits/sec, commonly used for microcontroller to peripheral connections

  USB (Intel – followed by USB-2)
  12-480Mbits/sec, isochronous transfer, desktop devices

  Bluetooth (Ericsson – cable replacement)
  700Kbits/sec, multiple portable devices, special support for audio

CSE 466 Communication 2

RS-232 (standard serial line)

  Point-to-point, full-duplex
  Synchronous or asynchronous
  Flow control
  Variable baud (bit) rates
  Cheap connections (low-quality and few wires)
  Variations: parity bit; 1, 1.5, or 2 stop bits

start
bit

8 data
bits

parity
bit

stop
bit

CSE 466 Communication 3

all wires active low

"0" = -12v, "1" = 12v

special driver chips that
generate ±12v from 5v

RS-232 wires

  TxD – transmit data
  TxC – transmit clock
  RTS – request to send
  CTS – clear to send

  RxD – receive data
  RxC – receive clock
  DSR – data set ready
  DTR – data terminal ready

  Ground

CSE 466 Communication 4

Transfer modes

  Synchronous
  clock signal wire is used by both receiver and sender to sample data

  Asynchronous
  no clock signal in common
  data must be oversampled (16x is typical) to find bit boundaries

  Flow control
  handshaking signals to control rate of transfer

CSE 466 Communication 5

+Vcc

device
1

device
2

device
n

SCL

SDA

Inter-Integrated Circuit Bus (I2C)

  Modular connections on a printed circuit board
  Multi-point connections (needs addressing)
  Synchronous transfer (but adapts to slowest device)
  Similar to Controller Area Network (CAN) protocol

used in automotive applications
  Similar to TWI (Two-Wire Interface) on ATmegas

CSE 466 Communication 6

SDA

SCL

START STOP

Serial data format

  SDA going low while SCL high signals start of data
  SDA going high while SCL high signals end of data
  SDA can change when SCL low
  SCL high (after start and before end) signals that a data bit can be read

CSE 466 Communication 7

SDA

SCL

1 3 4 5 6 7 8 ack 2

Byte transfer

  Byte followed by a 1 bit acknowledge from receiver
  Open-collector wires

  sender allows SDA to rise
  receiver pulls low to acknowledge after 8 bits

  Multi-byte transfers
  first byte contains address of receiver
  all devices check address to determine if following data is for them
  second byte usually contains address of sender

CSE 466 Communication 8

clk 1

clk 2

SCL

Clock synchronization

  Synchronous data transfer with variable speed devices
  go as fast as the slowest device involved in transfer

  Each device looks at the SCL line as an input as well as driving it
  if clock stays low even when being driven high then another device needs

more time, so wait for it to finish before continuing
  rising clock edges are synchronized

CSE 466 Communication 9

Arbitration

  Devices can start transmitting at any time
  wait until lines are both high for some minimum time
  multiple devices may start together - clocks will be synchronized

  All senders will think they are sending data
  possibly slowed down by receiver (or another sender)
  each sender keeps watching SDA - if ever different

(driving high, but its really low) then there is another driver
  sender that detects difference gets off the bus and aborts message

  Device priority given to devices with early 0s in their address
  00….111 has higher priority than 01…111

CSE 466 Communication 10

Inter-Integrated Circuit Bus (I2C)

  Supports data transfers from 0 to 400KHz
  Philips (and others) provide many devices

  microcontrollers with built-in interface
  A/D and D/A converters
  parallel I/O ports
  memory modules
  LCD drivers
  real-time clock/calendars
  DTMF decoders
  frequency synthesizers
  video/audio processors

CSE 466 Communication 11

Ethernet (Xerox local area network)

  Local area network
  up to 1024 stations
  up to 2.8 km distance
  10Mbits/sec serially on shielded co-axial cable
  1.5Mbits/sec on twisted pair of copper pair

  Developed by Xerox in late 70s
  still most common LAN right now
  being displaced by fiber-optics (can't handle video/audio rates or make

required service guarantees)
  High-level protocols to ensure reliable data transmission
  CSMA-CD: carrier sense multiple access with collision detection

CSE 466 Communication 12

Transmit
and

Receive
Electrical
Interface

Serial
Encode

and
Decode

Link
Management

Data
Encapsulation

Physical Channel Data-link Controller

Ethernet Controller Board Transceiver

Host-specific Interface To
Host

Ethernet
Cable

Physical Layer

Data-link Layer

Transport Layer

Client Layer

parallel data serial data

Ethernet layered organization

  Physical and data-link layers are our focus

CSE 466 Communication 13

0 1 0 1 0 0 1 1 0

Serial data format

  Manchester encoding
  signal and clock on one wire (XORed together)
  "0" = low-going transition
  "1" = high-going transition

  Extra transitions between 00 and 11 need to be filtered
  preamble at beginning of data packet contains alternating 1s and 0s
  allows receivers to get used to where important transitions should be and

ignore extra ones (this is how synchronization is achieved)
  preamble is 48 bits long: 10101. . . 01011

CSE 466 Communication 14

preamble (6 bytes)

destination address (6 bytes)

source address (6 bytes)

type (2 bytes)

data (46-1500 bytes)

checksum (4 bytes) compute from data

Ethernet packet

  Packets size: 64 to 1518 bytes + 6 bytes of preamble

CSE 466 Communication 15

Arbitration

  Wait for line to be quiet for a while then transmit
  detect collision
  average value on wire should be exactly between 1 and 0
  if not, then two transmitters are trying to transmit data

  If collision, stop transmitting
  wait a random amount of time and try again
  if collide again, pick a random number

from a larger range (2x) and try again
  Exponential backoff on collision detection
  Try up to 16 times before reporting failure

CSE 466 Communication 16

Extending Ethernet

  Segments, repeaters, and gateways
  segment: a single cable
  repeater: transfers all messages on one segment to another and vice-versa
  gateway: selectively forwards messages to other segments and helps

isolate traffic

Segment

Repeater

Gateway

CSE 466 Communication 17

Serial Peripheral Interface

  Common serial interface on many microcontrollers

  Simple 8-bit exchange between two devices
  Master initiates transfer and generates clock signal
  Slave device selected by master

  One-byte at a time transfer
  Data protocols are defined by application
  Must be in agreement across devices

CSE 466 Communication 18

SPI Block Diagram

  8-bits transferred in each direction every time
  Master generates clock
  Shift enable used to select one of many slaves

CSE 466 Communication 19

SPI on the ATmega16

  Prescaler for
clock rate

  Interrupt on
receive and on
send complete

  Automatically
generates SS

CSE 466 Communication 20

SPI Registers

CSE 466 Communication 21

Using SPI as a Master

void SPI_MasterInit(void)
{
 /* Set MOSI and SCK output, all others input */
 DDRB = _BV(DD_MOSI) | _BV(DD_SCK);
 /* Enable SPI, Master, set clock rate fck/16 */
 SPCR = _BV(SPE) | _BV(MSTR) | _BV(SPR0);
}

void SPI_MasterTransmit(char cData)
{
 /* Start transmission */
 SPDR = cData;
 /* Wait for transmission complete */
 while(!(SPSR & _BV(SPIF)))
 ;
}

CSE 466 Communication 22

Using SPI as a Slave

void SPI_SlaveInit(void)
{
 /* Set MISO output, all others input */
 DDRB = _BV(DD_MISO);
 /* Enable SPI */
 SPCR = _BV(SPE);
}

char SPI_SlaveReceive(void)
{
 /* Wait for reception complete */
 while(!(SPSR & _BV(SPIF)))
 ;
 /* Return data register */
 return SPDR;
}

CSE 466 Communication 23

Data Payload on SPI

  Data is exchanged between master and slave
  Master always initiates
  May need to poll slave (or interrupt-driven)

  Decide on how many bytes of data have to move in each direction
  Transfer the maximum for both directions
  One side may get more than it needs

  Decide on format of bytes in packet
  Starting byte and/or ending byte?
  Can they be distinguished from data in payload?
  Length information or fixed size?

  SPI buffer
  Write into buffer, specify length, master sends it out, gets data
  New data arrives at slave, slave interrupted, provides data to go to

master, reads data from master in buffer

CSE 466 Communication 24

Universal Serial Bus

  Connecting peripherals to PCs
  Ease-of-use
  Low-cost
  Up to 127 devices (optionally powered through bus)
  Transfer rates up to 480 Mb/s

  Variable speeds and packet sizes
  Full support for real-time data for voice, audio, and video
  Protocol flexibility for mixed-mode isochronous data transfers

and asynchronous messaging
  PC manages bus and allocates slots (host controller)

  Can have multiple host controllers on one PC
  Support more devices than 127

CSE 466 Communication 25

USB Peripherals

CSE 466 Communication 26

USB

  Tree of devices
 – one root controller

CSE 466 Communication 27

USB Data Transfer

  Data transfer speeds
  Low is <0.8v, high is >2.0v differential
  480Mb/sec, 12Mb/sec, 1.5Mb/sec
  Data is NRZI encoded (data and clock on one wire)
  SYNC at beginning of every packet

CSE 466 Communication 28

NRZI Encoding

  NRZI – Non-return to zero inverted
  Toggles a signal to transmit a “0” and leaves the signal unchanged

for a “1”
  Also called transition encoding
  Long string of 0s generates a regular waveform with a frequency

half the bit rate
  Long string of 1s generates a flat waveform – bit stuff a 0 every 6

consecutive 1s to guarantee activity on waveform

CSE 466 Communication 29

NRZI Encoding (cont’d)

CSE 466 Communication 30

USB Data Transfer Types

  Control Transfers:
  Used to configure a device at attach time and can be used for

other device-specific purposes, including control of other pipes on
the device.

  Bulk Data Transfers:
  Generated or consumed in relatively large and bursty quantities

and have wide dynamic latitude in transmission constraints.
  Interrupt Data Transfers:

  Used for timely but reliable delivery of data, for example,
characters or coordinates with human-perceptible echo or
feedback response characteristics.

  Isochronous Data Transfers:
  Occupy a prenegotiated amount of USB bandwidth with a

prenegotiated delivery latency. (Also called streaming real time
transfers)

CSE 466 Communication 31

USB Packet Format

  Sync + PID + data + CRC
  Basic data packet

  Sync: 8 bits (00000001)
  PID: 8 bits (packet id – type)
  Data: 8-8192 bits (1K bytes)
  CRC: 16 bits (cyclic redundancy check sum)

  Other data packets vary in size
  May be as short as only 8 bits of PID

CSE 466 Communication 32

USB Protocol Stack

  FTDI
USB chip
implements
right side

  Communicates
to physical
device
through SPI

CSE 466 Communication 33

Our USB Solution

CSE 466 Communication 34

CSE 466 Communication 35

More Communication Later

  Bluetooth
  Popular radio frequency protocol
  We’ll discuss after looking at wireless sensors

  PCMCIA/CompactFlash
  Popular parallel bus protocol
  We’ll discuss (time permitting) at end of quarter

