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Audio Synthesis Basics

Analog Synthesis
Intro to Digital Oscillators
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Analog Synthesis Overview
� Sound is created by controlling electrical 

current within synthesizer, and amplifying 
result.

� Basic components:
� Oscillators
� Filters
� Envelope generators
� Noise generators

� Voltage control
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Oscillators

� Creates periodic fluctuations in current, 
usually with selectable waveform.

� Different waveforms have different 
harmonic content, or frequency spectra.
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Filters
� Given an input signal, attenuate or 

boost a frequency range to produce an 
output signal

� Basic Types:
� Low pass
� High pass
� Band pass
� Band reject (notch)
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Envelope Generators

� Generate a control function that can be 
applied to various synthesis 
parameters, including amplitude, pitch, 
and filter controls.
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Noise Generators

� Generate a random, or semi-random 
fluctuation in current that produces a 
signal with all frequencies present.

CSE466    Page 7

Digital Synthesis Overview
� Sound is created by manipulating numbers, 

converting those numbers to an electrical 
current, and amplifying result.

� Numerical manipulations are the same 
whether they are done with software or 
hardware.

� Same capabilities (components) as analog 
synthesis, plus significant new abilities
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Digital Oscillators

� Everything is a Table
� A table is an indexed list of elements (or 

values)
� The index is the address used to find a 

value
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Generate a Sine Tone 
Digitally (1)
� Compute the sine in real time, every time it is needed.

� equation:

� t = a point in time; r = the radius, or amplitude of the signal;
w (omega) = 2pi*f the frequency

� Advantages: It’s the perfect sine tone. Every value that you need 
will be the exact value from the unit circle.

� Disadvantages: must generate every sample of every oscillator 
present in a synthesis patch from an algorithm. This is very 
expensive computationally, and most of the calculation is 
redundant. 

signal(t) = r sin(ωt)
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Generate a Sine Tone 
Digitally (2)
� Compute the sine tone once, store it in a 

table, and have all oscillators look in the table 
for needed values. 

� Advantages: Much more efficient, hence faster, for 
the computer. You are not, literally, re-inventing 
the wheel every time.

� Disadvantages: Table values are discrete points in 
time. Most times you will need a value that falls 
somewhere in between two already computed 
values.
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Table Lookup Synthesis

� Sound waves are very repetitive.
� For an oscillator, compute and store 

one cycle (period) of a waveform.
� Read through the wavetable repeatedly 

to generate a periodic sound.
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Changing Frequency
� The Sample Rate doesn’t change within a 

synthesis algorithm. 

� You can change the speed that the table is 
scanned by skipping samples. 

� skip size is the increment, better known as 
the phase increment.    

***phase increment is a very important 
concept***
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Algorithm for a Digital 
Oscillator

� Basic, two-step program:

� phase_index = modL(previous_phase + increment)
� output = amplitude x wavetable[phase_index]

� increment = (TableLength x DesiredFrequency)
SampleRate
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If You’re Wrong, it’s Noise
� What happens when the phase increment 

doesn’t land exactly at an index location in 
the table?
� It simply looks at the last index location passed for 

a value.
In other words, the phase increment is truncated 
to the integer.

� Quantization
� Noise
� The greater the error, the more the noise.
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Interpolation
� Rather than truncate the phase location…

� look at the values stored before and after the 
calculated phase location

� calculate what the value would have been at the 
calculated phase location if it had been generated 
and stored.

Interpolate

� More calculations, but a much cleaner signal.
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Sample Playback

� Oscillator concept can be used to 
explain sample playback, with one 
important caveat:
� Table length is variable among different 

soundfiles, so
� Playback rate is usually expressed in terms 

of a ratio: desired_speed : root_speed
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Delay

� Delay is a fundamental operator!
� Also easy to do in digital
� Long delays – echos, reverb
� Short delays - filtering

� How do we delay sound?
� Queues
� Consider using circular queues
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Circular queue implementation

� Initialization
� Mono queue, 1 second long

// We'll delay one second
int DELAY = int(SampleRate());

short *queue = new int[DELAY + 1];
int rdloc = 1;
int wrloc = 0;

// Initially zero the queue
for(int j=0;  j<DELAY + 1;  j++)

queue[j] = 0;
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Accessing the queue

// For each sample…

// Queue it
queue[wrloc] = sample;

// Add in the delayed version
sample += queue[rdloc];

// Update queue locations
wrloc++;    wrloc %= DELAY + 1;
rdloc++;    rdloc %= DELAY + 1;

// And write the samples
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What about a multi-tap 
queue?

� Make queue 1 larger than longest delay
� Write at wrloc each step

� Increment wrloc:  wrloc++;  wrloc %= QSIZE;

� Read at:
� (wrloc – delay + QSIZE) % QSIZE;
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Samples or Wave Tables
� A sample or wave table is a short digital 

sound recording
� We play it back to make the sound

� Examples:
� Digital piano – recorded sound for each key
� Speech synthesis – recorded sound for each 

phoneme
� Computer games – samples for gunshots, 

crashes, etc.
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Samples, the easiest way

C
ur

re
nt

 s
am

pl
e Start with first audio frame in sample

Each request for a  sample, advance 
return wave[curr++];

At end, we are done
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More advanced ideas

� What if I want to play at a different 
speed?
� Playing faster or slower changes the pitch
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Music and the scale
� Music is based on an exponential scale

� To move up one octave, we double the frequency
� To move down one octave, we halve the 

frequency

� There are 12 “semitones” in a scale
� Sometimes called “half-steps”
� C, C#, D, D#, E, F, F#, G, G#, A, A#, B
� To move up one semitone, multiply playout rate by 

1.05946   (1.05946 ^ 12 = 2.0)
� To move down one semitone, divide playout rate 

by 1.05946
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Example:  Playing a violin 
note

� Recording of violin playing C, we want 
to play E  (4 half-steps up)

� Playout rate is 1.05946^4 = 1.2599

� So, how do we play at that rate?
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Fractional sample positions

// Initialization:
sample = 0.0; // double
rate = 1.2599; // double

…

// After each sample acquisition
sample += rate;
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How to select the sample

� Important:  Desired sample is between 
real samples!

� We can:
� 1:  Select the nearest sample
� 2:  Linearly interpolate between samples
� 3:  Resample 
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Selecting the nearest sample

� Simply round and access your wave 
table
� return wave(int(sample + 0.5));

� Works, but is somewhat noisy
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Linear interpolation

� Interpolate between two audio samples

� More accurate, yet still efficient

double inbetween = fmod(sample, 1);
return (1. – inbetween) * wave[int(sample)] + 

inbetween * wave[int(sample) + 1];

1021 10221021.35
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Sample playback class 
members

� Constructor – Loads file and initializes 
for playback

� Pitch – Sets the pitch to play back at
� Frame – Returns an audio frame and 

advances
� Rewind – Resets to play again
� Done – Returns true if playback is done
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Looping

� What if the note has variable duration?

� Associate with the sample
� Loop from location
� Loop to location

� How might we select these points?
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Envelopes

� What if we use looping to make an 
efficient piano sound?
� Looping does not decay, but a piano sound 

does

� We commonly will make samples with 
fixed amplitudes, then make a synthetic 
envelope for the sound event.
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Attack and Release

Time

A
m

pl
itu

de

Attack Release
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ADSR
� ADSR:  Attack, decay, sustain, release

A
m

pl
itu

de

Attack Decay Sustain Release

Su
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l
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Where do samples come 
from?

� Pure recordings of instruments
� Artificially generated sounds
� Modifications of existing sounds


