
1

Programming TinyOS

Some of the content from these slides were
adapted from the Crossbow Tutorials and from the
TinyOS website from Mobsys Tutorials

Lesson 3

Basic Structure

� Interfaces (xxx.nc)
� Specifies functionality to outside world
� what commands can be called
� what events need handling

� Software Components
– Module (xxxM.nc)

� Code implementation
� Code for Interface functions

– Configuration (xxxC.nc)
� Linking/wiring of components
� When top level app,

drop C from filename xxx.nc

appxxx.nc
(wires)

interfaceA.nc

interfaceB.nc

comp3M.nc
(code)

interfaceA.nc

comp1C.nc
(wires)

interfaceB.nc

interfaceA.nc

comp2M.nc
(code)

Main.nc

2

Creating a Module

� Key is defining your interfaces
� Can use “as” to name interface

��������	
���������
������	
������ 	�
��������	�
���������	
���������	��	��������
�	����	�
���������	�����
���������	�����	��	 !�
������
���������	�����	��	" ����#����� ������
���������	������� �$	��	������"������ �
���������	
���� �$	��	
�������� �
���������	������� �$	��	����������� �
�

�

��������������	�
�%
&� �$	����#������
�%
&� �$'��	����� �$�
(���	��)�
�����

Component

event
command

task

Application

Hardware

signal call

Component
task

event
command

Interfaces

� Specifies the behavior between components.
� Bi-directional multi-function interaction channel between

two components.
– Allows a single interface to represent a complex event

� E.g., a registration of some event, followed by a callback
� Critical for non-blocking operation

– Provided interfaces
� Represent the functionality that the component provides to its user
� “Commands” are functions to be implemented by the interface’s

provider
– Used interfaces

� Represent the functionality that the component needs
� “Events” are functions to be implemented by the interface’s user

3

Execution Flow

� Events generated by
interrupts preempt tasks

� Tasks do not preempt tasksHardware

Interrupts

ev
en

ts

commands

Tasks

FSM

� Finite State Machine Programming Style
– Event-driven structure throughout application

� All operations are non-blocking
� Tasks extend processing outside event window
� Split Phase Operation (next slide)

� Need logical concurrency at many levels
� Meet hard timing constraints (e.g. radio)

4

Split Phase Operations

Call Command
Return value = okay or busy

Done event pass data through parameters
Okay, failed, etc.

Task ()
Signal doneEvent handler

Component2

Component1

Return busy else
Post Task return okay

Concurrency Model

� Asynchronous Code (AC)
– Any code that is reachable from an interrupt handler

� Synchronous Code (SC)
– Any code that is ONLY reachable from a task
– Boot sequence

� Potential race conditions
– Asynchronous Code and Synchronous Code
– Asynchronous Code and Asynchronous Code
– Non-preemption eliminates data races among tasks

� nesC reports potential data races to the programmer at
compile time (new with version 1.1)

� Use “atomic” statement when needed
� “Async” keyword is used to declare asynchronous code

5

TinyOS Active Messages

� Sending
– Declare buffer storage in a frame
– Request Transmission
– Handle Completion signal
– Buffer Management:

� After done event can reuse buffer

� Receiving
– Declare a handler to perform action on message event
– Active message automatically dispatched to associated handler

� Known format
� No run-time parsing

– Buffer Management:
� Must return free buffer to the system for the next packet reception
� Typically the incoming buffer if processing complete

call SendMsg.send(TOS_BCAST_ADDR, 14, &data)

Receive Buffers

TOS_Msg

Buffer 1
TOS_Msg

Buffer 2

Declared in Your Module Declared in Radio Stack

Your Module Radio Stack

?

6

TinyOS uses Pointers

Remember TinyOS acts like a Finite State Machine

event result_t Timer.fired()
{
TOS_Msg buffer;
buffer.data[0] = 1;

call SendMsg.send(TOS_BCAST_ADDR, 1, &buffer);

return SUCCESS;
}

What is wrong?

File Locations

� Distribution broken into
– apps: top-level applications
– lib: shared application components
– system: hardware independent system components
– platform: hardware dependent system components

– includes HPLs and hardware.h

7

Platform Folder

� Location of details of the Hardware Layer
– Most files have the HPL prefix

� Each type of platform has its own subfolder where
platform specific files are pulled from.
(e.g. HPLUARTM, CC1000RadioC, HPLADCM)

� ‘.platform’ file in platform directory
– lists common platforms
– allows compiler to pull from those platform directories second.

� ‘hardware.h’ is where the pins are mapped
� ‘avrhardware.h” is where the macro's are defined

Pin Assignments

� Macros used to declare pins
– TOSH_ASSIGN_PIN(RED_LED, A, 2);

� This gives a set of macro’s that can be called
– TOSH_SET_RED_LED_PIN()

– TOSH_CLR_RED_LED_PIN()

– TOSH_MAKE_RED_LED_OUTPUT()

– TOSH_MAKE_RED_LED_INPUT()

8

Questions

� Open Discussion

