Audio Synthesis Basics

Analog Synthesis
Intro to Digital Oscillators

Analog Synthesis Overview

Sound is created by controlling electrical
current within synthesizer, and amplifying
result.
Basic components:

Oscillators

Filters

Envelope generators

Noise generators

Voltage control
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Oscillators

Creates periodic fluctuations in current,
usually with selectable waveform.

Different waveforms have different

harmonic content, or frequency spectra.
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Filters

Given an input signal, attenuate or
boost a frequency range to produce an
output signal
Basic Types:

Low pass

High pass

Band pass

Band reject (notch)
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Envelope Generators

Generate a control function that can be
applied to various synthesis
parameters, including amplitude, pitch,
and filter controls.
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Noise Generators

Generate a random, or semi-random
fluctuation in current that produces a
signal with all frequencies present.
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Digital Synthesis Overview

Sound is created by manipulating numbers,
converting those numbers to an electrical
current, and amplifying result.

Numerical manipulations are the same
whether they are done with software or
hardware.

Same capabilities (components) as analog
synthesis, plus significant new abilities
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Digital Oscillators

Everything is a Table

A table is an indexed list of elements (or
values)

The index is the address used to find a
value
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Generate a Sine Tone
Digitally (1)

Compute the sine in real time, every time it is needed.
equation:

signal(t) = rsin(awt)

t = a point in time; r = the radius, or amplitude of the signal;
w (omega) = 2pi*f the frequency

Advantages: It's the perfect sine tone. Every value that you need
will be the exact value from the unit circle.

Disadvantages: must generate every sample of every oscillator
present in a synthesis patch from an algorithm. This is very
expensive computationally, and most of the calculation is
redundant.
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Generate a Sine Tone
Digitally (2)

Compute the sine tone once, store it in a
table, and have all oscillators look in the table
for needed values.

Advantages: Much more efficient, hence faster, for
the computer. You are not, literally, re-inventing
the wheel every time.

Disadvantages: Table values are discrete points in
time. Most times you will need a value that falls
somewhere in between two already computed
values.
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Table Lookup Synthesis

Sound waves are very repetitive.

For an oscillator, compute and store
one cycle (period) of a waveform.

Read through the wavetable repeatedly
to generate a periodic sound.
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Changing Frequency

The Sample Rate doesn’t change within a
synthesis algorithm.

You can change the speed that the table is
scanned by skipping samples.

skip size is the increment, better known as
the phase increment.

***phase increment is a very important
concept™*
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Algorithm for a Digital
Oscillator

Basic, two-step program:

phase_index = mod, (previous_phase + increment)
output = amplitude X wavetable[phase_index]

increment = (TableLength X DesiredFrequency)

SampleRate
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If You're Wrong, it's Noise

What happens when the phase increment
doesn’t land exactly at an index location in
the table?

It simply looks at the last index location passed for
a value.

In other words, the phase increment is truncated
to the integer.

Quantization
Noise
The greater the error, the more the noise.
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Interpolation
Rather than truncate the phase location...

look at the values stored before and after the
calculated phase location

calculate what the value would have been at the
calculated phase location if it had been generated
and stored.

Interpolate

More calculations, but a much cleaner signal.
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Sample Playback

Oscillator concept can be used to
explain sample playback, with one
important caveat:
Table length is variable among different
soundfiles, so

Playback rate is usually expressed in terms
of a ratio: desired_speed : root_speed
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_L Delay

Delay is a fundamental operator!
Also easy to do in digital
Long delays — echos, reverb
Short delays - filtering

How do we delay sound?
Queues
Consider using circular queues
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_L Circular queue implementation

Initialization
Mono queue, 1 second long

// We'll delay one second
int DELAY = int(SampleRate());

short *queue = new int[DELAY + 1];
int rdloc = 1;
int wrloc = 0;

// Initially zero the queue
for(int j=0; j<DELAY + I; j++)
queue[j] = 0;
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_L Accessing the queue
/ For each sample...
queue[wrloc] = sample;

/I ' Add in the delayed version
sample += queue(rdloc];

// Update queue locations
wrloc++; wrloc %= DELAY + 1;
rdloc++; rdloc %= DELAY + 1;

// And write the samples
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What about a multi-tap
queue?

Make queue 1 larger than longest delay
Write at wrloc each step
Increment wrloc: wrloc++; wrloc %= QSIZE;

Read at:
(wrloc — delay + QSIZE) % QSIZE;
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Samples or Wave Tables

A sample or wave table is a short digital
sound recording
We play it back to make the sound

Examples:
Digital piano — recorded sound for each key

Speech synthesis — recorded sound for each
phoneme

Computer games — samples for gunshots,
crashes, etc.
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Current sample—

Samples, the easiest way

Start with first audio frame in sample

Each request for a sample, advance
return wave[curr++];

At end, we are done
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More advanced ideas

What if | want to play at a different
speed?

Playing faster or slower changes the pitch
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Music and the scale

Music is based on an exponential scale
To move up one octave, we double the frequency
To move down one octave, we halve the
frequency

There are 12 “semitones” in a scale
Sometimes called “half-steps”
C,C#,D,D#, E, F, F#, G, G#, A, A#, B
To move up one semitone, multiply playout rate by
1.05946 (1.05946 » 12 =2.0)

To move down one semitone, divide playout rate
by 1.05946  cseass Page2s




Example: Playing a violin
note

Recording of violin playing C, we want
to play E (4 half-steps up)

Playout rate is 1.05946"4 = 1.2599

So, how do we play at that rate?
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_] Fractional sample positions

// Initialization:
sample = 0.0; // double
rate = 1.2599; // double

/I After each sample acquisition
sample += rate;
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_} How to select the sample

Important: Desired sample is between
real samples!
We can:
1: Select the nearest sample
2: Linearly interpolate between samples
3: Resample
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_] Selecting the nearest sample

Simply round and access your wave
table

return wave(int(sample + 0.5));
Works, but is somewhat noisy
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Linear interpolation

Interpolate between two audio samples

double inbetween = fmod(sample, 1);
return (1. — inbetween) * wave[int(sample)] +
inbetween * wave[int(sample) + 1];

More accurate, yet still efficient

1021 1021.35 1022
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Sample playback class
members

Constructor — Loads file and initializes
for playback

Pitch — Sets the pitch to play back at

Frame — Returns an audio frame and
advances

Rewind — Resets to play again
Done — Returns true if playback is done
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Looping

What if the note has variable duration?

Associate with the sample
Loop from location
Loop to location

How might we select these points?
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Envelopes

What if we use looping to make an
efficient piano sound?

Looping does not decay, but a piano sound
does

We commonly will make samples with
fixed amplitudes, then make a synthetic
envelope for the sound event.
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J_Attack and Release

Amplitude

l
Attack . Release
Time
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_LADSR

ADSR: Attack, decay, sustain, release

Amplitude

Sustain level

! Attack

Decay

Sustain
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Release

Where do samples come
from?

Pure recordings of instruments
Artificially generated sounds
Modifications of existing sounds
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