
������� ����	
�����
 �

����	
�����
��������

� Communication methods
� Media and signalling conventions used to transmit data between

digital devices
� Different physical layers methods including:

� wires, radio frequency (RF), optical (IR)

� Different encoding schemes including:
� amplitude, frequency, and pulse-width modulation

Binary Phase Shift Keying (BPSK)

Frequency Shift Keying (FSK)

On-Off Keying (OOK)

No encoding (Baseband)

WaveformModulation Technique

������� ����	
�����
 �

����	
�����
��������

� Dimensions to consider
� bandwidth – number of wires – serial/parallel
� speed – bits/bytes/words per second
� timing methodology – synchronous or asynchronous
� number of destinations/sources
� arbitration scheme – daisy-chain, centralized, distributed
� protocols – provide some guarantees as to correct communication

������� ����	
�����
 �

�
������

� Serial
� Single wire or channel to trasmit information one bit at a time
� Requires synchronization between sender and receiver
� Sometimes includes extra wires for clock and/or handshaking
� Good for inexpensive connections (e.g., terminals)
� Good for long-distance connections (e.g., LANs)
� Examples: RS-232, Ethernet, I2C, IrDA, USB, Firewire, Bluetooth

� Parallel
� Multiple wires to transmit information one byte or word at a time
� Good for high-bandwidth requirements (CPU to disk)
� More expensive wiring/connectors/current requirements
� Examples: SCSI-2, PCI bus (PC), PCMCIA (Compact Flash)

� Issues
� Encoding, data transfer rates, cost of connectors and wires, modularity,

error detection and/or correction
������� ����	
�����
 �

�����

� Serial
� low-speed, cheap connections

� RS-232 1K–20K bits/sec, copper wire
� medium-speed efficient connections

� I2C 10K-400K bits/sec, board traces
� IrDA 9.6K-4M bits/sec, line-of-sight, 0.5-6.0m

� high-speed, expensive connections
� USB 1.5M bytes/sec, USB2 60M bytes/sec
� Ethernet 1.5M-1G bits/sec, twisted-pair or co-axial
� Firewire 12.5-50M bytes/sec

� Parallel
� low-speed, not too wide

� SCSI-2 10M bytes/sec, 8 bits wide
� PCI bus, 250M bytes/sec, 32 bits wide
� PCMCIA (CF+), 9-10M bytes/sec, 16 bits wide

� high-speed, very wide – memory systems in large multi-processors
� 200M-2G bytes/sec, 128-256 bits wide

������� ����	
�����
 �

�����

� Issues
� length of the wires (attenuation, noise, capacitance)
� connectors (conductors and/or transducers)
� environment (RF/IR interference, noise)
� current switching (spikes on supply voltages)
� number and types of wires (cost of connectors, cross-talk)
� flow-control (if communicating device can’t keep up)

������� ����	
�����
 �

����
�������������

� Asynchronous
� less wires (no clock)
� no skew concerns
� synchronization overhead
� appropriate for loosely-coupled systems (CPU and peripherals)
� common in serial schemes

� Synchronous
� clock wires and skew concerns
� no synchronization overhead
� can be high-speed if delays are small and can be controlled
� appropriate for tightly-couple systems (CPU and memory/disk)
� common in parallel schemes

������� ����	
�����
 �

����
�������������

� Issues
� clock period and wire delay
� synchronization and skew
� encoding of timing and data information
� handshaking
� flow-control
� power consumption

������� ����	
�����
 �

 	�!�"��#���$���������	
����
�

� Single source – single destination
� point-to-point
� cheap connections, no tri-stating necessary

� Single source – multiple destination
� fanout limitations
� addressing scheme to direct data to one destination

� Multiple source – multiple destination
� arbitration between senders
� tri-stating capability is necessary
� collision detection
� addressing scheme
� priority scheme
� fairness considerations

������� ����	
�����
 %

&"!��"���
��������

� Daisy-chain or token passing
� devices either act or pass to next
� fixed priority order
� as many wires as devices
� fairness issues

� Centralized
� request to central arbiter
� central arbiter implements priority scheme
� wires from/to each device can be costly
� can be dynamically changing priority/fairness

� Distributed
� no central arbiter
� common set of wires (or ether) observed by all devices
� fixed priority/fairness scheme

������� ����	
�����
 �'

��"���������	����

� RS-232 (IEEE standard)
� serial protocol for point-to-point, low-cost, low-speed applications for PCs

� I2C (Philips)
� up to 400Kbits/sec, serial bus for connecting multiple components

� Ethernet (popularized by Xerox)
� most popular local area network protocol with distributed arbitration

� IrDA (Infrared Data Association)
� up to 115kbps wireless serial (Fast IrDA up to 4Mbs)

� Firewire (Apple – now IEEE1394)
� 12.5-50Mbytes/sec, consumer electronics (video cameras, TVs, audio, etc.)

� SPI (Motorola)
� 10Mbits/sec, commonly used for microcontroller to peripheral connections

� USB (Intel – followed by USB-2)
� 12-480Mbits/sec, isochronous transfer, desktop devices

� Bluetooth (Ericsson – cable replacement)
� 700Kbits/sec, multiple portable devices, special support for audio

������� ����	
�����
 ��

(�)����*��
�"����"�����
�+

� Point-to-point, full-duplex
� Synchronous or asynchronous
� Flow control
� Variable baud (bit) rates
� Cheap connections (low-quality and few wires)
� Variations: parity bit; 1, 1.5, or 2 stop bits

�����
���

��	���
����

�����

���

���

���

������� ����	
�����
 ��

�����������������

���������������������

�
�����	���������
�������

���������������������

(�)������"��

� TxD – transmit data
� TxC – transmit clock
� RTS – request to send
� CTS – clear to send

� RxD – receive data
� RxC – receive clock
� DSR – data set ready
� DTR – data terminal ready

� Ground

������� ����	
�����
 ��

�"
�#�"������

� Synchronous
� clock signal wire is used by both receiver and sender to sample data

� Asynchronous
� no clock signal in common
� data must be oversampled (16x is typical) to find bit boundaries

� Flow control
� handshaking signals to control rate of transfer

������� ����	
�����
 ��

+Vcc

device
1

device
2

device
n

SCL

SDA

,
��"),
���"������"�	����	��*,��+

� Modular connections on a printed circuit board
� Multi-point connections (needs addressing)
� Synchronous transfer (but adapts to slowest device)
� Similar to Controller Area Network (CAN) protocol

used in automotive applications
� Similar to TWI (Two-Wire Interface) on ATmegas

������� ����	
�����
 ��

SDA

SCL

START STOP

��"������#�"��

� SDA going low while SCL high signals start of data
� SDA going high while SCL high signals end of data
� SDA can change when SCL low
� SCL high (after start and before end) signals that a data bit can be read

������� ����	
�����
 ��

SDA

SCL

1 3 4 5 6 7 8 ack2

������"
�#�"

� Byte followed by a 1 bit acknowledge from receiver
� Open-collector wires

� sender allows SDA to rise
� receiver pulls low to acknowledge after 8 bits

� Multi-byte transfers
� first byte contains address of receiver
� all devices check address to determine if following data is for them
� second byte usually contains address of sender

������� ����	
�����
 ��

clk 1

clk 2

SCL

����-���
��"�
�.���

� Synchronous data transfer with variable speed devices
� go as fast as the slowest device involved in transfer

� Each device looks at the SCL line as an input as well as driving it
� if clock stays low even when being driven high then another device needs

more time, so wait for it to finish before continuing
� rising clock edges are synchronized

������� ����	
�����
 ��

&"!��"���

� Devices can start transmitting at any time
� wait until lines are both high for some minimum time
� multiple devices may start together - clocks will be synchronized

� All senders will think they are sending data
� possibly slowed down by receiver (or another sender)
� each sender keeps watching SDA - if ever different

(driving high, but its really low) then there is another driver
� sender that detects difference gets off the bus and aborts message

� Device priority given to devices with early 0s in their address
� 00….111 has higher priority than 01…111

������� ����	
�����
 �%

,
��"),
���"������"�	����	��*,��+

� Supports data transfers from 0 to 400KHz
� Philips (and others) provide many devices

� microcontrollers with built-in interface
� A/D and D/A converters
� parallel I/O ports
� memory modules
� LCD drivers
� real-time clock/calendars
� DTMF decoders
� frequency synthesizers
� video/audio processors

������� ����	
�����
 �'

����"
���*/�"�0������"��
����"-+

� Local area network
� up to 1024 stations
� up to 2.8 km distance
� 10Mbits/sec serially on shielded co-axial cable
� 1.5Mbits/sec on twisted pair of copper pair

� Developed by Xerox in late 70s
� still most common LAN right now
� being displaced by fiber-optics (can't handle video/audio rates or make

required service guarantees)
� High-level protocols to ensure reliable data transmission
� CSMA-CD: carrier sense multiple access with collision detection

������� ����	
�����
 ��

Transmit
and

Receive
Electrical
Interface

Serial
Encode

and
Decode

Link
Management

Data
Encapsulation

Physical ChannelData-link Controller

Ethernet Controller Board Transceiver

Host-specific InterfaceTo
Host

Ethernet
Cable

Physical Layer

Data-link Layer

Transport Layer

Client Layer

parallel data serial data

����"
������"����"�
�.���

� Physical and data-link layers are our focus

������� ����	
�����
 ��

0 1 0 1 0 01 1 0

��"������#�"��

� Manchester encoding
� signal and clock on one wire (XORed together)
� "0" = low-going transition
� "1" = high-going transition

� Extra transitions between 00 and 11 need to be filtered
� preamble at beginning of data packet contains alternating 1s and 0s
� allows receivers to get used to where important transitions should be and

ignore extra ones (this is how synchronization is achieved)
� preamble is 48 bits long: 10101. . . 01011

������� ����	
�����
 ��

preamble (6 bytes)

destination address (6 bytes)

source address (6 bytes)

type (2 bytes)

data (46-1500 bytes)

checksum (4 bytes) compute from data

����"
�����-��

� Packets size: 64 to 1518 bytes + 6 bytes of preamble

������� ����	
�����
 ��

&"!��"���

� Wait for line to be quiet for a while then transmit
� detect collision
� average value on wire should be exactly between 1 and 0
� if not, then two transmitters are trying to transmit data

� If collision, stop transmitting
� wait a random amount of time and try again
� if collide again, pick a random number

from a larger range (2x) and try again

� Exponential backoff on collision detection
� Try up to 16 times before reporting failure

������� ����	
�����
 ��

�0��
��
������"
��

� Segments, repeaters, and gateways
� segment: a single cable
� repeater: transfers all messages on one segment to another and vice-versa
� gateway: selectively forwards messages to other segments and helps

isolate traffic

Segment

Repeater

Gateway

������� ����	
�����
 ��

,
#""���1��&��������

� Consortium of over 160 companies
� Meet needs of the “mobile professional”

� Short interactions with other devices (file transfer, printing)
� Possibly using others’ peripherals (visiting a customer’s office)

� Goals:
� Suitable replacement for cables
� Interoperability
� Minimal cost
� “Point-and-shoot” model (intended use and to reduce interference)

� History:
� First standard developed in 1994
� Revisions as recently as late 1998 (i.e., still active)

������� ����	
�����
 ��

Radio (RF)
Microwaves

Infrared (IR)
Visible

Ultraviolet
X-Rays Gamma

Rays

FCC$
109 1012 1014 1015 1017 1020

Freq.
(Hz)

,"1&2�,
#""���1��&��������

� Characteristics of IR:
� Implementation costs rise significantly around 1-10 GHz

� one important exception is IR at around 500 THz – very inexpensive

� Signals above 100 GHz cannot penetrate walls
� Most signals below 300 GHz are regulated by the FCC

������� ����	
�����
 ��

�����

� Components include:
� Transmitter (LED) and paired receiver (photodiode)

� IrDA supports wide range of speeds
� 2400 bps to 4 Mbps
� Exact physical-layer protocol used depends on speed of IrDA connection
� Uses highest speed available on both devices

� determined when connection is established

� Future promises even higher speeds:
� 16-50 Mbps is not too far off

� Comparison to other wireless technologies:
� Low-power RF (e.g., Bluetooth) slightly slower (.5 - 2 Mbps max)
� Bound by walls, easy to control, intentional aspect
� Much lower-power than high-speed RF (e.g., 802.11a at 50Mbps)

������� ����	
�����
 �%

0 0 1 0 01

3��)������4��	����

� Speed: 2400 bps - 115 kbps (“Serial Infrared”, or SIR)
� Only 0’s require pulse (and thus power) ; pulse < full bit time
� Standard UART byte framing
� Pulse is constant 1.6 µs long (so duty cycle varies with speed)
� Average duty cycle: ≤ 9%

� Speed: 576 kbps - 1 Mbps
� similar to SIR (pulse only for 0’s ; pulse < full bit time)
� pulse lasts 1/4 of bit time (so pulse varies with speed)
� Average duty cycle: 12.5%

� Speed: 4 Mbps (“Fast Infrared”, or FIR)
� uses four-pulse-position-modulation scheme (4PPM)
� pulse during exactly 1/4 of each symbol boundary
� 4PPM makes synchronization easier to maintain
� Duty cycle: 25% (independent of data)
� Lowest power/bit

0 0 1 0 01

0 0 0 1 1 0 1 1

������� ����	
�����
 �'

0 - 1 m

(
��

� Linear:
� IrDA standard requires 0-1 m
� Realistically, some transceivers work at up to 10 m

� Angular:
� Limited to a narrow cone (15° half-angle)
� Done to help reduce interference between devices

������� ����	
�����
 ��

Physical Layer

Data-link Layer

Network Layer

Transport Layer

Application Layer

Standard Network Model IrDA Protocol Stack

Physical Layer

IrLAP

IrLMP

TinyTP

Ir
C

O
M

M

Ir
L

A
N

Ir
O

B
E

X

,"1&�5"����������-

� Analogous to the standard layered network model
� Consists of both required and optional components

Handle connections/disconnections
Implement reliable transfer

Multiplexes several “virtual” connections on
a single IrLAP connection (logical service
access points – LSAPs)

Segmentation and re-assembly
automatically break-up large packets
(and put back together correctly)
Per-channel flow control

Serial and parallel port emulation
IrDA interface acts as a local-area network
IR “Object Exchange” – transfer of objects

������� ����	
�����
 ��

Total: 5 bytes

Total: 58 bytes (minimum)

5"�������6$�"���

� Very simple model (point-to-point), so can expect reduced protocol overhead
� For layers in IrDA protocol stack, overhead per packet/frame is:

� IrLAP = 2 bytes
� IrLMP = 2 bytes
� TinyTP = 1 byte

� For perspective, compare to TCP/IP over Ethernet:
� Ethernet = 18 bytes minimum
� IP = 20 bytes
� TCP = 20 bytes

� IrDA takes advantage of its simpler model, and keeps protocol overhead very low.

������� ����	
�����
 ��

7�"���"�

� Interconnection for high-bandwidth consumer electronic devices
� e.g., still and video cameras, MP3 players, digital video recorders
� IEEE 1394a standard
� 12.5-400 Mbits/sec (soon to be 800 Mbits/sec with 1394b)

� Most consumer devices use 100 Mbits/sec

� Up to 63 devices connected at once on 4.5m cables
� Up to 16 cables can be daisy-chained to 72m

� Devices connect for power as well as communication
� Hot-swappable devices
� Asynchronous and isochronous data transfers

������� ����	
�����
 ��

7�"���"������"���84���
��������

� 4-6 wires depending on whether device needs power
� Tree arrangement

� each branch is bandwidth limited

Digital VCR

Digital
Camcorder

Digital
Camcorder

DV Monitor

PC with
IEEE 1394

IEEE 1394
Hard Drive

������� ����	
�����
 ��

7�"���"����#�"��

� Data is transferred in addressed packets, and is transaction-
based

� Transfers can be asynchronous or isochronous
� Asynchronous transfers are used mainly for bus configuration,

setting up transfers and handshaking, but are also used for bulk
data transfer to and from hard disk drives, etc.

� Isochronous transfers are used for transporting timesensitive data
like digital video and audio

� Data packets have a 64-bit address header
� 10-bit network address
� 6-bit node address
� 48 bits for data memory addresses at the receiving node

� Ability to address 1023 networks of 63 nodes, each with up to
281TB (terabytes) of data addresses

������� ����	
�����
 ��

7�"���"����#�"���*��
�9�+

� Bus manager
� One device on the bus (usually a PC)

� Isochronous resource manager
� Allocates bus bandwidth for isochronous data transfers based on

time-domain multiplexing (TDM) that guarantees a proportion of
the total time slots to each device
� Bandwidth allocation unit is 20.3ns, 6144 of them in a basic cycle of

125us
� 25us of every cycle is always reserved for asynchronous control data

transfers, so a maximum of 4195 units is available for isochronous
transfers

� Typically a stream from a DV camcorder to a PC or digital VCR might
need to be allocated a channel of ~1800 bandwidth units, for about
30Mb/s

� Asynchronous transfers can have multiple data packets per basic
cycle, within the 25us reserved for this type of signalling

������� ����	
�����
 ��

7�"���"����
���
�

� Data-strobe signalling
� Avoids two signals where both change at the same time
� Keeps noise levels low

� Strobe easily derived at transmitter
� Strobe = Clock xor Data

� Clock is easily recovered at receiver
� Clock = Data xor Strobe

Data

Strobe

Clock

1 0 1 1 0 1 1

������� ����	
�����
 ��

��"���5�"����"��,
��"#��

� Common serial interface on many microcontrollers
� Simple 8-bit exchange between two devices

� Master initiates transfer and generates clock signal
� Slave device selected by master

� One-byte at a time transfer
� Data protocols are defined by application
� Must be in agreement across devices

������� ����	
�����
 �%

�5,�����-�1��"�

� 8-bits transferred in each direction every time
� Master generates clock
� Shift enable used to select one of many slaves

������� ����	
�����
 �'

�5,��
�����&������

� Prescaler for
clock rate

� Interrupt on
receive and on
send complete

� Automatically
generates SS

������� ����	
�����
 ��

�5,�(������"�

������� ����	
�����
 ��

:��
���5,����4���"

void SPI_MasterInit(void)
{
/* Set MOSI and SCK output, all others input */
DDRB = _BV(DD_MOSI) | _BV(DD_SCK);
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = _BV(SPE) | _BV(MSTR) | _BV(SPR0);

}

void SPI_MasterTransmit(char cData)
{
/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */
while(!(SPSR & _BV(SPIF)))
;

}

������� ����	
�����
 ��

:��
���5,������$�

void SPI_SlaveInit(void)
{
/* Set MISO output, all others input */
DDRB = _BV(DD_MISO);
/* Enable SPI */
SPCR = _BV(SPE);

}

char SPI_SlaveReceive(void)
{
/* Wait for reception complete */
while(!(SPSR & _BV(SPIF)))
;
/* Return data register */
return SPDR;

}

������� ����	
�����
 ��

1��5������
��5,

� Data is exchanged between master and slave
� Master always initiates
� May need to poll slave (or interrupt-driven)

� Decide on how many bytes of data have to move in each direction
� Transfer the maximum for both directions
� One side may get more than it needs

� Decide on format of bytes in packet
� Starting byte and/or ending byte?
� Can they be distinguished from data in payload?
� Length information or fixed size?

� SPI buffer
� Write into buffer, specify length, master sends it out, gets data
� New data arrives at slave, slave interrupted, provides data to go to

master, reads data from master in buffer

������� ����	
�����
 ��

�����������#�"�7�1,��5,
int main(void)
{

FTDI466API usbDevice;
char buffer[256];
unsigned char rxBuffer[256];
unsigned char txBuffer[256];
DWORD numBytesToSend;
DWORD bytesSent;
DWORD numBytesToRead;
DWORD bytesReceived;
// setup USB device for MPSSE mode
bool setup = usbDevice.open();
if(!setup)

return 0;
cout << "INITIALIZING SPI" << endl;
// setup for SPI communication
txBuffer[0] = 0x80; // setup PORT
txBuffer[1] = 0x08; // make CS high
txBuffer[2] = 0x0B; // outputs: SK, DO, CS, inputs: DI, GPIOL1-L4
txBuffer[3] = 0x86; // set clk divisor to Tx at 200kHz
txBuffer[4] = 0x1D; // speed low byte
txBuffer[5] = 0x00; // speed high byte
txBuffer[6] = 0x85; // disconnect TDI/DO output from TDO/DI input for loopback testing
numBytesToSend = 7;

������� ����	
�����
 ��

�����������#�"�7�1,��5,�*��
�9�+

// send the instructions ot the USB device
bytesSent = usbDevice.write(txBuffer, numBytesToSend);

if(bytesSent != numBytesToSend)
cerr << "Not all the bytes were sent when initializing MPSSE" << endl;

// see if there were any error codes when setting up SPI
numBytesToRead = usbDevice.getReceiveQueueSize();

if(numBytesToRead > 0)
{

bytesReceived = usbDevice.read(rxBuffer, numBytesToRead);

if(bytesReceived != numBytesToRead)
cerr << "Problem when trying to retrieve the error bytes" << endl;

for(unsigned int i = 0; i < bytesReceived; i++)
cout << "Error Byte: " << rxBuffer[i] << endl;

}

������� ����	
�����
 ��

�����������#�"�7�1,��5,�*��
�9�+
// loop to demonstrate the SPI protocol
for(int loop = 0; loop < 10; loop++)
{

Sleep(1000);

txBuffer[0] = 0x80; // setup PORT
txBuffer[1] = 0x00; // make CS low
txBuffer[2] = 0x0B; // outputs: SK, DO, CS, inputs: DI, GPIOL1-L4
txBuffer[3] = 0x35; // clock out on negative edge, in on negative edge, MSB
txBuffer[4] = 0x04; // low byte of length : note a length of zero is 1 byte, 1 is 2 bytes
txBuffer[5] = 0x00; // high byte of length
txBuffer[6] = 0x71; // payload
txBuffer[7] = 0x72;
txBuffer[8] = 0x73;
txBuffer[9] = 0x74;
txBuffer[10] = 0x75;
txBuffer[11] = 0x80; // setup PORT
txBuffer[12] = 0x08; // make CS high
txBuffer[13] = 0x0B; // outputs: SK, DO, CS, inputs: DI, GPIOL1-L4

numBytesToSend = 14;

// send bytes
bytesSent = usbDevice.write(txBuffer, numBytesToSend);
if(bytesSent != numBytesToSend)

cerr << "Not all the bytes were sent when initializing MPSSE" << endl;

������� ����	
�����
 ��

�����������#�"�7�1,��5,�*��
�9�+

Sleep(5); // make sure the usb device has enough time to execute command - 5 ms latency timeout is set

// get number of bytes in the received queue
numBytesToRead = usbDevice.getReceiveQueueSize();
cout << "Received " << numBytesToRead << " Bytes" << endl;
if(numBytesToRead > 0)
{

// get the received bytes
bytesReceived = usbDevice.read(rxBuffer, numBytesToRead);

if(bytesReceived != numBytesToRead)
cerr << "Problem when trying to retrieve the bytes from the receive queue" <<

endl;
else
{

// print out the bytes received over SPI in hex
for(unsigned int i=0; i < bytesReceived; i++)

cout << itoa(rxBuffer[i],buffer,16) << " ";
cout << endl;

}
}

}

������� ����	
�����
 �%

:
�$�"�����"����	�

� Connecting peripherals to PCs
� Ease-of-use
� Low-cost
� Up to 127 devices (optionally powered through bus)
� Transfer rates up to 480 Mb/s

� Variable speeds and packet sizes
� Full support for real-time data for voice, audio, and video
� Protocol flexibility for mixed-mode isochronous data transfers

and asynchronous messaging
� PC manages bus and allocates slots (host controller)

� Can have multiple host controllers on one PC
� Support more devices than 127

������� ����	
�����
 �'

:���5�"����"��

������� ����	
�����
 ��

:���

� Tree of devices
– one root controller

������� ����	
�����
 ��

:���1���"
�#�"

� Data transfer speeds
� Low is <0.8v, high is >2.0v differential
� 480Mb/sec, 12Mb/sec, 1.5Mb/sec
� Data is NRZI encoded (data and clock on one wire)
� SYNC at beginning of every packet

������� ����	
�����
 ��

 (;,��
����
�

� NRZI – Non-return to zero inverted
� Toggles a signal to transmit a “0” and leaves the signal unchanged

for a “1”
� Also called transition encoding
� Long string of 0s generates a regular waveform with a frequency

half the bit rate
� Long string of 1s generates a flat waveform – bit stuff a 0 every 6

consecutive 1s to guarantee activity on waveform

������� ����	
�����
 ��

 (;,��
����
��*��
�9�+

������� ����	
�����
 ��

:���1���"
�#�"������

� Control Transfers:
� Used to configure a device at attach time and can be used for

other device-specific purposes, including control of other pipes on
the device.

� Bulk Data Transfers:
� Generated or consumed in relatively large and bursty quantities

and have wide dynamic latitude in transmission constraints.
� Interrupt Data Transfers:

� Used for timely but reliable delivery of data, for example,
characters or coordinates with human-perceptible echo or
feedback response characteristics.

� Isochronous Data Transfers:
� Occupy a prenegotiated amount of USB bandwidth with a

prenegotiated delivery latency. (Also called streaming real time
transfers)

������� ����	
�����
 ��

:���5�-���7�"��

� Sync + PID + data + CRC
� Basic data packet

� Sync: 8 bits (00000001)
� PID: 8 bits (packet id – type)
� Data: 8-8192 bits (1K bytes)
� CRC: 16 bits (cyclic redundancy check sum)

� Other data packets vary in size
� May be as short as only 8 bits of PID

������� ����	
�����
 ��

:���5"����������-

� FTDI
USB chip
implements
right side

� Communicates
to physical
device
through SPI

������� ����	
�����
 ��

4�"������	
�����
�3��"

� Bluetooth
� Popular radio frequency protocol
� We’ll discuss after looking at wireless sensors

� PCMCIA/CompactFlash
� Popular parallel bus protocol
� We’ll discuss (time permitting) at end of quarter

