
1

Programming TinyOS

Some of the content from these slides were
adapted from the Crossbow Tutorials

Lesson 1

What is TinyOS?

� A small operating system for Microcontrollers
– Create a uniform abstraction (e.g. Device Abstraction)

� An Open-Source Development Environment
� A Component Based Architecture
� A Programming Language & Model

– nesC Language

2

nesC

� nesC is an extension of C
� Built on top of avg-gcc
� “Static Language”

– No Dynamic Memory (no malloc)
– No Function Pointers
– No Heap

� TinyOS evolved to nesC
� Java influence

� nesC uses the filename extension ".nc"

Application (nesC)

TinyOS Kernel (C)

TinyOS Libs (nesC)
nesC

Compiler

Application &
TinyOS (C)

C Compiler

Application
Executable

Programming Model

� Separation of construction and composition

� Specification of component behavior in terms
of set of interfaces.

� Components are statically linked together

� Finite State Machine Programming Style
– Non-blocking

3

Basic Constructs

� Commands – Cause action to be initiated.

� Events – Call back to notify action has occurred
and give results.

� Tasks – Background computation, non-time critical

� Modules – Component implemented with C Code

� Configurations – Component implemented with
Wires

� Interfaces – specifications of bi-directional
communications for the components

Component

event command

task

Application

Hardware

event

command

Basic Concepts

� Interfaces (xxx.nc)
� Specifies functionality to outside world
� what commands can be called
� what events need handling

� Software Components
– Module (xxxM.nc)

� Code implementation
� Code for Interface functions

– Configuration (xxxC.nc)
� Linking/wiring of components
� When top level app,

drop C from filename xxx.nc

appxxx.nc
(wires)

interfaceA.nc

interfaceB.nc

comp3M.nc
(code)

interfaceA.nc

comp1C.nc
(wires)

interfaceB.nc

interfaceA.nc

comp2M.nc
(code)

Main.nc

4

The Design of TinyOS

� TinyOS/nesC is designed to speed application
development through code reuse.

� The number of modules per application in the TinyOS-1.x
release ranges from 8 to 67, with an average of 24. ***

� The average lines of code in a module only 120***

� Advantages of eliminating monolithic programs
– Code can be reused more easily

– Number of errors should decrease.

***The NesC Language: A Holistic Approach to Network of Embedded Systems. David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer,
and David Culler. To appear in Proceedings of Programming Language Design and Implementation (PLDI) 2003, June 2003.

Data Flow

Hardware

Interrupts

ev
en

ts

commands

Tasks

5

Thread Model

� Threads of control are rooted in two places
– Hardware Interrupts
– Tasks

� Threads of control may pass into component through its
interfaces to another component.

� Interrupt Handlers may interrupt tasks and other
interrupts.

� Tasks run to completion and may NOT be interrupted by
other Tasks.

� nesC scheduler executes Tasks from a FIFO queue

Commands

� Commands are called with “call”
call Timer.start(TIMER_REPEAT, 1000);

� Cause action to be initiated
� Bounded amount of work

– cannot block

� Acts similar to a function call
– Execution of a command is immediate

6

Events

� Events are called with “Signal”
signal ByteComm.txByteReady(SUCCESS);

� Normally used to notify a component an action has
occurred

� Used to deliver data from hardware

� Lowest-level events triggered by hardware interrupts

� Bounded amount of work
– cannot block

� Acts similar to a function call
– Execution of a event is immediate

Tasks

� Tasks are queued with “post”
post radioEncodeThread();

� Used for longer running operations
� Are pre-empted by Events

– initiated by interrupts

� Tasks run to completion
� Not pre-empted by other tasks.

7

Example Tasks

� High Level
– Calculate aggregate of sensor readings

� Low Level
– Encode radio packet for Transmission
– Calculate CRC

Execution Flow

Hardware

Interrupts

ev
en

ts

commands

Tasks
MAIN

Possible Base of Execution

8

Component

� Two types of components in nesC:
– Module
– Configuration

� A component provides and uses Interfaces

Module

� Provides Application Code
– Contains “C” like code

� Must implement the ‘provides’ interfaces
� Implement the “Commands” you are providing
� Make sure to actually Signal

� Must implement the ‘uses’ interfaces
� Implement the “Events” that need to be handled
� Invoke commands as needed

9

Configuration

• A configuration is a component that "wires"
other components together.

• Configurations are used to assemble other
components together

• Connects interfaces used by components
to interfaces provided by others.

Interfaces

� Specifies the behavior between components.
� Bi-directional multi-function interaction channel between

two components.
– Allows a single interface to represent a complex event

� E.g., a registration of some event, followed by a callback
� Critical for non-blocking operation

– Provided interfaces
� Represent the functionality that the component provides to its user
� “Commands” are functions to be implemented by the interface’s

provider
– Used interfaces

� Represent the functionality that the component needs
� “Events” are functions to be implemented by the interface’s user

10

Interface Example

Interface SendMsg {
command result_t send(uint16_t address, uint8_t length,

TOS_MsgPtr msg);
event result_t sendDone(TOS_MsgPtr msg, result_t success);

}

provides {
interface StdControl as Control;

}
uses {

….
interface SendMsg as SendRFM;
interface ReceiveMsg as ReceiveRFM;
interface SendMsg as SendWriteRFM;

call SendRFM.send(TOS_BCAST_ADDR, sizeCurrentPkt, sendMsg);

event result_t SendRFM.sendDone(
TOS_MsgPtr msg, result_t success)

{

return SUCCESS;
}

Application

� Consists of one or more components, wired
together to form a runnable program

� Has a single top-level configuration that
specifies the set of components in the
application and how they connect one another

� Connected wire to main component to start
execution

11

Components/Wiring

� A Directed Wire (Arrow ‘->’) Connects Components
– Only 2 Components at a time
– Connection is Across an Interface
– ‘<-’ is equivalent to ‘->’

� [Component that uses the interface] ‘->’ [component
that provides the interface]

� An “=“ can be used to equate an external specification
element, whereas a link connects two internal elements.

� Unused System Components Excluded

Blink.nc Application –
A top level configuration SW component used to form an executable

tos/system/Main.nc

tos/interfaces/StdControl.nc

BlinkM.nc

Blink.nc

tos/interfaces/StdControl.nc

tos/interfaces/Clock.nc tos/interfaces/Leds.nc

tos/system/ClockC.nc tos/system/LedsC.nc

tos/interfaces/Clock.nc tos/interfaces/Leds.nc

What the executable does:

1. Main initializes and starts the
application.

2.BlinkM initializes ClockC’s rate at 1Hz.

3. ClockC continuously signals BlinkM at
a rate of 1 Hz.

4. BlinkM commands LedsC red led to
toggle each time it receives a signal from
ClockC.

Blink.nc

Note: The
StdControl interface
is similar to state
machines (init, start,
stop); used
extensively
throughout TinyOS
apps & libs

12

Tips

� Your friend is grep or “find in files”
� Look at example applications in the /apps

directory.
� Try to keep commands and events short.

– Avoid long loops

