
1

CSE 466 Wireless Sensor Networks 1

Operating systems for embedded systems

 Embedded operating systems
 How do they differ from desktop operating systems?

 Programming model
 Process-based
 Event-based
 How is concurrency handled?
 How are resource conflicts managed?

 Programming languages
 C/C++
 Java/C#
 Memory management
 Atomicity in the presence of interrupts

CSE 466 Wireless Sensor Networks 2

Embedded Operating Systems

 Features of all operating systems
 Abstraction of system resources
 Managing of system resources
 Concurrency model
 Launch applications

 Desktop operating systems
 General-purpose – all features may be needed
 Large-scale resources – memory, disk, file systems

 Embedded operating systems
 Application-specific – just use features you need, save memory
 Small-scale resources – sensors, communication ports

2

CSE 466 Wireless Sensor Networks 3

System Resources on Typical Sensor Nodes

 Timers
 Sensors
 Serial port
 Radio communications
 Memory
 Power management

CSE 466 Wireless Sensor Networks 4

Abstraction of System Resources

 Create virtual components
 E.g., multiple timers from one timer

 Allow them to be shared by multiple threads of execution
 E.g., two applications that want to share radio communication

 Device drivers provide interface for resource
 Encapsulate frequently used functions
 Save device state (if any)
 Manage interrupt handling

3

CSE 466 Wireless Sensor Networks 5

Very simple device driver

 Turn LED on/off
 Parameters:

 port pin

 API:
 on(port_pin) - specifies the port pin (e.g., port D pin 3)
 off(port_pin)

 Interactions:
 only if other devices want to use the same port

CSE 466 Wireless Sensor Networks 6

Simple device driver

 Turning an LED on and off at a fixed rate
 Parameters:

 port pin
 rate at which to blink LED

 API:
 on(port_pin, rate)

 specifies the port pin (e.g., port D pin 3)
 specifies the rate to use in setting up the timer (what scale?)

 off(port_pin)
 Internal state and functions:

 keep track of state (on or off for a particular pin) of each pin
 interrupt service routine to handle timer interrupt

4

CSE 466 Wireless Sensor Networks 7

Interesting interactions

 What if other devices also need to use timer
(e.g., PWM device)?
 timer interrupts now need to be handled differently depending on

which device’s alarm is going off

 Benefits of special-purpose output compare peripheral
 output compare pins used exclusively for one device
 output compare has a separate interrupt handling routine

 What if we don’t have output compare capability or run
out of output compare units?

CSE 466 Wireless Sensor Networks 8

Sharing timers

 Create a new device driver for the timer unit
 Allow other devices to ask for timer services
 Manage timer independently so that it can service multiple requests

 Parameters:
 Time to wait, address to call when timer reaches that value

 API:
 set_timer(time_to_wait, call_back_address)

 Set call_back_address to correspond to time+time_to_wait
 Compute next alarm to sound and set timer
 Update in interrupt service routine for next alarm

 Internal state and functions:
 How many alarms can the driver keep track of?
 How are they organized? FIFO? priority queue?

5

CSE 466 Wireless Sensor Networks 9

Concurrency

 Multiple programs interleaved as if parallel
 Each program requests access to devices/services

 e.g., timers, serial ports, etc.

 Exclusive or concurrent access to devices
 allow only one program at a time to access a device (e.g., serial port)
 arbitrate multiple accesses (e.g., timer)

 State and arbitration needed
 keep track of state of devices and concurrent programs using resource
 arbitrate their accesses (order, fairness, exclusivity)
 monitors/locks (supported by primitive operations in ISA - test-and-set)

 Interrupts
 disabling may effect timing of programs
 keeping enabled may cause unwanted interactions

CSE 466 Wireless Sensor Networks 10

Handling concurrency

 Traditional operating system
 multiple threads or processes
 file system
 virtual memory and paging
 input/output (buffering between CPU, memory, and I/O devices)
 interrupt handling (mostly with I/O devices)
 resource allocation and arbitration
 command interface (execution of programs)

 Embedded operating system
 lightweight threads
 input/output
 interrupt handling
 real-time guarantees

6

CSE 466 Wireless Sensor Networks 11

Embedded operating systems

 Lightweight threads
 basic locks
 fast context-switches

 Input/output
 API for talking to devices
 buffering

 Interrupt handling (with I/O devices and UI)
 translate interrupts into events to be handled by user code
 trigger new tasks to run (reactive)

 Real-time issues
 guarantee task is called at a certain rate
 guarantee an interrupt will be handled within a certain time
 priority or deadline driven scheduling of tasks

CSE 466 Wireless Sensor Networks 12

embedded operating
systems typically
reside in ROM (flash)
- changed rarely

Some Examples

 Pocket PC/WindowsCE/WindowsMobile
 PDA operating system
 spin-off of Windows NT
 portable to a wide variety of processors (e.g., Xscale)
 full-featured OS modularized to only include features as needed

 Wind River Systems VxWorks
 one of the most popular embedded OS kernels
 highly portable to an even wider variety of processors (tiny to huge)
 modularized even further than the ones above (basic system under 50K)

 TinyOS
 Open-source development environment specificall for small sensors
 Simple (and tiny) operating system

 Scheduler/event model of concurrency
 Software components for efficient modularity
 Software encapsulation for resources of sensor networks

 Programming language and model – nesC

7

CSE 466 Wireless Sensor Networks 13

Embedded Linux

 iMote2 supports Linux, TinyOS, and SOS
 Linux is the Familiar release originally developed for iPAQs

(actually the DEC Itsy PDA by DEC Western Research Lab
and then by Compaq’s Cambridge lab)

 Linux kernel provides many utilities
 Timer abstractions
 File system
 Serial communication
 IP network communication
 Memory management

 We can extend the kernel by registering new modules
 These can control the internal registers of the XScale

microcontroller

CSE 466 Wireless Sensor Networks 14

A Simple Application

 Blinking an LED at 1Hz – Lab 1 revisited
 Module to control LED GPIO pin

 Sets state of LED
 Uses timer
 API allows setting of blink rate

 Register module in kernel
 Assigned a “device number” by the Linux OS

 User-level application calls module API to start/stop/set

8

CSE 466 Wireless Sensor Networks 15

Kernel module
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <asm/hardware.h>
#include <asm-arm/arch-pxa/pxa-regs.h> // This include file lets us access memory-mapped I/O registers
#include "blink.h"

#define OIER_E4 (1<<4)
#define RED (1 << 7)

dev_t devId; // Contains the major and minor device numbers
struct cdev *cdev; // A kernel character device struct
int blink_ioctl(struct inode *, struct file *, unsigned int, unsigned long);
static void __exit unload_function(void);
struct file_operations blink_fops = {.owner = THIS_MODULE, .ioctl = blink_ioctl};

int state = 0; // State of the LED (on or off)
int delay = 16384; // Period is 1/16384 seconds * delay

int blink_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) {
switch (cmd) {

case BLINK_SET_RATE:
OSMR4 = arg; // Update the match register
OSCR4 = 0; // Reset the counter
break;

default:
return -ENOTTY;

}
return 0;

}

CSE 466 Wireless Sensor Networks 16

Kernel module (cont’d)
irqreturn_t blink_irq_handler(int irq, void *dev_id, struct pt_regs *regs) // called by kernel
{ // Check to see if this interrupt is for us

if (!(OSSR & OIER_E4))
return IRQ_RETVAL(IRQ_NONE);

OSSR |= OIER_E4; // Acknowledge this interrupt
state = !state;
if (state)

GPSR3 = RED;
else

GPCR3 = RED;
return IRQ_RETVAL(IRQ_HANDLED);

}
static int __init init_function(void) // discardable by kernel
{

int result;
// Allocate a major device number for this driver
result = alloc_chrdev_region(&devId, 0, 1, "blink");
if (result < 0) return result;
// Allocate a character devicw and set the owner and file operations of this new character device
cdev = cdev_alloc();
cdev->owner = THIS_MODULE;
cdev->ops = &blink_fops;
// Register the character device
// Note at this point the device is live!
result = cdev_add(cdev, devId, 1);
result = request_irq(IRQ_OST_4_11, blink_irq_handler, 0, "blink", cdev);
if (result < 0) {

unload_function();
return result;

}
// At this point, everything should succeed, so initialize the hardware
OMCR4 = 0xC9; // Match against channel 4, periodic timer, reset on match,

 // period is 1 microsecond.
OSMR4 = delay;
OIER |= OIER_E4; // Enable interrupts for channel 4
OSCR4 = 0; // Start the counter
return 0; // SUCCESS

}

9

CSE 466 Wireless Sensor Networks 17

Kernel module (cont’d)

static void __exit unload_function(void)
{

// Turn off interrupts
OIER &= ~OIER_E4;
free_irq(IRQ_OST_4_11, cdev);

// Free the character device
cdev_del(cdev);
// Unregister the major device number
unregister_chrdev_region(devId, 1);

}

// These two macros let the compiler and kernel know which functions
// should be called when loading and unloading the kernel.

module_init(init_function);
module_exit(unload_function);

CSE 466 Wireless Sensor Networks 18

Application
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include "blink.h"

int main(int argc, char *argv)
{

int rate, fd;

if (argc != 2) {
printf("Usage: %s <Hz>\n", argv[0]);
return 0;

}

rate = (int)(16384 / atof(argv[1]));

fd = open("/dev/blink", O_WRONLY);
if (fd < 0) {

printf("Unable to open /dev/blink\n");
return 0;

}

ioctl(fd, BLINK_SET_RATE, rate);
close(fd);

}

10

CSE 466 Wireless Sensor Networks 19

Labs 5/6

 Redo Lab 2 (blink instead of count)
 Modify module to do color of LED instead of rate of blink

 Use timer to generate PWM signals instead of just on/off
 Use the single timer to do R, G, and B

(other timers used by other modules – Linux does not provide
general timer utilities at that fine resolution)

 Redo Lab 3
 Accelerometer module (mostly already there)
 You’ll write a GPIO interrupt handler to decode accel signals
 Change color of LED accordingly (very similar code)

 Use 3rd dimension of accel to do V instead of pot

CSE 466 Wireless Sensor Networks 20

Labs 5/6 (cont’d)

 Implement accel decoder and LED driver on two
separate iMote2s
 Radio communication between them
 Send RGB or HSV values from one node to the other
 Use 802.15.4 radio packets (format and API provided)

 Define your own payload

