
1

�������� ��	
���� �

�����
����������������

� Pulse a digital signal to get an average “analog” value
� The longer the pulse width, the higher the voltage

Pulse-width ratio =
ton

tperiod

t

t

t

average
valuetperiod ton

�������� ��	
���� �

���������
���������������������

� Most mechanical systems are low-pass filters
� Consider frequency components of pulse-width modulated signal
� Low frequency components affect components

� They pass through

� High frequency components are too fast to fight inertia
� They are “filtered out”

� Electrical RC-networks are low-pass filters
� Time constant (τ = RC) sets “cutoff” frequency

that separates low and high frequencies

�������� ��	
���� �

����
�� ��!����������

� Rear wheel controller/anti-lock brake system
� Normal operation

� Regulate velocity of rear wheel
� Brake pressed

� Gradually increase amount of breaking
� If skidding (front wheel is moving much faster than rear wheel)

then temporarily reduce amount of breaking

� Inputs
� Brake pedal
� Front wheel speed
� Rear wheel speed

� Outputs
� Pulse-width modulation rear wheel velocity
� Pulse-width modulation brake on/off

�������� ��	
���� �

"��������� �������#����
�� ��!����������

micro
controller

brake pedal pressed

front wheel velocity

rear wheel velocity

brake on/off

move rear wheel

�������� ��	
���� $

%��� �&#'������(!����)

� Check if brake pedal pressed – or interrupt
� brakePressed = read (brakePedalPort)

� Turn brake on/off
� write (brakePort, onOff)

� Move rear wheel
� write (rearWheel, onOff)

micro
controller

brake on/off

move rear wheel

GPIO
port

brake pedal pressed

front wheel velocity

rear wheel velocity

GPIO
port

�������� ��	
���� �

������*�+�,���������

� Software must repeatedly check
� Brake pedal port
� How often?
� Need to make sure not to forget to do so (use timer)

� Use automatic detection capability of processor
� Connect brake pedal to input capture or external interrupt pin
� Interrupt on level change
� Interrupt handler for brake pedal

micro
controller

GPIO
portbrake pedal pressed

2

�������� ��	
���� -

�����
�����������������.��!����

� To pump the brakes gradually increase the duty-cycle
(ton) until car stops

t

t

�������� ��	
���� /

� Use timer to turn brake on and off
� Apply brake
� Set timer to interrupt after “on” time
� Disengage brake
� Set time to interrupt after “off” time
� Repeat

� How do we tell which interrupt is which?

%��������������

t

start timer running

set timer to go off at each edge

�������� ��	
���� 0

� Change value of “on” time to change analog average
� average output = (on + off) / (period)

� How do we decide on the period of the pulses?
� Using two timers

� One to set period (auto-reload)
� One to turn it off at the right duty cycle

%���������������(���1�)

t

start timer running

set timer to go off at each edge

�������� ��	
���� �2

� ��������

� Micro-electro-mechanical system that measures force
� F = ma (I. Newton)
� Measured as change

in capacitance
between moving
plates

� Designed for a
maximum g-force
(e.g., 2-10g)

� 2-axis and 3-axis
versions

� Used in airbags,
laptop disk drives,
etc.

�������� ��	
���� ��

� ���������������

� Analog output too susceptible to noise

� Digital output requires many pins for precision

� Use pulse-width modulation

� What about gravity?

�������� ��	
���� ��

�����*�3�+� ����345�2��

� 2-axis accelerometer
� Set 0g at 50% duty-cycle
� Positive acceleration

increases duty cycle
� Negative acceleration

decreases duty cycle
� 12.5% per g

in either direction

3

�������� ��	
���� ��

6��� ��������������.���345�2�

� Noisy data – all forces are aggregated by accelerometer
� Sample trace at 250Hz

Walking down six
flights of stairs Elevator ride

�������� ��	
���� ��

6��� �����*����.����345�2�

� Cause interrupts at Ta, Tb, and Tc from X-axis output
� 1. Look for rising edge, reset counter: Ta = 0
� 2. Look for falling edge, record timer: Tb = positive duty cycle
� 3. Look for rising edge, record timer, reset counter: Tc = period
� Repeat from 2
� Same for Y-axis output (T2 is the same for both axes)

�������� ��	
���� �$

������������!���������#7����8

� Average over time – smoothing
� Software filter – like switch debouncing

� Take several readings
� use average for Tb and Tc or their ratio

� Running average so that a reading is available at all
times
� e.g., update running average of 4 readings

current average = ¾ * current average + ¼ * new reading

� Take readings of both Tb and Tc to be extra careful
� Tc changes with temperature
� Usually can do Tc just once

�������� ��	
���� ��

%����
���.����

� Filter capacitors limited noise frequency
� bandwidth limiting

�������� ��	
���� �-

�345�2��'�����

� Accelerometer
duty cycle
varies with force

� 12.5% for each g
� RSET determines

duration of period
� At 1g duty-cycle

will be 62.5% (37.5%)

�������� ��	
���� �/

�345�2��'���������

� Sensitivity (maximum duty cycle change per degree) is
highest when accelerometer is perpendicular to gravity

4

�������� ��	
���� �0

��	���� ��������

� How big a counter do you need?
� Assume 7.37MHz clock
� 1ms period yields a count of 7370

� This fits in a 16-bit timer/counter
� Should you use a prescaler for the counter?
� Bit precision issues

unsigned int positive;
unsigned int period;
unsigned int pos_duty_cycle;

BAD:
pos_duty_cycle = positive/period;

BAD:
pos_duty_cycle = (positive * 1000) / period;

OKAY:
pos_duty_cycle = ((long) positive * 1000) / period;

�������� ��	
���� �2

%�*���5�3

� Easy to control intensity of light through pulse-width
modulation

� Duty-cycle is averaged by human eye
� Light is really turning on and off each period
� Too quickly for human retina (or most video cameras)
� Period must be short enough (< 1ms is a sure bet)

� LED output is low to turn on light, high to turn it off
� Active low output

�������� ��	
���� ��

������� ����.��5�3

� Varying PWM output
volatile uint8_t width; /* positive pusle width */
volatile uint8_t delay; /* used to slow the pulse width changing */

SIGNAL (SIG_OVERFLOW2)
{

if(delay++ == 20) { OCR2 = width++; delay = 0; }
}

int main (void)
{

/* must make OC2 pin an output for the PWM to visible */
DDRD = _BV(DDD7);
/* use Timer 2 FastPWM and the overflow interrupt to update duty-cycle */
TCCR2 = _BV (WGM21) | _BV (WGM20) | _BV (COM21) | _BV(COM20) | _BV(CS21) | _BV(CS20);
TIMSK = _BV (TOIE2);
/* setup initial conditions */
delay = 0;
/* enable interrupts */
sei ();
for (;;)
{ ; /* LOOP FOREVER as the interrupt will make necessary adjustment */ }
return (0);

}

�������� ��	
���� ��

9������	

�������� ��	
���� ��

����

� Color perception usually involves three quantities:
� Hue: Distinguishes between colors like red, green, blue, etc
� Saturation: How far the color is from a gray of equal intensity
� Lightness: The perceived intensity of a reflecting object

� Sometimes lightness is called brightness if the object is emitting light instead of
reflecting it.

� In order to use color precisely in computer graphics, we need to be able to
specify and measure colors.

�������� ��	
���� ��

�Definition: A mapping of color components onto a Cartesian
coordinate system in three or more dimensions.

�RGB, CMY, XYZ, HSV, HLS, Lab, UVW, YUV, YCrCb, Luv,
L* u* v*, ..

�Different Purposes: display, editing, computation,
compression, ..

�Equally distant colors may not be equally perceivable

�������� ��

5

�������� ��	
���� �$

������+��	����:

(";%�������)

� R, G, B normalized on orthogonal axes
� All representable colors inside the unit cube
� Color Monitors mix R, G and B
� Video cameras pick up R, G and B
� CIE (Commission Internationale de l’Eclairage)

standardized in 1931: B: 435.8 nm, G: 546.1 nm, R: 700
nm.

� 3 fixed components acting alone can’t generate all
spectrum colors.

�������� ��	
���� ��

";%��������� �

�������� ��	
���� �-

��!����������";%

� Only a small range of potential perceivable colors (particularly for
monitor RGB)

� It isn’t easy for humans to say how much of RGB to use to get a
given color
� How much R, G and B is there in “brown”?

� Perceptually non-linear
� Two points, a certain distance apart, may be perceptually different in one

part of the space, but could be same in another part of the space.

�������� ��	
���� �/

��!�� ��+��������(�	<�������)
� Color results from removal of light from the

illumination source
� Pigments absorb R, G or B and so give C, M or Y

� Used in deskjet/ inkjet printers.
� No ink (pigment) = white

�������� ��	
���� �0

�	<��������� �

�������� ��	
���� �2

Converting between RGB and CMY

6

�������� ��	
���� ��

��� �.���*�����

� Color perception usually involves three quantities:
� Hue: Distinguishes between colors like red, green, blue, etc
� Saturation: How far the color is from a gray of equal intensity
� Lightness: The perceived intensity of a reflecting object

� Sometimes lightness is called brightness if the object is
emitting light instead of reflecting it.

�������� ��	
���� ��

=���3���������3��&�8

� Artists often specify color as tints, shades, and tones of saturated
(pure) pigments

� Tint: Gotten by adding white to a pure pigment, decreasing
saturation

� Shade: Gotten by adding
black to a pure pigment,
decreasing lightness

� Tone: Gotten by adding
white and black to a pure
pigment

White

Pure Color

Black

Grays

Tints

Shades
Tones

�������� ��	
���� ��

=�>��������� �

� Computer scientists frequently use an intuitive color
space that corresponds to tint, shade, and tone:

� Hue - The color we see (red, green, purple)

� Saturation - How far is the color from gray (pink is less saturated
than red, sky blue is less saturated than royal blue)

� Brightness (Luminance) - How bright is the color (how bright are
the lights illuminating the object?)

HSV Color space

�������� ��	
���� �$

=�>������	����

� Hue (H) is the angle
around the vertical axis

� Saturation (S) is a value
from 0 to 1 indicating
how far from the vertical
axis the color lies

� Value (V) is the height of the
hexcone”

�������� ��	
���� ��

=�>��������� �

� A more intuitive color space
� H = Hue
� S = Saturation
� V = Value (or brightness)

http://www.cs.rit.edu/~ncs/color/a_spaces.html

7

�������� ��	
���� �-

� Normally represented as a cone or hexcone
� Hue is the angle around the circle or the regular

hexagon; 0 � H � 360
� Saturation is the distance from the center; 0 � S � 1
� Value is the position along the axis of the cone or

hexcone; 0 � V � 1
� Value is not perceptually-based, so colors of the

same value may have slightly different brightness
� Main axis is grey scale

���������	

�������� ��	
���� �/

if (S == 0) //HSV values = From 0 to 1
{

R = V * 255 //RGB results = From 0 to 255
G = V * 255
B = V * 255

}
else
{

var_h = H * 6
var_i = int(var_h) //Or ... var_i = floor(var_h)
var_1 = V * (1 - S)
var_2 = V * (1 - S * (var_h - var_i))
var_3 = V * (1 - S * (1 - (var_h - var_i)))

if (var_i == 0) { var_r = V ; var_g = var_3 ; var_b = var_1 }
else if (var_i == 1) { var_r = var_2 ; var_g = V ; var_b = var_1 }
else if (var_i == 2) { var_r = var_1 ; var_g = V ; var_b = var_3 }
else if (var_i == 3) { var_r = var_1 ; var_g = var_2 ; var_b = V }
else if (var_i == 4) { var_r = var_3 ; var_g = var_1 ; var_b = V }
else { var_r = V ; var_g = var_1 ; var_b = var_2 }

R = var_r * 255 //RGB results = From 0 to 255
G = var_g * 255
B = var_b * 255
}

}

�����
���

�
������
�

�������� ��	
���� �0

5�!���'!7� ��+��

� The goal of this lab is to implement a virtual knob in HSV
color space to generate the majority of colors using a tri-
color LED in RGB color space.

� You will determine the movement of the virtual knob by
measuring accelerometer readings through pulse width
measurements.

� In addition, you will also use pulse width modulation to
control the brightness of the LEDs.

�������� ��	
���� �2

5�!���� �����

� how to read an accelerometer via pulse width
measurement

� how to use the input capture on the 16-bit timer on the
ATmega16 to do so

� how to adjust the intensity of a light using pulse width
modulation

�������� ��	
���� ��

5�!��

� Timer0 is used to generate the 3 PWM signals needed
for the tri-color LED

� Timer1 is input capture for the x-axis
� Timer2 is used with INT0 to perform input capture for the

y-axis

