
Variations on The Flock: Wireless Embedded
Systems in an Undergraduate Curriculum

Bruce Hemingway, Waylon Brunette, and Gaetano Borriello
Department of Computer Science and Engineering

 University of Washington
Seattle, WA USA

Abstract— At the University of Washington, we have built our
embedded systems curriculum around an innovative project
that uses small wireless nodes to emulate the vocalizations of a
flock of birds. In this paper, we describe our experience in
building up this project, how it is central to our computer
engineering program, and its evolution over the past several
years into several variations that add diversity to the students’
experience while at the same time keeping us up to date with
technology trends. We conclude with a preview of our future
plans.

I. INTRODUCTION
In 2002, we introduced wireless embedded devices into

our undergraduate computer engineering curriculum. At the
Department of Computer Science & Engineering at the
University of Washington, the core of this program consists
of three classes (that, of course, rely on a large foundational
core curriculum shared with computer science majors):
advanced digital design, embedded software, and a capstone
design experience. Initially, wireless sensor nodes were
limited to use in capstone design classes where students
work on large group projects. In 2003, wireless sensor nodes
became part of the required curriculum in our embedded
software course. The emerging technology of wireless
sensors networks was a good fit to the embedded software
syllabus with many overlapping topics such as interactions
between multiple devices and interfacing techniques for
connecting microcontrollers to a variety of sensors and
actuators (both digital and analog). Moving the topic of
wireless sensor networks to a point earlier in the curriculum
gave students the skills to apply wireless sensors in their
capstone design projects and independent research projects.

Originally, the embedded systems class used 8-bit
microcontrollers that interfaced with stepper motors and
other actuators, and communicated with other devices using
RS-232 and IrDA. To update the course, we first focused on
making sensors an integral part. We changed the early
exercises to take students through the steps of designing their
own USB device using a 2-axis accelerometer to emulate a
mouse that was used to control a color selector on a pc. This
condensed some material covered in previous edition of the
course. We also introduced the ATmega architecture so that
it would form a solid foundation for the sensor nodes we
used in the larger project in the second half of the 10-week
course.

This project was built around the UC Berkeley Mote
sensing and communication platform. UCB Motes include a

basic run time environment, TinyOS, which was a logical
next step to the ad hoc sensor and actuator drivers the
students had written in the first half of the course. To make
the platform more interesting we decided to add sound
generation capabilities to the mote platform. We gravitated
to the idea of focusing the motes on sound generation as a
way to motivate the students with more than data packet
routing.

In the following sections we first describe this new
theme, a Flock of Birds, and how we crafted a project where
each student designed their own bird, using a common rule
set. These birds worked together to show emergent behavior
reminiscent of a flock. We then continue with a series of
evolutionary variations on this basic theme that added
diversity and better focused our educational efforts. We
conclude with plans for our next steps in this evolution that
will move us along the trajectory of important technology
trends.

II. THE THEME
The original Flock of Birds project [1], in autumn 2003,

was designed to use motes within the context of our
embedded software laboratory course. By incorporating
wireless sensor networks as a core topic, students were able
to master basic concepts of an emerging technology for use
in later classes.

We chose the Crossbow (www.xbow.com) Mica2Dot
platform which uses the Atmel ATmega AVR-series
microprocessors (www.atmel.com). The Mica2Dot platform
runs TinyOS developed at the University of California,
Berkeley (www.tinyos.net), developed on top of the AVR-
GCC (www.openavr.org) C compiler, which students use in
the early part of the embedded software course.

The design of the Flock allowed us to incorporate the use
of ad hoc networking and sound generation with the concept
of emergent behavior based upon a common set of simple
rules. The original Flock hardware required was a Mica2Dot
mote and a piezoelectric sound transducer, shown in Figure
1. Earlier in the course the students developed ATmega
pulse-width-modulation (PWM) software to play sixteen
common birdsongs on the sound transducer, which became
the repertoire of the Flock.

The general behavior of birds in the Flock is to sing a
chosen song with some repetitions separated by some
silence. Over time, different songs emerge as dominant for

some period, with songs starting, then spreading, and then
dying out. The specific behavior of each bird in the Flock is
controlled by a common rule set programmed by each pair of
students into their birds, not from a master controller.

Figure 1. Mica2Dot mote with sound transducer

We presented a simplified set of rules that was purposely
incomplete to elicit students’ imagination. This was
analogous to real-world experience, where a high-level
specification is presented to the engineer who must then
implement an appropriate design. This initial presentation of
the Flock concept was done in a manner designed to interest
and challenge the students. After explaining the concept of
emergent behavior and the basics of cellular automata as
exemplified by Conway’s Game of Life, we presented the
following simplified, template algorithm to the students:

Flock Process Flow:

a) Initialization tasks; select x = random(0-15)
b) Radio off; Sing birdsong[x]; Radio on
c) Listen for Random(min1, max1) sec., log data
d) SendMessage “I sang song x”
e) Listen for Random(min2, max2) sec., log data
f) Decide which song to sing next:

1. Determine nearest songs from data log
2. If my song is the same as any of the

nearest songs, then repeat the same song
3. If all nearby songs are the same, then

switch to a different song
4. If all nearby songs are distinct, then

switch to a different song
g) Go to step (b) and repeat.

Students were assigned the task of inventing a
methodology for predicting the success of this algorithm, and
to suggest three improvements to it. To a person, the students
decided the algorithm wouldn't work for numerous
interesting reasons.

Some of the suggestions were:

Unless the song is growing, limit the number of times you
repeat it.

If the number of other birds singing a given song is above
a threshold, sing that song.

Birds should refuse to sing a song they have sung in the
last 3 or 4 songs (if they decide not to re-sing the one they've
just finished).

Weighting based on RSSI: sum of signal strengths for
each song we've heard. Favors closer neighbor songs, and
clustering.

Silence is golden. Occasionally a birdie should decide
NOT to sing.

Most of these suggestions were incorporated into the
final algorithm, giving the students a sense of ownership of
the project design.

The students had to qualify their bird to participate in the
final demonstration by passing a set of tests that helped the
course staff identify problem birds. Birds that did not pass
the test were re-programmed with code from birds that
successfully passed the tests. The conclusion of the project
was a concert of fifty motes in the Microsoft Atrium of the
Paul G. Allen Center for Computer Science & Engineering,
University of Washington (Figure 2).

Figure 2. Microsoft Atrium, Paul G. Allen Center for Computer Science
& Engineering, University of Washington

The first Flock project was a success from an
instructional viewpoint. It successfully integrated motes with
a novel application. Students were exposed to
communication protocols, constrained resources, hardware
interfacing and a lightweight embedded operating system.
From an experiential perspective, the opinion of students and
other observers was that the process worked and the
emergent behavior was aurally apparent and actually
pleasing. The Flock provided a rich basis for subsequent
quarters’ iterations.

III. VARIATION 1
The second iteration of the Flock in autumn 2004

expanded the requirements to incorporate additional sensing
and actuation. A photo resistor was added to the mote to
sense the surrounding light level. Students were required to
perform data processing on the incoming sensor data to
detect a sudden change created by a shadow. Once the
shadow was detected the birds would model a fear response
of a possible predator by playing a startle song. Additionally,
a startled bird would transmit a distress packet to the rest of
the birds causing them to also play their startle song.

IV. VARIATION 2
One serious shortcoming of the original hardware (figure

1) was the poor quality of the sound generated by the
piezoelectric transducer. For the third iteration of the Flock
project in spring 2005, we introduced a new sound module,
shown in Figure 3. The new printed circuit board included a
small speaker, a rechargeable lithium-ion battery, a tri-color
RGB LED, a light sensor, and a Yamaha FM-synthesis
sound generator. The board also included pins to connect to
the Mica2Dot mote and additional pin headers for
debugging. These interfaces allowed the board to be
controlled by either the Mica2Dot or by a breadboard. With
the new board the students developed a control interface for
the Yamaha FM device, which replaced the PWM software
stack for the piezeoelectric transducer.

Figure 3. FM sound module

Since the Yamaha FM device was controlled through a
FIFO interface, concurrent processing of radio packets and
other interrupt-driven tasks could take place while sound was
playing. Unlike the original hardware that required all of the
interrupts to be turned off during sound production, the new
board allowed more coverage in the collection of radio
packet data. For this version of the Flock we required the
students to perform more data processing with the extra
cycles.

The new Flock songs were based on 49 song phrases of
one individual Western Meadowlark (Sturnella neglecta)
documented near Mitchell, South Dakota [2]. This

meadowlark would sing songs consisting of several phrases
and their repetitions. Our birds composed similar songs from
these 49 phrases.

For a new common rule set, we introduced basic
concepts from evolutionary computation [3], [4], so that
birds would now broadcast their song phrase sequence (their
songDNA) and would listen for similar songDNA from other
birds. When a close match was found, the bird would breed
by modifying its own songDNA by performing a random
crossover splice to insert material from the other bird into
their own song. In addition, the bird would then calculate the
probability of a genetic mutation in one gene and possibly
change one phrase number in its song. Each bird would then
sing the new song, and the cycle would begin again. The
birds indicated the closeness of the genetic match by the
color of their RGB LED.

Life cycles were also incorporated in the new rule set.
Each bird had five stages of life that affected how frequently
the bird performed breeding (changing its songDNA). After
a bird died it would restart with a random songDNA
sequence.

Each bird was additionally affected by the ambient light
level. Based on the light readings the bird would alter its
behavior by increasing its song tempo and decreasing its
silence between songs repetitions.

The overall aural effect in concert was a rich tapestry of
evolving detail in birdsongs based on the changing
songDNA. We had been concerned that the songs would
evolve into a single repetitive song, but that was not the case.
Indeed, the songs seemed to become more complex.

V. VARIATION 3
Variation 2 of the flock was successful, but was

becoming too complex for students to finish in a short two
week time span. Therefore, in the fourth iteration of the flock
we used the original sixteen birdsongs and rule set with the
newer sound board. Additionally, some of the coding
requirements associated with song selection and emergent
behavior were simplified by supplying students with a
prepackaged TinyOS module that performed the song
decision making. This allowed the flock project focus to shift
to more central embedded systems topics. This variation of
the flock also implemented a loosely synchronized network
(at the resolution of 250ms). The network time enabled new
flock characteristics such as being able to schedule a specific
song to play at a specific time and to play in unison (at least
within the 250ms). To achieve this loose synchronization,
each node/bird took their internal time and averaged it with
their neighbors reported time that was added to the packet
they exchanged.

In addition, the flock protocol was changed allowing
each node to be identified both from a central network
controller and at each node individually. The goal of the
identification was to be able to walk into a room with the
Flock running and be able to identify any node without the
nodes being labeled. Node identification could occur by the
central control software sending a control packet to a limited

set of nodes to cause them to generate a visual or audio
signal (e.g., setting their LEDs to a specific color or playing
a song). The ability to address a node or a group of nodes
allowed parts of the flock to operate with different global
parameters enabling different behavior in separate parts of
the flock. Moreover, a node was able to self-identify by
transmitting an identification packet to the central controller
when a person generated a coded sequence by shielding the
light sensor. The sequence consisted of 6 extreme light edge
detections at a speed of about one edge detection per second.

VI. VARIATION 4
For the latest iteration of the Flock in the spring of 2006,

we kept the original sixteen birdsongs and rule set, and
added a second state machine that controlled whether
members of the Flock could succumb to the bird flu. A bird
could be either healthy (Green), infected (Red), immune
(Blue), or dead (Off), and would indicate its health by
displaying the corresponding color on its LED.

We introduced the basic concepts of viral propagation [5]
and we implemented a set of infection rules based on
probabilities [6]. The students added the concept of viral
mutation, so that immunity would be ineffective against a
virus that had mutated far enough away from the virus that
caused the immunity.

By setting the correct global variables, the Flock could be
made to survive or die, activity that was shown by our
monitoring software (Figure 4).

Figure 4. Monitoring software

VII. FUTURE VARIATIONS
Future variations of the Flock will be able expand into

new areas of sensing and output. This winter we are moving
to a new platform that includes high-quality sound and
additional sensor-based behavior.

We are currently integrating a new advanced sensor
network node platform into our embedded systems
curriculum. The Intel iMote2 platform (Figure 6) is built
around a low power XScale® processor, PXA271 running in
the range of 13 to 416 MHz. It integrates an 802.15.4 radio

with 256kB SRAM, 32MB FLASH, and 32MB SDRAM.
This platform supports multiple interfaces: 3xUART, I2C,
2xSPI, SDIO, I2S, AC97, USB host, camera I/F, GPIO,
Mini-USB port for direct PC connection, all in a compact
size of 36x48 mm. It runs both TinyOS and Linux.

Figure 5. Intel Imote2 platform

Several sensor boards are available to us, including the
Multi-Sensor Board [7] co-designed by Intel Research
Seattle and the University of Washington, and the Basic
Sensor Board from Intel Research Santa Clara. These
incorporate sensors for: visible and IR light, 3-axis
accelerometer, sound, temperature, humidity, and barometric
pressure. In addition, we have designed and are
manufacturing a new UW/CSE sensor board, which includes
a cell-phone camera, small color LCD display, heart-rate
monitor amplifier, USB host, and CD-quality stereo audio
codec with speaker and microphone, along with battery
charging power circuitry, in a cell-phone-like form factor.

We will be using Linux as our operating system, in order
to capitalize on our students’ familiarity with the Linux
environment, and on the immense libraries of pre-existing
software and device drivers. Under Linux, we can also
support high-quality music synthesis environments such as
Supercollider (http://sourceforge.net/projects/supercollider).

The new platform will allow future versions of the flock
to generate higher-quality sound and have the ability to
simulate many unique sounds that can be used to create
soundscapes. Future project ideas include simulating a
tropical rain forest in three dimensions using barometric
pressure measurements, and exploring the interactions with
humans based on visual or sound recognition [8]. Using the
heart-rate monitor, we plan to explore uses of aggregate data
for biofeedback sound experiments.

In the future, we plan to use more pre-packaged modules
that help students complete projects with a richer set of
interactive features. Example modules may include complex
behavior rules and some device drivers. The goal will be to
provide modules that are not the specific focus of the project
so that students can concentrate on topics such as sensing,
actuation, time synchronization, networking and other topics
that are the true focus of the course.

VIII. CONCLUSION
The Flock project has been a success within our

curriculum. We have been able to effectively teach the topics
through a hands-on project experience that allows students to
express their own imagination. The project has evolved well
over the years to keep students interested by presenting a
new challenge or twist each quarter the course has been
offered.

There are several characteristics that make the Flock a
success and may generalize to help others craft other
projects.

First the project should incorporate the major embedded
systems and wireless communications concepts and
techniques. The Flock includes exposure to an embedded
operating system, priorities and constrained resources,
sensing, actuation, interfacing, and aspects of wireless
networks, among others.

Additional characteristics contributed to the Flock’s
success as a large group based project. The Flock builds on
concepts from earlier in the quarter allowing students to
begin writing reusable code optimizing student effort in what
is necessarily limited lab time. The instructor may also
provide students with the parts of the project that are not of
pedagogical focus. The Flock relies on emergent behavior
with no easily guaranteed result. This leaves some
anticipation for the students until the final concert. The Flock
can also be easily changed to accommodate new ideas from
the students.

The Flock requires that each pair of students complete a
full implementation that must play well with others in the
group. This contrasts with senior Capstone projects where
each student completes a portion of a larger project. In
addition, the use of a test fixture for qualification teaches
students a valuable lesson in completeness of specifications
and testing.

Student interest is enhanced by several characteristics.
The Flock is an open-ended project. While we are quite strict
in enforcing adherence to the rule-set, we expected variety
and some randomness in actual performance by the group.
The students appreciate a project that, unlike many others
they have seen in lower-division courses, has no single
solution. The Flock also allows the introduction of outside
ideas and processes. Emergent behavior, autonomous
activity, viral propagation, and evolutionary computation
have all expanded students’ thinking and added to the
diversity of their experience. Finally, the Flock has general
interest for a non-technical audience. It allows for a group
presentation, a performance that can be attended and
appreciated by friends.

ACKNOWLEDGMENTS
We wish to thank Tom Anderl and Karl Koscher for their

contributions to the design of the Flock, and all of our
CSE466 students over the last few years for their hard work
in making the Flock sing.

REFERENCES

[1] Hemingway, B.; Brunette, W.; Anderl, T.; Borriello, G., "The flock:
mote sensors sing in undergraduate curriculum," Computer, vol.37,
no.8pp. 72- 78, Aug. 2004

[2] Arlton, Alexander V, Songs and Other Sounds of Birds. Parkland,
Wash., Lithographed for A.V. Arlton by Eklund Print Co., Hoquiam,
Wash. [c1949], pp. 138-139. Special Collections, University of
Washington Libraries, 979.744a Ar53s

[3] Bentley et al, in Bentley, P. and D. Corne, Creative Evolutionary
Systems. 2002, San Francisco, CA, Morgan Kaufmann Academic
Press.

[4] Todd, P.; Werner, G.M., “Frankensteinian methods for evolutionary
music composition,” in Griffith, N. and P.M. Todd, Musical
Networks: Parallel Distributed Perception and Performance. 1999,
Cambridge, MA, MIT Press. xv, 385.

[5] Webster R. “Influenza: An emerging disease”, Emerging Infectious
Diseases, 4:436-441, 1998.

[6] Wilensky, U. (1998). NetLogo Virus model.
http://ccl.northwestern.edu/netlogo/models/Virus. Center for
Connected Learning and Computer-Based Modeling, Northwestern
University, Evanston, IL.

[7] Brunette, W., Lester, J., Rea, A., Borriello, G. “Some sensor network
elements for ubiquitous computing”, Proceedings of the 4th
International Symposium on Information Processing in Sensor
Networks, 2005.

[8] J. Lester, T. Choudhury, N. Kern, G. Borriello, B. Hannaford, “A
Hybrid Discriminative/Generative Approach for Modeling Human
Activities,” Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pp. 766 - 722, Edinburgh,
Scotland, 2005.

