
1

CSE466

Bringing Organization to our Bringing Organization to our
Code Code

Reference: An Embedded Software
Primer

By David E. Simon
(two copies in lab for checkout)

Figure 4.4 Classic Shared-Data Problem

Static int iTemperatures[2];

Void interrupt vReadTemperatures (void)

{
iTemperatures[0] = !! read in value from hardware

iTemperatures[1] = !! read in value from hardware
}

(continued)

Figure 4.4 (continued)

void main (void)
{

int iTemp0, iTemp1;

while (TRUE)
{

iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];
if (iTemp0 != iTemp1)

!! Set off howling alarm;
}

}

4. INTERRUPTS4. INTERRUPTS

� 4.3 The Shared-Data Problem

� Shared variables used in both interrupt and task codes for communication
� The interrupt routine is activated whenever an event occurs to handle it, caused by either

1) hardware interrupt attached to a sensor or 2) a timer interrupt causing period check or
event-occurrence

� Problem? When interrupt occurs between the two statements
� iTemp0 = … set to 73
� (interrupt occurs and handler is invoked to set both iTemperatures [] to 74)
� iTemp1 = … set to 74
� If() … will be TRUE to cause an alarm, when it shouldn’t

2

4. INTERRUPTS4. INTERRUPTS

� The Shared-Data Problem

� Fig 4.5 and Fig 4.6
� Code in Fig 4.5 eliminates setting of local variables, but interrupt can still occur within

the if()-statement, causing a false-alarm to be called.

� Code in Fig 4.6 lists the assembly version, which shows that an interrupt can occur after
the MOVE R1, … instruction and before MOVE R2, …. Since the first MOVE
operation takes a few microseconds to execute before the second MOVE operation,
enough time for the hardware to assert an interrupt signal

� The interrupt routine does not change the values in R1 after the call – saved on the stack

Figure 4.5 Harder Shared-Data Problem

Static int iTemperatures[2];

Void interrupt vReadTemperatures (void)

{
iTemperatures[0] = !! read in value from hardware

iTemperatures[1] = !! read in value from hardware

}
(continued)

Figure 4.5 (continued)

void main (void)
{

int iTemp0, iTemp1;

while (TRUE)
{

if (iTemperatures[0] != iTemperatures[1])
!! Set off howling alarm;

}

}

Figure 4.6 Assembly Language Equivalent of Figure 4.5
.
.

MOVE R1, (iTemperatures[0])
MOVE R2, (iTemperatures[1])
SUBTRACT R1, R2
JCOND ZERO, TEMPERATURES_OK
.
.
; Code goes here to set off the alarm
.
.

TEMPERATURES_OK:
.
.

3

4. INTERRUPT4. INTERRUPT

� 4.3 The Shared-Data Problem - 2

� Solving the Shared Data Problem
– Use disable and enable interrupt instructions when task code accesses shared data
– Code in Fig 4.7 solves the problem, since even if the hardware asserts an interrupt

signal to read the new temperature values (in the handler), the microprocessor will
complete the task code first

– If the task code is in C, the compiler will insert enable/disable instructions in the
corresponding assembly code (See Fig 4.8)

– If the task code in C doesn’t have enable/disable constructs, then the embedded
programmer must use other mechanisms to allow enable/disable of interrupts

– Other ways: Atomic or Critical Section code segments for enable/disable interrupt

Figure 4.7 Disabling Interrupts Solves the Shared
 Data Problem from Figure 4.4

Static int iTemperatures[2];

Void interrupt vReadTemperatures (void)
{

iTemperatures[0] = !! read in value from hardware
iTemperatures[1] = !! read in value from hardware

}
(continued)

Figure 4.7 (continued)

void main (void)
{

int iTemp0, iTemp1;
while (TRUE)
{

disable (); /* Disable interrupts while we use the array */
iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];
enable ();
if (iTemp0 != iTemp1)

!! Set off howling alarm;
}

}

Figure 4.8 Disabling Interrupts in Assembly Language
.
.

DI ; disable interrupts while we use the array
MOVE R1, (iTemperatures[0])
MOVE R2, (iTemperatures[1])
EI ; enable interrupts again

SUBTRACT R1, R2
JCOND ZERO, TEMPERATURES_OK
.
.
; Code goes here to set off the alarm
.
.

TEMPERATURES_OK:
.
.

4

4. INTERRUPTS4. INTERRUPTS

� 4.3 The Shared-Data Problem - 3
� Atomic/Critical Section – segment/block of code whose statements must be executed, without

interruption because common/shared data is being accessed, in a fixed microprocessor cycles
� Needed in task code when variables/data are shared. (Non-shared data can be accessed or processed

anywhere else in the task code.)

� Fig 4.9 shows an example task code, which can return wrong results if the timer asserts an interrupt
during the calculations in the if()-statement

� Fig 4.10 is a solution, such that even if the code is called in the critical section of some part of the
task code, the enable/disable protections will avoid inadvertent ‘enabling’ of the interrupt in the
middle of that critical section

� Fig 4.11 lists a solution that works when the assembly code for the return statement is a long-
MOVE. It doesn’t if it takes multiple short-MOVE operations

� Fig 4.12 lists a solution that reads/re-reads time value without using explicit enable/disable. It works
best if compiler optimization is in check to avoid skipping the re-read or while statement by using
the volatile keyword to declare the shared data/variable

Figure 4.9 Interrupts with a Timer

Static int iSeconds, iMinutes, iHours;
Void interrupt vUpdateTime (void)
{

++iSeconds;
if (iSeconds >= 60)
{

iSeconds = 0;
++iMinutes;
if (iMinutes >= 60)
{

iMinutes = 0;
++iHours;
if (iHours >= 24)

iHours = 0;
}

}
!! Do whatever needs to be done to the hardware

}
(continued)

Figure 4.9 (continued)

long lSecondsSinceMidnight (void)
{

return ((((iHours * 60) + iMinutes) * 60) + iSeconds);
}

Figure 4.10 Disabling and Restoring Interrupts

long lSecondsSinceMidnight (void)
{

long lReturnVal;
BOOL fInterruptStateOld; /* Interrupts already disabled? */

fInterruptStateOld = disable ();

lReturnVal = (((iHours * 60) + iMinutes) * 60) + iSeconds;

/* Restore interrupts to previous state */
if (fInterruptStateOld)

enable ();

return (lReturnVal);
}

5

Figure 4.11 Another Shared-Data Problem Solution

Static long int lSecondsToday;

Void interrupt vUpdateTime (void)
{

.

.
++ lSecondsToday;
if (lSecondsToday = = 60 * 60 * 24)

lSecondsToday = 0L;
.
.

}

long lSecondsSinceMidnight (void)
{

return (lSecondsToday);
}

Figure 4.12 A Program That Needs the
 volatile Keyword

Static long int lSecondsToday;

Void interrupt vUpdateTime (void)
{

.

.
++lSecondsToday;
if (lSecondsToday = = 60 * 60 * 24)

lSecondsToday = 0L;
.
.

}
(continue)

Figure 4.12 (continued)

long lSecondsSinceMidnight (void)
{

long lReturn;

/* When we read the same value twice, it must be good. */
lReturn = lSecondsToday;
while (lReturn != lSecondsToday)

lReturn = lSecondsToday;

return (lReturn);
}

4. INTERRUPTS4. INTERRUPTS

� 4.4 Interrupt Latency
� How long does it take for my embedded system to respond to external stimulus (or

interrupt), when the signal is asserted?
� Depends on:

– 1. How long is the interrupt disabled (service time or handling time)
– 2. Time it takes to execute/handle the higher priority interrupt (than the current one)
– 3. Time it takes the microprocessor to save context and jump to the handler
– 4. Time it takes the handler to save the context and start ‘responsive’ work

� Measuring each of the time periods
– 1,2,4:

� (i) Write short and efficient code and measure how long it takes to run (system time), eliminating
unrelated/auxiliary code (that can be handled differently) from the handler itself

� (ii) Look-up and add-up the instruction cycle times for individual instructions

– 3: Look-up from the microprocessor manufacturer’s manuals

6

4. INTERRUPTS4. INTERRUPTS

� 4.4 Interrupt Latency – 1
� Latency as a function of the time an interrupt is disabled
� E.g., given (the following parameters of a system):

– Disable time: 125 usec for accessing shared variables in task code
– Disable time: 250 usec for accessing time variables/values from a timer interrupt
– Disable time: 625 usec for responding to interprocessor signals

� Will the system work under these constraints?
– Yes, because after the first 125 usec (task code), the timer and processor interrupt requests will

be asserted: the next 250 usec the timer is handled, at which point the clock value will be 375
usec. The processor is then handled (after the 250 usec time), for the next 375 usec – plenty of
time to finish before the 625 usec deadline.

– (See Fig 4.13)
– If the microprocessor speed is cut in half, all handling and disabled times will double, and

under the same constraints, the system will not work.
– Adding a network handler with higher priority (than the processor), will cause latency problems

and won’t work (See Fig 4.14)

250 �sec

300 �sec

Time to deadline: 625 �sec

IRQ

Interprocessor
interrupt occurs.

Task code
disables interrupts.

Processor gets to
interprocessor ISR.

ISR does
Critical work.

Figure 4.13 Worst Case Interrupt Latency

250 µsec

300 µsec

Time to deadline: 625 µsec

100 µsec

IRQ

Interprocessor
interrupt occurs.

Ta sk code
disables interrupts.

Processor gets to
interprocessor ISR. ISR does

Critical work.

Figure 4.14 Worst Case Interrupt Latency

Network
Interrupt
Occurs.

Processor gets to
Network ISR.

4. INTERRUPTS4. INTERRUPTS

� 4.4 Interrupt Latency - 2

� Avoiding the Disabling of Interrupts

– Write task and handler code so that both code segments write to, or read from, different parts
(buffers) of a shared data structure

– Fig 4.15 – Arrays A and B, shared between both codes but never accessed at same time

– Fig 4.16 – A queue structure is shared, but task code read from previously written temp values
(different cells in the queue), while the handler writes ahead of the task code

7

Figure 4.15 Avoiding Disabling Interrupts

Static int iTemperaturesA[2];
Static int iTemperaturesB[2];
Static BOOL fTaskCodeUsingTempsB = FALSE;

Void interrupt vReadTemperatures (void)
{

if (fTaskCodeUsingTempsB)
{

iTemperaturesA[0] = !! read in value from hardware
iTemperaturesA[1] = !! read in value from hardware

}
else
{

iTemperaturesB[0] = !! read in value from hardware
iTemperaturesB[1] = !! read in value from hardware

}
} (continued)

Figure 4.15 (continued)

void main (void)
{

while (TRUE)
{

if (fTaskCodeUsingTempsB)
if (iTemperaturesB[0] != iTemperaturesB[1])

!! Set off howling alarm;
else

if (iTemperaturesA[0] != iTemperaturesA[1])
!! Set off howling alarm;

fTaskCodeUsingTempsB = ! fTaskCodeUsingTempsB;
}

}

Figure 4.16 A Circular Queue Without Disabling Interrupts

#define QUEUE_SIZE 100

int iTemperatureQueue[QUEUE_SIZE];
int iHead = 0; /* Place to add next item */
int iTail = 0; /* Place to read next item */

void interrupt vReadTemperatures (void)
{

/* If the queue is not full . . . */
if (!((iHead + 2 = = iTail) | |
 (iHead = = QUEUE_SIZE – 2 && iTail = = 0)))
{

iTemperatureQueue[iHead] = !! read one temperature;
iTemperatureQueue[iHead+1] = !! read other temperature;
iHead += 2;
if (iHead = = QUEUE_SIZE)

iHead = 0;
}
else !! throw away next value

} (continued)

Figure 4.16 (continued)

void main (void)
{

int iTemperature1, iTemperature2;

while (TRUE)
{

/* If there is any data . . . */
if (iTail != iHead)
{

iTemperature1 = iTemperatureQueue[iTail];
iTemperature2 = iTemperatureQueue[iTail + 1];
iTail += 2;
if (iTail = = QUEUE_SIZE)

iTail = 0;
!! Do something with iValue;

}
}

}

8

CSE466

SURVEY OF SOFTWARE SURVEY OF SOFTWARE
ARCHITECTURESARCHITECTURES

5.0 SURVEY OF SOFTWARE ARCHITECTURES5.0 SURVEY OF SOFTWARE ARCHITECTURES

� 5.0 Overview
– The basic ‘computational model’ that helps structuring or organizing the components of

your embedded software
– The underlying criterion is: how much (logical) control is needed to satisfy the required

system ‘response time.’
– Other factors affecting ‘response’ are: processor speed, system overhead
– Guides:

� A simple architecture: if response time is not a major issue
� A complex architecture: if there are multiple, rapid deadline and priority requirements

– Topics:
� Round-robin - simple
� Round-robin with interrupts - fairly complex
� Function-queue-scheduling - complex
� Real-time operating system - very complex

RoundRound--RobinRobin 5.0 SURVEY OF SOFTWARE ARCHITECTURES5.0 SURVEY OF SOFTWARE ARCHITECTURES

� 5.1 Round-Robin Architecture
� Advantages:

– Simple
– No interrupts and no shared data
– No response latency (and no overhead)
– More suitable for systems that require one-at-a-time operation (e.g., digital

watches, microwave ovens with simple functionality)

� Disadvantages:
– If any device or service/processing needs response in less time than it takes

the microprocessor to complete processing any system component (e.g., a
loop, a module, a basic functionality) – then RR won’t work

– Adding more functionality, devices, or service/processing introduces
potential ‘timing’ or ‘response time’ problems, which weakens the RR arch

9

5.0 SURVEY OF SOFTWARE ARCHITECTURES5.0 SURVEY OF SOFTWARE ARCHITECTURES

� 5.2 Round-Robin with Interrupts
– Offers more control over priorities via hardware interrupts
– Interrupt handlers implement higher priority functions (allowing the assignment of levels of

priority among devices/handlers)
– The handlers set flags, which are polled by the task code to continue when the handlers

complete their job

– Advantage:
� Setting and controlling using priorities

– Disadvantage:
� Danger of having shared data
� Priorities set in hardware

10

5.0 SURVEY OF SOFTWARE ARCHITECTURES5.0 SURVEY OF SOFTWARE ARCHITECTURES

� Characteristics of the Round-Robin with Interrupts

– Low priority tasks could experience longer delays, if higher priority tasks execute
code (outside their critical section) which take a long time

– Example: If task A takes 200 ms to execute code outside its CS, then the
waiting/response time for lower priority tasks B, C, will be so increased

– Moving out-of-CS code for B and C into their interrupt handlers will help regain
some time or indirectly increase their priority levels. Meaning, the handlers for B
and C will also take 200 ms more to execute, increasing the overall response time
for B and C

– One way to improve the response time of a task with lower priority is to ‘check’ its
status flag more frequently than others’ (typical RR technique in OS)

� Summary: Any task which is a processor hog will not be good to model using
a RR with interrupt architecture, since response time will be bad!

11

5.0 SURVEY OF SOFTWARE ARCHITECTURES5.0 SURVEY OF SOFTWARE ARCHITECTURES

� 5.3 Function-Queue-Scheduling Architecture

– Improves the response time of higher priority tasks.
– Interrupt routines add function-pointers to a queue for the main task to execute
– The main task continuously scans the queue and executes the corresponding function
– Allows placing function-pointers in the queue based on preferred priority scheme (placement is

done by a supporting/auxiliary routine invoked by the handlers)

– Characteristics:
� The worst-case response time for highest-priority tasks is: sum(longest task code, any interrupts this code

generates), and not the sum of the response times of all the handlers
� The response time for lowest-priority tasks could be long when their code segments are long

CSE466

Reference:Reference:

An Embedded Software Primer
By David E. Simon

(two copies in lab for checkout)

