
1

�������� ��	
������ �

��	
������

� Connecting the computation capabilities of a
microcontroller to external signals
� Transforming variable values into voltages and vice-versa
� Digital and analog

� Issues
� How many signals can be controlled?
� How can digital and/or analog inputs be used to measure

different physical phenomena?
� How can digital and/or analog inputs be used to control different

physical phenomena?

�������� ��	
������ �

���	������������
�	����	��	�
�
�������
�	

� To control or react to the environment we need to
interface the microcontroller to peripheral devices
� Microcontroller may contain specialized interfaces to sensors and

actuators

� Things we want to measure or control
� light, temperature, sound, pressure, velocity, position

� Sensors
� e.g., switches, photoresistors, accelerometers, compass, sonar

� Actuators
� e.g., motors, relays, LEDs, sonar, displays, buzzers

�������� ��	
������ �

����������	�������	
�

����������

���	����

��
��

��
�����

���

���������

�������� ��	
������ �

������	������	������
�����

� Map analog inputs to a range of binary values
� 8-bit A/D has outputs in range 0-255

� What if we need more information?
� linear vs. logarithmic mappings
� larger range of outputs (16-bit a/d)

0 64 128 192 255

1 10 100 1000.1

1 10 100 1000.1

analog

analog

digital

�������� ��	
������ �

 ����	������������

� Usually use an op-amp circuit
� Often found as a pre-amplifier to ADC circuitry
� Simple circuit to computer natural logarithm

VIN VOUT = loge (VIN)

�������� ��	
������ �

!���	��	�����������
�����

� Map binary values to analog outputs (voltages)
� Most devices have a digital interface – use time to encode value
� Time-varying digital signals – almost arbitrary resolution

� pulse-code modulation (data = number or width of pulses)
� pulse-width modulation (data = duty-cycle of pulses)
� frequency modulation (data = rate at which pulses occur)

V

t
V

t
V

t

2

�������� ��	
������ "

#$��
%&��	�����$�	���

� Pulse a digital signal to get an average “analog” value
� The longer the pulse width, the higher the voltage

Pulse-width ratio =
ton

tperiod

t

t

t

average
valuetperiod ton

�������� ��	
������ '

(����$��
%&��	�����$�	����&��)�

� Most mechanical systems are low-pass filters
� Consider frequency components of pulse-width modulated signal
� Low frequency components affect components

� They pass through

� High frequency components are too fast to fight inertia
� They are “filtered out”

� Electrical RC-networks are low-pass filters
� Time constant (τ = RC) sets “cutoff” frequency

that separates low and high frequencies

�������� ��	
������ *

��	�%���)�+�)
����	
�

� Rear wheel controller/anti-lock brake system
� Normal operation

� Regulate velocity of rear wheel
� Brake pressed

� Gradually increase amount of breaking
� If skidding (front wheel is moving much faster than rear wheel)

then temporarily reduce amount of breaking

� Inputs
� Brake pedal
� Front wheel speed
� Rear wheel speed

� Outputs
� Pulse-width modulation rear wheel velocity
� Pulse-width modulation brake on/off

�������� ��	
������ �,

-
��&�

�����	����
�.�	�%���)�+�)
����	
�

micro
controller

brake pedal pressed

front wheel velocity

rear wheel velocity

brake on/off

move rear wheel

�������� ��	
������ ��

/�����.0����	��1+�)
�2

� Check if brake pedal pressed – or interrupt
� brakePressed = read (brakePedalPort)

� Turn brake on/off
� write (brakePort, onOff)

� Move rear wheel
� write (rearWheel, onOff)

micro
controller

brake on/off

move rear wheel

GPIO
port

brake pedal pressed

front wheel velocity

rear wheel velocity

GPIO
port

�������� ��	
������ ��

#���������3���	
��$�	�

� Software must repeatedly check
� Brake pedal port
� How often?
� Need to make sure not to forget to do so (use timer)

� Use automatic detection capability of processor
� Connect brake pedal to input capture or external interrupt pin
� Interrupt on level change
� Interrupt handler for brake pedal

micro
controller

GPIO
portbrake pedal pressed

3

�������� ��	
������ ��

#$��
%&��	�����$�	��������+�)
�

� To pump the brakes gradually increase the duty-cycle
(ton) until car stops

t

t

�������� ��	
������ ��

� Use timer to turn brake on and off
� Apply brake
� Set timer to interrupt after “on” time
� Disengage brake
� Set time to interrupt after “off” time
� Repeat

� How do we tell which interrupt is which?

/�)
��$����
	$�

t

start timer running

set timer to go off at each edge

�������� ��	
������ ��

� Change value of “on” time to change analog average
� average output = (on + off) / (period)

� How do we decide on the period of the pulses?
� Using two timers

� One to set period (auto-reload)
� One to turn it off at the right duty cycle

/�)
��$����
	$��1���	4�2

t

start timer running

set timer to go off at each edge

�������� ��	
������ ��

���	�
����
��

� Need to determine the rear wheel velocity
� Use sensor to detect wheel moving

� Determine speed of a bicycle
� Attach baseball card so it pokes through spokes
� Number of spokes is known
� Count clicks per unit time to get velocity

� Baseball card sensor is a shaft encoder

bike wheel

baseball card

click!

�������� ��	
������ �"

���	�
����
��

� Instead of spokes we’ll use black and white segments
� Black segments absorb infrared light, white reflects
� Count pulses instead of clicks

emitter
detector

wheel infrared
light

pulse

�������� ��	
������ �'

�-��
��
�	��
��		
���

� How many segments should be used?
� More segments give finer resolution
� Fewer segments require less processing
� Tradeoff resolution and processing

4

�������� ��	
������ �*

��	
����������	�
����
��

� Use interrupt on GPIO pin
� Every interrupt, increment counter

� Use timer to set period for counting
� When timer interrupts, read GPIO pin counter
� velocity = counter ∗ “known distance per click” / “judiciously chosen period”
� Reset counter

� Pulse accumulator function
� Common function
� Some microcontrollers have this in a single peripheral device
� Basically a counter controlled by an outside signal

� Signal might enable counter to count at rate of internal clock – to measure time
� Signal might be the counter’s clock – to measure pulses

� ATmega16 has external clock source for timer/counter

�������� ��	
������ �,

5
�
�����	
���
��	����������	����
��

� Microcontrollers come with built-in I/O devices
� Timers/counters
� GPIO
� ADC
� Etc.

� Sometimes we need more . . .
� Options

� Get a microcontroller with a different mix of I/O
� Get a microcontroller with expansion capability

� Parallel memory bus (address and data) exposed to the outside world
� Serial communication to the outside world

�������� ��	
������ ��

�.0����	�

� The are never enough I/O ports
� Techniques for creating more ports

� port sharing with simple glue logic
� decoders/multiplexors
� memory-mapped I/O
� port expansion units

� Direction of ports is important
� single direction port easier to implement
� timing important for bidirectional ports

�������� ��	
������ ��

#��	�������

�� ���� � �� ���� � �� ���� � �� ���� � �� ���� �

� If signals all in same direction and have a separate
guard signal, then able to share without glue logic

� Example: connect 5 LCD displays to microcontroller
� can share connections to RS, RW, and DB but not E
� changes on E affect display – must guarantee only one is active

�������� ��	
������ ��

6���
��������

� Conflict on device signals (e.g., one signal affects both)
� solution is to insert intervening registers that keep signals stable
� registers require enable signals which now need ports as well

µ
C

device A

device B

µ
C

D
Q

EN

D
Q

EN

device A

device B

�������� ��	
������ ��

!
���
�������$�	���
7���

� Encode n single-bit device ports using log n bits of a
controller port
� enabled decoder: one-hot, input-only device ports
� registered decoder: input-only (but not one-hot) device ports
� multiplexor: output-only device ports

n one-hot
signals

log(n)
bits

enable

µC

enabled decoder

n signalsµC log(n)
bits

enable

D
Q

EN
n register
select lines

registered decoder

µC
log(n)
select bits

n signalsdata

multiplexor

5

�������� ��	
������ ��

8
����%���
���.0

� Address bus selects device
� Data bus contains data

����

����

�

���	
������

�

�� �

���
�

�������� ��	
������ ��

8
����%���
���.0

� Partition the address space
� Assign memory-mapped locations
� Software

� loads read from the device
� stores write to the device

� Can exploit unused bits for device input-only ports

���	
������
�
�������������	�����

����

�������

�������� ��	
������ �"

#��	�
7�������$��	�

� Problem of port shortage so common port expansion
chips exist

� Easily connect to the microprocessor
� Timing on ports may be slightly different
� May not support interrupts

��
����

������	��
����

���

��������

��������

��������

����

�������� ��	
������ �'

����
�	����	��	�
��$	���
�&����

� Exploit specialized functions (e.g., UART, timers)
� Attempt to connect directly to a device port without adding interface

hardware (e.g., registers), try to share registers if possible but
beware of unwanted interactions if a signal goes to more than one
device

� If out of ports, must force sharing by adding hardware to make a
dedicated port sharable (e.g., adding registers and enable signals
for the registers)

� If still run out of ports, then most encode signals to increase
bandwidth (e.g., use decoders)

� If all else fails, then backup position is memory-mapped I/O, i.e.,
what we would have done if we had a bare microprocessor

�������� ��	
������ �*

��%+�	�5
�
��%�$����
��.0����	

� Suppose we wanted a 64-bit I/O port
� If EN is true, then we have an output pin
� If EN is false, then we have an input pin

�������� ��	
������ �,

��%+�	��.0����	����	&�

� We need 8 8-bit registers to store/write the 64 bits
� Select the EN addresses to be $...000 to $...007
� Select OUT addresses to be $...010 to $...017

� Read 15th bit
� load value at address $...011 (2nd set of OUT regs)
� logical AND with 0x80
� bit position 7 of result is 15th bit

� Write the 47th bit
� read OUT register at $...015
� set bit position 7 to desired value (or with 0x80)
� store in $...015
� load EN register at $...005
� set bit to output
� store value back to $...005

6

�������� ��	
������ ��

�7	
����#(8�9��	

� Design a system to control a digital
� Solution: design a PWM unit

�������� ��	
������ ��

	������������ !
����"������#����$��

�����	����	%�&	�����	���!

����"������#����$��
�����	����	%�&	��'�&����	���!

����"������#����(%�

	������������ !
����"������#����$��

������
������

�����	������	���'�&����	���!
����"������#����$��

�����	������	������	���!
����"������#����(%�

������
������

� ������ ����� ����� �������� �� ����

�7	
����#(8�6�8����	����
�

�������� ��	
������ ��

�7	
����#(8����	&�

// in initialization code
Write off to onOff register

// do some stuff

// set up PWM
Repeat for each motor

Write highTime and period registers

// turn motors on
Repeat for each motor

Write on to the onOFF register

// more stuff

�������� ��	
������ ��

���
�
7���
��.0��
���
�

� Sonar range finder
� Compass
� IR proximity detector
� Accelerometer
� Bright LED

�������� ��	
������ ��

��������
�����
�

� Uses ultra-sound (not audible) to measure distance
� Time echo return
� Sound travels at approximately 343m/sec

� need at least a 34.3kHz timer for cm resolution

� One simple echo not enough
� many possible reflections
� want to take multiple readings for high accuracy

�������� ��	
������ ��

#���������,,���������
�����
�

� Commonly found on old Polaroid cameras, now a frequently used
part in mobile robots

� Transducer (gold disc)
� charged up to high voltage

and “snapped”
� disc stays sentisized so it

can detect echo (acts as
microphone)

� Controller board
� high-voltage circuitry

to prepare disc for
transmitting and then
receiving

7

�������� ��	
������ �"

#���������,,���������
�����
��1���	4�2

� Only need to connect two pins to microcontroller
� INIT - start transmitting
� ECHO - return signal

� Some important information
from data sheet
� INIT requires large

current (greater than
microcontroller can
provide – add external
buffer/amplifier)

� ECHO requires a
pull-up resistor (determine
current that needs to flow
into microcontroller pin
- size resistor so proper
voltage is on pin

�������� ��	
������ �'

������

� Four compass directions (each has three pins)
� One-hot/two-hot encoding

� one-hot for N, E, S, W
� two-hot for NE, SE, SW, NW

�����

� � �

�

�

�
��� Ω

 !"Ω

�#
��#

��
�$����� ��

�������� ��	
������ �*

�������1���	4�2

� Detecting a change in compass direction
� 4 bits change from 0001 to 0011 to 0010 to 0110 to 0100 …
� Always alternating between one bit on and two bits on

� Parity tree can detect difference between one and two bits being
asserted
� XOR tree of four bits (one TTL SSI package)
� Output must change at least once for every change in orientation
� Use interrupts to detect changes

N
E

S
W

e.g.,
NE � E � SE

1100 � 0100 � 0110
0 � 1 � 0

�������� ��	
������ �,

�-����7���	���
	
�	��

� ����
����������

� Oscillator must be set to match detector

�������� ��	
������ ��

�-���
:$
�������$�	���

�������� ��	
������ ��

#��7���	�����

turn on emitter
sleep for 600us timer goes off
val_on = read detector wake
turn off emitter
sleep for 600us timer goes off
val_off = read detector wake
return (val_on & ~val_off)

turn on emitter
set timer
sleep timer goes off

val_on = read detector
turn off emitter
reset timer
sleep timer goes off (again)

val_off = read detector
return (val_on & ~val_off) wake

Mostly in main

Using interrupt handlers

8

�������� ��	
������ ��

8��
���	
��	
�����7���	���
	
�	��

� Always sending out IR
� Detector drives LED (guaranteed to match frequency)

�������� ��	
������ ��

���
�
���
	
�

� Micro-electro-mechanical system that measures force
� F = ma (I. Newton)
� Measured as change

in capacitance
between moving
plates

� Designed for a
maximum g-force
(e.g., 2-10g)

� 2-axis and 3-axis
versions

� Used in airbags,
laptop disk drives,
etc.

�������� ��	
������ ��

���
�
���
	
���$	�$	

� Analog output too susceptible to noise
� Digital output requires many pins for precision
� Use pulse-width modulation
� What about gravity?

�������� ��	
������ ��

������!
���
���!; �,��

� 2-axis accelerometer
� Set 0g at 50% duty-cycle
� Positive acceleration

increases duty cycle
� Negative acceleration

decreases duty cycle
� 12.5% per g

in either direction

�������� ��	
������ �"

��������
�$�
�
�	������!; �,�

� Noisy data – all forces are aggregated by accelerometer
� Sample trace at 250Hz

Walking down six
flights of stairs Elevator ride

�������� ��	
������ �'

�������������������!; �,�

� Cause interrupts at Ta, Tb, and Tc from X-axis output
� 1. Look for rising edge, reset counter: Ta = 0
� 2. Look for falling edge, record timer: Tb = positive duty cycle
� 3. Look for rising edge, record timer, reset counter: Tc = period
� Repeat from 2
� Same for Y-axis output (T2 is the same for both axes)

9

�������� ��	
������ �*

(�	�	�����+�$	�����
.<�		
�=

� Average over time – smoothing
� Software filter – like switch debouncing

� Take several readings
� use average for Tb and Tc or their ratio

� Running average so that a reading is available at all
times
� e.g., update running average of 4 readings

current average = ¾ * current average + ¼ * new reading

� Take readings of both Tb and Tc to be extra careful
� Tc changes with temperature
� Usually can do Tc just once

�������� ��	
������ �,

/$��	%������	
�

� Filter capacitors limited noise frequency
� bandwidth limiting

�������� ��	
������ ��

�!; �,��0$	�$	

� Accelerometer
duty cycle
varies with force

� 12.5% for each g
� RSET determines

duration of period
� At 1g duty-cycle

will be 62.5% (37.5%)

�������� ��	
������ ��

�!; �,��0��
�		���

� Sensitivity (maximum duty cycle change per degree) is
highest when accelerometer is perpendicular to gravity

�������� ��	
������ ��

#(8����$�	����

� How big a counter do you need?
� Assume 7.37MHz clock
� 1ms period yields a count of 7370

� This fits in a 16-bit timer/counter
� Should you use a prescaler for the counter?
� Bit precision issues

unsigned int positive;
unsigned int period;
unsigned int pos_duty_cycle;

BAD:
pos_duty_cycle = positive/period;

BAD:
pos_duty_cycle = (positive * 1000) / period;

OKAY:
pos_duty_cycle = ((long) positive * 1000) / period;

�������� ��	
������ ��

/����	� �!

� Easy to control intensity of light through pulse-width
modulation

� Duty-cycle is averaged by human eye
� Light is really turning on and off each period
� Too quickly for human retina (or most video cameras)
� Period must be short enough (< 1ms is a sure bet)

� LED output is low to turn on light, high to turn it off
� Active low output

10

�������� ��	
������ ��

����
����
����� �!

� Varying PWM output
volatile uint8_t width; /* positive pusle width */
volatile uint8_t delay; /* used to slow the pulse width changing */

SIGNAL (SIG_OVERFLOW2)
{

if(delay++ == 20) { OCR2 = width++; delay = 0; }
}

int main (void)
{

/* must make OC2 pin an output for the PWM to visible */
DDRD = _BV(DDD7);
/* use Timer 2 FastPWM and the overflow interrupt to update duty-cycle */
TCCR2 = _BV (WGM21) | _BV (WGM20) | _BV (COM21) | _BV(COM20) | _BV(CS21) | _BV(CS20);
TIMSK = _BV (TOIE2);
/* setup initial conditions */
delay = 0;
/* enable interrupts */
sei ();
for (;;)
{ ; /* LOOP FOREVER as the interrupt will make necessary adjustment */ }
return (0);

}

�������� ��	
������ ��

6�	�#(8

