
�����������	
����
����������������
�������� �����	
������������������� ��!����"#�

"�$
��������

SWARMS

Background:

Swarms is based on the AI concept of Swarm Intelligence:

http://en.wikipedia.org/wiki/Swarm_intelligence

An example of this is the famous BOIDS, which is a visual simulation of a flying flock of
birds. It is characterized by simple rules:

• separation: steer to avoid crowding local flockmates
• alignment: steer towards the average heading of local flockmates
• cohesion: steer to move toward the average position of local flockmates

The variant of uperform separate physical agents derives from field of Swarm Robotics:

http://www.swarm-robotics.org/

Description:

A Swarm is a cloud of sound events of related character stretching of a time period of 10s
to 1000s of seconds. The choices and characteristics of the sounds derive from the
execution of a set of common rules, without the intervention of any central control.
Therefore, the resultant effect falls under the category of Emergent Behavior.

Swarms consist of several types:

Swarms:

8 PD patches, 1 swarmless (silent) and 7 distinct patches, arranged in a continuous
timbral space, TBD

User Interface:

Each pair of partners will implement a GUI interface using the LCD and the rocker
switch. This interface will allow for:

1. Set Zone 1-6. Zone is a value that we can incorporate into the above choice
algorithms.

2. Manual Start/Stop. This will start the process. A global command packet can do
this, as well.

3. Display: SwarmNum, Transmit Signal Strength, Avg. Received Signal Strength,
other parameters as needed.

�����������	
����
����������������
�������� �����	
������������������� ��!����"#�

"�$
��������

Each set of partners will implement their own version of a “Cooperative compositional
agent” using the specifications listed in this document. Your compiled code will run on
both you and your partner’s “agents” for the Swarms demonstration during the final
class time, 12:30 PM, on Friday, Dec. 7th in the atrium. Remember you need to
qualify your “agent” before it can participate in the Swarms demonstration. If for some
reason you are unable to qualify your “agent”, an alternative “agent” program will be
provided so that you may receive your participation points for the demonstration.

Hints:

You should use enum types for default values and constants to simplify future
modifications.

Try to minimize the number of divides and mod used in your code. Calculate the
needed values only once and store the results. A memory read is a lot faster than a
divide and/or mod.

NOTE: Not all of the agent implementations need to be the same. The implementations
must only meet the specifications outlined. Differences in agent behavior will not be
penalized as long as the behavior is within the specifications contained in this document.
In fact, it is encouraged that each group’s implementation be slightly different as long as
they meet the specifications.

Implementation Details:

Addressing:

TBD

Swarms Algorithm:

Within a individual "agent", the Swarms state machine that you will implement has the
following states:

A) SWARMLESS_WAIT STATE (Swarmless while waiting)

When entering WAIT STATE {
 set Tri-Color LED to RED;
 start message timer to random time between [minWait, maxWait] seconds;
}
Listen for receive packets;
IF(AdjustGlobals){
 Do so;
}
IF(Command Packet) {
 Perform command. Change LED;
 Stay in WAIT STATE;
}

�����������	
����
����������������
�������� �����	
������������������� ��!����"#�

"�$
� ������

IF (Timer Runout) {
 Restart message timer timer to random time between [minWait, maxWait] seconds;
 Evaluate rules;
 Send Swarm_message;
 Do result of evaluation;
}

B) Join_Swarm STATE

Initialize for Swarm type and start it

Go to SWARM STATE

C) SWARM STATE
Listen for receive packets;
IF(Command Packet) {
 Perform command.
 Re-enter SWARM STATE
}
Restart message timer timer to random time between [minWait, maxWait] seconds;
 Evaluate rules;
 Send Swarm_message;
 Do result of evaluation;

D) END_SWARM STATE

Gracefully end the Swarm you’re doing
Set listen timer for random time between [minWait, maxWait] seconds

Change color of the Tri-Color LED.

Continue to listen and collect information about what the neighbors are doing.

IF(Command Packet) {
 Perform command.
}

Go to SWARMLESS_WAIT STATE

Message types:

There are 4 types of Message packets your program must handle; they are as follows:

AM # Flock Message / Packet

50 AdjustGlobals - A message from Node 0 containing global parameters for all birdies.

 u_int16_t Node0
 u_int16_t Repetition default 3

�����������	
����
����������������
�������� �����	
������������������� ��!����"#�

"�$
��������

 u_int16_t minWait default 3000 millisec.
 u_int16_t maxWait default 6000 millisec.
 u_int16_t Threshold default 600
 u_int16_t minThreshold default 100
 u_int16_t Probability default 10
 u_int16_t Silence default 10
 u_int16_t TransmitPower default 1

51 StopandListen - A message from Node 0 telling you to stop and listen.

 u_int16_t Node0
On receipt, go to
SWARMLESS_WAIT STATE

42 Swarm_message - The "I’m swarming" message; a message from some other agent indicating what
swarm it is performing.
 You also send this packet each 3-6 seconds.

 u_int16_t TransmittingNodeNum local # of originating node
 u_int16_t SequenceNum start at 1, increment each

time you send this packet
 u_int16_t swarmNum Swarm# that was performed
 u_int16_t swarmWeight usually same as Weightmax
 u_int16_t WeightmaxswarmNum
 u_int16_t Weightmax
 u_int16_t Topswarm2Num
 u_int16_t Topswarm2Weight runner-up weight
 u_int16_t WeightminswarmNum
 u_int16_t Weightmin
 u_int16_t TopNodeNum Strongest node you've heard
 u_int16_t TopNodeStrength Highest TOS_msg_strength
 u_int16_t Zone
 u_int16_t TxmtSigStrength

52 DoSwarm - A message from Node 0 telling you to perform swarm N immediately.

 u_int16_t Node0 Go to Join_Swarm STATE
 u_int16_t SwarmN And do swarm N

While listening, we collect the information we hear (AM #42 type packets) in a 64-entry
circular FIFO queue.
Each queue entry looks as follows:

 u_int16_t TransmittingNodeNum

 u_int16_t swarmNum

 u_int16_t TOS_msg_strength

 u_int16_t Zone

 u_int16_t TxmtSigStrength

Each entry writes over the oldest entry in the queue.

�����������	
����
����������������
�������� �����	
������������������� ��!����"#�

"�$
�!������

Evaluate rules

The algorithm for deciding the swarm to perform is as follows:

For all entries in our circular FIFO queue{
 // calculate weighti for swarmNum i == 0 to 7
 Weighti = sum of TOS_msg_strength in circular FIFO queue for
each swarmNum
}

Find Weightmax == Largest Weight; WeightmaxswarmNum is swarm with
Weightmax

Find Weightmin == Smallest non-zero Weight; WeightminswarmNum is
swarm with Weightmin

x = rand() % Probability
y = rand() % Silence

if(x == 0)
 SwarmNum = WeightminswarmNum

else if(y == 0)
 Don't do a swarm-- go to SWARMLESS_WAIT STATE.

else{
 if(Weightmax < minThreshold) ||
 ((Weightmax > Threshold) && (You have already done
WeightmaxswarmNum more than Repetition times)))
 SwarmNum = random swarm not among the last three
swarms you've done more than Repetition times
 else
 SwarmNum = WeightmaxswarmNum
}

Notes:

The threshold and Repetition count are meant to ensure that swarms are
allowed to propagate through the performance space, but then die off after
a while.
The repetition allows a strong swarm to propagate to a large number of
nodes, but then once a swarm has played for a while, it should die off.
This growth and die-off is accomplished by limiting the number of
repetitions once the threshold is reached.

�����������	
����
����������������
�������� �����	
������������������� ��!����"#�

"�$
��������

Zone is used by specific swarms to pick the average center frequency,
similar to the use of the barometer to determine the floor.

