

- Pulse a digital signal to get an average "analog" value
- The longer the pulse width, the higher the voltage

Anti-lock brake system

- Rear wheel controller/anti-lock brake system
- Normal operation
- Regulate velocity of rear wheel
- Brake pressed
- Gradually increase amount of breaking
- If skidding (front wheel is moving much faster than rear wheel) then temporarily reduce amount of breaking
- Inputs
- Brake pedal
- Front wheel speed
- Rear wheel speed
- Outputs
- Pulse-width modulation rear wheel velocity
- Pulse-width modulation brake on/off

CSE 466 PWM-Color $\quad 3$

Why pulse-width modulation works

- Most mechanical systems are low-pass filters
- Consider frequency components of pulse-width modulated signal
- Low frequency components affect components - They pass through
- High frequency components are too fast to fight inertia - They are "filtered out"
- Electrical RC-networks are low-pass filters
- Time constant ($\tau=\mathrm{RC}$) sets "cutoff" frequency that separates low and high frequencies
CSE 466 PWM-Color $\quad 2$

CSE 466 PRM-Color $\quad 4$

Accelerometer

- Micro-electro-mechanical system that measures force - F = ma (I. Newton)
- Measured as change in capacitance between moving plates
- Designed for a maximum g-force (e.g., 2-10g)
- 2-axis and 3 -axis versions
- Used in airbags, laptop disk drives, etc.

Analog Devices ADXL202

- 2-axis accelerometer
- Set 0 g at 50% duty-cycle
- Positive acceleration increases duty cycle
- Negative acceleration decreases duty cycle
- 12.5% per g in either direction

Typical signal from ADXL202

- Cause interrupts at Ta, Tb, and Tc from X-axis output
- 1. Look for rising edge, reset counter: $\mathrm{Ta}=0$
- 2. Look for falling edge, record timer: $\mathrm{Tb}=$ positive duty cycle
- 3. Look for rising edge, record timer, reset counter: Tc = period
- Repeat from 2
- Same for Y-axis output (T2 is the same for both axes)

Built-in filter

- Filter capacitors limited noise frequency - bandwidth limiting
- Software filter - like switch debouncing
- Take several readings
- use average for Tb and Tc or their ratio
- Running average so that a reading is available at all times
- e.g., update running average of 4 readings
current average $=3 / 4^{*}$ current average $+1 / 4^{*}$ new reading
- Take readings of both Tb and Tc to be extra careful
- Tc changes with temperature
- Usually can do Tc just once
$\begin{array}{ll}\text { CSE 466 } & \text { PWWM-Color } \\ 15\end{array}$

```
PWMM Calculations
- How big a counter do you need?
- Assume 7.37MHz clock
- 1ms period yields a count of 7370
    _ This fits in a 16-bit timer/counter
- Should you use a prescaler for the counter?
- Bit precision issues
    unsigned int positive;
    unsigned int period;
    unsigned int pos_duty_cycle;
    BAD:
        pos_duty_cycle = positive/period;
        BAD:
        pos_duty_cycle = (positive * 1000) / period;
        оKAY:
        pos_duty_cycle = ( (long) positive * 1000 )/ period;
C CSE 466 PNM-Color 
```

Sample code for LED

- Varying PWM output
volatile uint8_t width; /* positive pusle width */
volatile uint _t delay; /* used to slow the pulse width changing */
SIGNAL (SIG_Overflow2)
if $($ delay $++==20) \quad$ oCR2 $=$ width+ + delay $=0 ; ~$,
int main (void)
/* must make oc2 pin an output for the PVM to visible */
DDRD $=-\operatorname{BV}(\operatorname{DDD7);}$
** use Timer 2 FastpuM and the overflow interrupt to update duty-cycle *

TIMSK $=-$ BV (TOIE2);
/ $*$ setup initial conditions $* /$
/* setup initial conditi
delay $=0 ;$
/* enable interrupts */
sei ($1 ;$
for ($;$)
$\begin{aligned} & \text { i i } / \times \text { LOOP FOREVER as the interrupt will make necessary adjustment */ f } \\ & \text { return (0); }\end{aligned}$

1
CSE 466
PWM-Color

Color Spaces

-Definition: A mapping of color components onto a Cartesian coordinate system in three or more dimensions.
-RGB, CMY, XYZ, HSV, HLS, Lab, UVW, YUV, YCrCb, Luv, $L^{*} u^{*} v^{*}, .$.
-Different Purposes: display, editing, computation, compression, ..
-Equally distant colors may not be equally perceivable

Bright LED

- Easy to control intensity of light through pulse-width modulation
- Duty-cycle is averaged by human eye
- Light is really turning on and off each period
- Too quickly for human retina (or most video cameras)
- Period must be short enough (< 1 ms is a sure bet)
- LED output is low to turn on light, high to turn it off - Active low output
CSE 466 PWM-Color $\quad{ }^{20}$

Problems with RGB
- Only a small range of potential perceivable colors (particularly for
monitor RGB)
- It isn't easy for humans to say how much of RGB to use to get a
given color
a How much R, G and B is there in "brown"?
- Perceptually non-linear
a Two points, a certain distance apart, may be perceptually different in one
part of the space, but could be same in another part of the space.

Specifying Color

- Color perception usually involves three quantities:
- Hue: Distinguishes between colors like red, green, blue, etc
- Saturation: How far the color is from a gray of equal intensity

Lightness: The perceived intensity of a reflecting object

- Sometimes lightness is called brightness if the object is emitting light instead of reflecting it.

HSV Color Space	
- Computer scientists frequently use an intuitive color space that corresponds to tint, shade, and tone:	
- Hue - The color we see (red, green, purple)	
- Saturation - How far is the color from gray (pink is less saturated than red, sky blue is less saturated than royal blue)	
- Brightness (Luminance) - How bright is the color (how bright are the lights illuminating the object?)	
	1
बाप	nancour

How Do Artists Do It?

- Artists often specify color as tints, shades, and tones of saturated (pure) pigments
- Tint: Gotten by adding white to a pure pigment, decreasing saturation
- Shade: Gotten by adding black to a pure pigment, decreasing lightness
- Tone: Gotten by adding white and black to a pure pigment

HSV Color Space

- A more intuitive color space
- $\mathrm{H}=$ Hue
- $\mathrm{S}=$ Saturation
- $\mathrm{V}=$ Value (or brightness)

http:///www.cs.rit.edu/~ncs/color/a

HSV System

- Normally represented as a cone or hexcone
- Hue is the angle around the circle or the regular hexagon; $0 \leq H \leq 360$
- Saturation is the distance from the center; $0 \leq S \leq 1$
- Value is the position along the axis of the cone or hexcone; $0 \leq V \leq 1$
- Value is not perceptually-based, so colors of the same value may have slightly different brightness
- Main axis is grey scale

Lab 3 Objectives

- The goal of this lab is to implement a virtual knob in HSV color space to generate the majority of colors using a tricolor LED in RGB color space.
- You will determine the movement of the virtual knob by measuring accelerometer readings through pulse width measurements.
- In addition, you will also use pulse width modulation to control the brightness of the LEDs.
CSE 466 PNWM-Color $\quad 39$

Lab 3 actions

- how to read an accelerometer via pulse width measurement
- how to use the input capture on the 16-bit timer on the ATmega16 to do so
- how to adjust the intensity of a light using pulse width modulation

Lab 3

- Timer0 is used to generate the 3 PWM signals needed for the tri-color LED
- Timer1 is input capture for the x-axis
- Timer2 is used with INT0 to perform input capture for the y-axis

