
1

CSE466

Audio Synthesis Basics

Analog Synthesis
Intro to Digital Oscillators

CSE466 Page 2

Analog Synthesis Overview
� Sound is created by controlling electrical

current within synthesizer, and amplifying
result.

� Basic components:
� Oscillators
� Filters
� Envelope generators
� Noise generators

� Voltage control

CSE466 Page 3

Oscillators

� Creates periodic fluctuations in current,
usually with selectable waveform.

� Different waveforms have different
harmonic content, or frequency spectra.

CSE466 Page 4

Filters
� Given an input signal, attenuate or

boost a frequency range to produce an
output signal

� Basic Types:
� Low pass
� High pass
� Band pass
� Band reject (notch)

2

CSE466 Page 5

Envelope Generators

� Generate a control function that can be
applied to various synthesis
parameters, including amplitude, pitch,
and filter controls.

CSE466 Page 6

Noise Generators

� Generate a random, or semi-random
fluctuation in current that produces a
signal with all frequencies present.

CSE466 Page 7

Digital Synthesis Overview
� Sound is created by manipulating numbers,

converting those numbers to an electrical
current, and amplifying result.

� Numerical manipulations are the same
whether they are done with software or
hardware.

� Same capabilities (components) as analog
synthesis, plus significant new abilities

CSE466 Page 8

Digital Oscillators

� Everything is a Table
� A table is an indexed list of elements (or

values)
� The index is the address used to find a

value

3

CSE466 Page 9

Generate a Sine Tone
Digitally (1)
� Compute the sine in real time, every time it is needed.

� equation:

� t = a point in time; r = the radius, or amplitude of the signal;
w (omega) = 2pi*f the frequency

� Advantages: It’s the perfect sine tone. Every value that you need
will be the exact value from the unit circle.

� Disadvantages: must generate every sample of every oscillator
present in a synthesis patch from an algorithm. This is very
expensive computationally, and most of the calculation is
redundant.

signal(t) = r sin(ωt)

CSE466 Page 10

Generate a Sine Tone
Digitally (2)
� Compute the sine tone once, store it in a

table, and have all oscillators look in the table
for needed values.

� Advantages: Much more efficient, hence faster, for
the computer. You are not, literally, re-inventing
the wheel every time.

� Disadvantages: Table values are discrete points in
time. Most times you will need a value that falls
somewhere in between two already computed
values.

CSE466 Page 11

Table Lookup Synthesis

� Sound waves are very repetitive.
� For an oscillator, compute and store

one cycle (period) of a waveform.
� Read through the wavetable repeatedly

to generate a periodic sound.

CSE466 Page 12

Changing Frequency
� The Sample Rate doesn’t change within a

synthesis algorithm.

� You can change the speed that the table is
scanned by skipping samples.

� skip size is the increment, better known as
the phase increment.

***phase increment is a very important
concept***

4

CSE466 Page 13

Algorithm for a Digital
Oscillator

� Basic, two-step program:

� phase_index = modL(previous_phase + increment)
� output = amplitude x wavetable[phase_index]

� increment = (TableLength x DesiredFrequency)
SampleRate

CSE466 Page 14

If You’re Wrong, it’s Noise
� What happens when the phase increment

doesn’t land exactly at an index location in
the table?
� It simply looks at the last index location passed for

a value.
In other words, the phase increment is truncated
to the integer.

� Quantization
� Noise
� The greater the error, the more the noise.

CSE466 Page 15

Interpolation
� Rather than truncate the phase location…

� look at the values stored before and after the
calculated phase location

� calculate what the value would have been at the
calculated phase location if it had been generated
and stored.

Interpolate

� More calculations, but a much cleaner signal.

CSE466 Page 16

Sample Playback

� Oscillator concept can be used to
explain sample playback, with one
important caveat:
� Table length is variable among different

soundfiles, so
� Playback rate is usually expressed in terms

of a ratio: desired_speed : root_speed

5

CSE466 Page 17

Delay

� Delay is a fundamental operator!
� Also easy to do in digital
� Long delays – echos, reverb
� Short delays - filtering

� How do we delay sound?
� Queues
� Consider using circular queues

CSE466 Page 18

Circular queue implementation

� Initialization
� Mono queue, 1 second long

// We'll delay one second
int DELAY = int(SampleRate());

short *queue = new int[DELAY + 1];
int rdloc = 1;
int wrloc = 0;

// Initially zero the queue
for(int j=0; j<DELAY + 1; j++)

queue[j] = 0;

CSE466 Page 19

Accessing the queue

// For each sample…

// Queue it
queue[wrloc] = sample;

// Add in the delayed version
sample += queue[rdloc];

// Update queue locations
wrloc++; wrloc %= DELAY + 1;
rdloc++; rdloc %= DELAY + 1;

// And write the samples

CSE466 Page 20

What about a multi-tap
queue?

� Make queue 1 larger than longest delay
� Write at wrloc each step

� Increment wrloc: wrloc++; wrloc %= QSIZE;

� Read at:
� (wrloc – delay + QSIZE) % QSIZE;

6

CSE466 Page 21

Samples or Wave Tables
� A sample or wave table is a short digital

sound recording
� We play it back to make the sound

� Examples:
� Digital piano – recorded sound for each key
� Speech synthesis – recorded sound for each

phoneme
� Computer games – samples for gunshots,

crashes, etc.

CSE466 Page 22

Samples, the easiest way

C
ur

re
nt

 s
am

pl
e Start with first audio frame in sample

Each request for a sample, advance
return wave[curr++];

At end, we are done

CSE466 Page 23

More advanced ideas

� What if I want to play at a different
speed?
� Playing faster or slower changes the pitch

CSE466 Page 24

Music and the scale
� Music is based on an exponential scale

� To move up one octave, we double the frequency
� To move down one octave, we halve the

frequency

� There are 12 “semitones” in a scale
� Sometimes called “half-steps”
� C, C#, D, D#, E, F, F#, G, G#, A, A#, B
� To move up one semitone, multiply playout rate by

1.05946 (1.05946 ^ 12 = 2.0)
� To move down one semitone, divide playout rate

by 1.05946

7

CSE466 Page 25

Example: Playing a violin
note

� Recording of violin playing C, we want
to play E (4 half-steps up)

� Playout rate is 1.05946^4 = 1.2599

� So, how do we play at that rate?

CSE466 Page 26

Fractional sample positions

// Initialization:
sample = 0.0; // double
rate = 1.2599; // double

…

// After each sample acquisition
sample += rate;

CSE466 Page 27

How to select the sample

� Important: Desired sample is between
real samples!

� We can:
� 1: Select the nearest sample
� 2: Linearly interpolate between samples
� 3: Resample

CSE466 Page 28

Selecting the nearest sample

� Simply round and access your wave
table
� return wave(int(sample + 0.5));

� Works, but is somewhat noisy

8

CSE466 Page 29

Linear interpolation

� Interpolate between two audio samples

� More accurate, yet still efficient

double inbetween = fmod(sample, 1);
return (1. – inbetween) * wave[int(sample)] +

inbetween * wave[int(sample) + 1];

1021 10221021.35
CSE466 Page 30

Sample playback class
members

� Constructor – Loads file and initializes
for playback

� Pitch – Sets the pitch to play back at
� Frame – Returns an audio frame and

advances
� Rewind – Resets to play again
� Done – Returns true if playback is done

CSE466 Page 31

Looping

� What if the note has variable duration?

� Associate with the sample
� Loop from location
� Loop to location

� How might we select these points?

CSE466 Page 32

Envelopes

� What if we use looping to make an
efficient piano sound?
� Looping does not decay, but a piano sound

does

� We commonly will make samples with
fixed amplitudes, then make a synthetic
envelope for the sound event.

9

CSE466 Page 33

Attack and Release

Time

A
m

pl
itu

de

Attack Release

CSE466 Page 34

ADSR
� ADSR: Attack, decay, sustain, release

A
m

pl
itu

de

Attack Decay Sustain Release

Su
st

ai
n

le
ve

l

CSE466 Page 35

Where do samples come
from?

� Pure recordings of instruments
� Artificially generated sounds
� Modifications of existing sounds

