FM synthesis examples

Basic FM

This example shows J. Chowning's basic FM instruments with three different sets of parameters to create bell, brass and percussion (wood-drum) sounds (see Dodge & Jerse). The orchestra is based on the two-oscillator FM set-up, plus two envelope generators: for creating dynamic spectra (index envelope) and controlling the amplitude. These envelopes are created by using two oscillators reading envelope function tables. The shape of the envelope will be one of the parameters determining the output sound.

The parameters are (function table numbers refer to the numbers used in the score):

Bell

duration (DUR) = 15 seconds carrier frequency (FC) = 200 Hz, modulator frequency(FM) = 280 Hz (FC:FM = 5:7) max value for index of modulation (IMAX) = 10 function table (FN) 2 used for both index & amplitude envelopes

Wood-drum

DUR = 0.2 seconds FC = 80 Hz, FM = 55 Hz IMAX = 25FN 3 for amplitude envelope FN 4 for index envelope

Brass

DUR = 0.6 seconds FC = 440 Hz, FM = 440 Hz (FC:FM = 1:1) IMAX = 5 FN 5 for amplitude envelope

The instrument (see Dodge & Jerse for its signal flowchart):

```
instr 1
idur = p3
iamp = p4
ifp = p5 ; Fc
ifm = p6 ; Fm
imax = p7 ; max index
iftable1 = p8 ; time functions
iftable2 = p9
ifsine = 1 ; sinewave
kamp oscil iamp, 1/idur, iftable1 ; amplitude envelope
kndx oscil ifm*imax, 1/idur, iftable2 ; index envelope
amod oscil kndx, ifm, ifsine ; modulator
acar oscil kamp, ifp+amod, ifsine ; carrier
out acar
endin
```

The score will have to define **five** function tables: sinewave, bell envelope, wooddrum amp envelope, wood-drum index envelope and brass envelope. We are also asking for the following p-fields (i-statement): p4 (amp), p5 (FC), p6 (FM), p7 (IMAX), p8 (FN1, amp envelope function table) and p9 (FN2, index envelope function table).

First the function tables:

Sinewave f1 0 1024 10 1 ; sine

bell exponential decay (GEN 5) f2 0 1024 5 1 686 0.0001 338 0.0001

wood-drum amp envelope, also an exponential curve (GEN 5) f3 0 1024 5 .8 204 1 820 0.001

wood-drum index envelope, linear (GEN7) f4 0 1024 7 1 156 0 871 0

brass envelopes, a simple linear 4-segment envelope f5 0 1024 7 0 102 1 51 .75 768 .75 103 0

Here are the plots for the ftables 2-5:

The following i-statement will generate a bell sound (using the parameters defined above)

; dur amp fp fm imax ftable1 ftable2 i1 0 15 16000 200 280 10 2 2

This line will generate a wood-drum sound:

; dur amp fp fm imax ftable1 ftable2 i1 0 .2 16000 80 55 25 3 4

A brass-like sound can be generated with the following parameters

; dur amp fp fm imax ftable1 ftable2 i1 0 .6 16000 440 440 5 5 5

Using foscil, foscili

The FM pair is such an useful design that cound offers it as a single opcode, named **foscil** (and its interpolating sibling **foscili**):

ar foscil xamp, xcps, xcar, xmod, kndx, ifn

where **xamp**, **xcps**, **ifn** are amplitude, base freq and table number (as in oscil) and the extra parameters are: **xcar** and **xmod**, these define the fc:fm ratio of the synthesis, so that fc = xcar*xcps, and fm = xmod * xcps. **kndx**, this is the index of modulation.

A Chowning clarinet design using foscili would look like this:

instr 1

idur=p3 iamp = p4; amp ifund = cpspch(p5) ; freq (converted from octave point pitch-class) imax = p6; max index imin = 2isinetab = 1iamptab = 2indxtab = 3kamp oscil1 0, iamp, idur, iamptab kndx oscil1 0, imax-imin, idur, indxtab aout foscili kamp, ifund, 3, 2, kndx+imin, isinetab out aout endin ;score f1 0 1024 10 1 f2 0 1025 5 0.000001 256 1 640 1 128 0.000001 f3 0 1025 5 1 256 0.000001 768 0.000001 i1 0 .5 10000 8.09 4 ; A i1 + .5 16000 8.04 5 ; E i1 + .5 24000 8.00 6 ; C

In this example, I also introduce two new elements of csound programming:

(a) pitch conversion: **cpspch(.)** converts octave point pitch class into Hz octave point pitch class is writen **oct.pc** (8 is central C octave, C3, and pitch classes are C = 00, C#=01, D=02, D#=03, E=04, ..., A#=10,B=11.

6.07 is a G1 10.04 is E5

(b) The + sign on p2 indicates that the start time is the sum of the previous start time (p2) plus its duration (p3). It only works on lines with same p1 (instrument number). The start times of the example above will be 0,2,4.