
1

������� ��	
��������� �

�����������������	
����������

� World Cup Soccer
� Two week project to tie together everything you’ve learned in 466

� Each of you will prepare a sensor node to be a player
� You will operate your own player
� All will have different code but conform to a player interface
� You will be graded on how well you meet the interface specification

� All of you will play a game together
� Red vs. Blue
� Encounter issues of scale

� Prepare basic moves in Lab 7
� How to determine ∆x and ∆y

� Wireless communication to game controller and between players on
same team

������� ��	
��������� �

������ ��!������"������#�	�$

� Each node (“bird”) sings a song
� It listens to its neighbors to hear what they sang
� It makes a decision as to which song to sing next

� This can lead to an emergent behavior – property of the group
� We’ll be trying for an effect that propagates a song around the flock

� If it is startled (by a shadow cast on its light sensor), then it makes a
“scared” noise and informs its neighbors who will do the same

� If it is “selected” (by a repeating shadow on its light sensor), then it
send a packet to the controller

� It synchronizes with neighbors by adjusting to time values in every
packet it receives

� It responds to commands from controller
� Adjust parameters
� Turn on LED
� Sing a specific song at a specific time

2

������� ��	
��������� %

&����'���!�����	�����(

� Official playing field

������� ��	
��������� �

)*�� ��'����#���+�, �	�����

3

������� ��	
��������� -

.����� ��'��/	0��

� Use accelerometer to generate ∆x, ∆y (?? units/sec)

������� ��	
��������� �

.����� ��'���		�+����	��	#���//���

� Players merge if they get close (within ?? units)
� Merged player moves twice as fast
� Can keep merging into larger and larger players

4

������� ��	
��������� 1

.����� ��'���������	��	#�	 	����� ��'���

� Opposing players split apart if they get close
� Split produces all singleton players
� Singletons appear to jump to random locations

������� ��	
��������� �

.����� ��'����	����

� Go through goal – score proportional to size of player

2 pts

5

������� ��	
��������� 2

� ��������/�����/���

� Worm holes
� Lines on field that, if crossed, by a player teleport the player to a

corresponding line on the other side of the field

� Gravity wells
� Points in the field that slow players down or maybe just those of

the opposing team

������� ��	
��������� �3

�	/�������� ���/����

� Field size: 480 by 640 units
� Player movement: up to 20 units/second
� One end of the field to the other in ~30 seconds

� Player diameter:
� 10 units for singleton
� sqrt(100*n) for merged player

� Player proximity:
� Teammates must touch/overlap to merge
� Opposing players must touch to split (appear at least 50 units away from

point of contact)

� Goal size: 48 units (1/10 of field width)

17
23

6

������� ��	
��������� ��

.������	#"����#	������� ��'��

� Poll accelerometer – at least a few times per second
� Up to �20 in x-direction and �20 in y-direction
� Make sure to handle stationary player well

� Respond to messages from game controller
� Send move ∆x, ∆y to game controller if singleton player or merged-

player captain (if part of a merged player)
� Update display and/or play sound
� Display shows

� Player number
� Number of captain of merged-player (if merged in)
� Game score
� Position of player on field

� Sounds for different actions allowed by controller
� movement, hitting out-of-bounds line, scoring, merging, and splitting

������� ��	
��������� ��

.������		 �#	����/���	��	����

� Polls each player in turn – round-robin – as fast as it can
� Singleton players first, merged-players last

� As players receive messages they reply as quickly as possible to
game controller or merged-player captain (controller can overhear)

� If player doesn’t respond within a specified amount of time,
controller moves on to next player – that player doesn’t move

� Controller updates screen after one full cycle through
players
� Expected refresh rate is 3-5 frames per second

� ~500bits/packet, 28 players, 2 packets/player = 28Kb/sec
� About 20% of 802.15.4 bandwidth

7

������� ��	
��������� �%

���$��#�	/���/���	��	����

� Source address identifying packet as coming from controller
� Controller is player 0 on team 0

� Destination address
� 2 bytes, team (1 or 2) and player number (player number unique)

� Merged or not merged
� 0 if not merged, # of captain if merged

� Current score
� Action: scored, merged, unmerged, teleported, hit out-of-bounds line
� Position of player on field
� Reset
� Toggle player on/off

������� ��	
��������� ��

���$��	���/���	��	������	���� ����

� Source address (team, # of player)
� Destination address

� To game controller (0, 0)
� To merged-player captain (same team number, captain’s #)

� ∆x, ∆y
� Must be sent as quickly as possible after reception of

packet from game controller

8

������� ��	
��������� �-

����4 ��'����		�+����	�

� Merged-player captain collects moves from member
players and aggregates before sending to controller
� Average move values and multiply by sqrt of merged player size

� Merged ∆x = sqrt(size)*(Σ(∆x i))/size

� Merged ∆y = sqrt(size)*(Σ(∆y i))/size

� 4-player can move up to sqrt(4)*(Σ(20))/4) = 40 units/sec

� Member players send their offsets to captain
rather than game controller

� Captain sends aggregate move to game controller
when it is polled (at end of round-robin poll)

������� ��	
��������� ��

&���5����,6��*/�

� Final demo for the class is a
single multi-player game

� Each student has a mote to
contribute

� Same specification but
different code in each mote

� The motes have to “qualify”
� We will have testing scripts to

simulate the game and
eliminate nodes that may cause
problems

� Used for grading projects

