Bringing Organization to our

Code , |
Figure 4.4 Classic Shared-Data Problem

Static int iTemperatures

Reference: An Embedded SOftWﬂre Void interrupt vReadTemperatures (void)

Primer {
iTemperatures[0] = !/ read in value from hardware
By DaVld E Simon iTemperatures[1] = /! read in value from hardware

(two copies in lab for checkout) (continued)

4. INTERRUPTS

Flgure 4.4 (continued) 4.3 The Shared-Data Problem

void main (vo Shared variables used in both interrupt and task codes for communication
{ The interrupt routine is activated whenever an event occurs to handle it, caused by.either

int iTempO, iTempl; are interrupt attached to a sensor or 2) a timer interrupt causing period checkyor

while (TRUE)

{ Problem? When interrupt occurs between the two statements
) . iTemp0 = ... set to 73
iTemp0 = iTemperatures[0]; (interrupt ind handler is invoked to set both iTemperatures [] to 74)
iTem iTemperatures[1]; iTempl = ... setto

if (iTemp0 1= iTemp1) o If() ... will be TRUE to cause an alarm, when it shouldn’t

! Set off howling alarm;

4. INTERRUPTS

Figure 4.5 Harder Shared-Data Problem
The Shared-Data Problem
Static int iTemperatures[2];
Fig 4.5 and Fig 4.6
Code in Fig 4.5 eliminates setting of local variables, but interrupt can still occur withiin
the if()-statement, causing a false-alarm to be called. Void interrupt vReadTemperatures (void)

{

pt can occur after

the MOVE R1, ... instn o ince the fi iTemperatures[0] = /! read in value from hardware

operation takes icros ds to execute before the second MOVE operation, iTemperatures[1] = /! read in value from hardware
enough time for the hardware to assert an interrupt signal ;

The interrupt routine does not change the values in R1 after the call — saved c S (continued)

Figure 4.5 (continued) Figure 4.6 Assembly Language Equivalent of Figure 4.5

void main (void)

(MOVE R1, (iTemperatures[0])

. . . MOVE R2, (iTemperatures[1])
int iTempO, iTempl; SUBTRA Rl R2

JCOND ZERO, TEMPERATURES_OK
while (TRUE)

{

if (iTemperatures[0] != iTemperatures[1]) ; Code goes here to set off the alarm

!! Set off howling alarm;

TEMPERATURES_OK:

4. INTERRUPT

4.3 The Shared-Data Problem - 2 Figure 4.7 Disabling Interrupts Solves the Shared
Data Problem from Figure 4.4
Solving the Shared Data Problem
— Use disable and enable interrupt instructions when task code ac: aredidata Static int iTemperatures[2];
Code in S ro nce even if the hardware
signal to read th

! Void interrupt vReadTemperatures (void)
complete the task code firs

. . - N {

If the task code is in C, the compiler will i . i . .

» R . . iTemperatures[0] = /! read in value from hardware
corresponding nbly code (See Fig

iTemperatures[1] = /! read in value from hardware

(continued)

Figure 4.7 (continued) Figure 4.8 Disabling Interrupts in Assembly Language

void main (voi

DI
¢ L oo MOVE R1, (iTemperatures
int iTemp0, iTempl; MOVE R2, (iTemperatures[1])
while (TRUE) EI]

{
1

nable interrupts again

ble (); /* Disable interrupts while we use the array * SUBTRACT RI1, R2
Temp0 emperatures[0]; JCOND ZERU RN EER SR
iTempl emperatures[1];
able ();
.en l 0] i s here to set off the alarm
if (iTemp! iTempl)

! Set off

TEMPERATURES_OK:

4. INTERRUPTS

Figure 4.9 Interrupts with a Timer
4.3 The Shared-Data Problem - 3

Static int iSeconds, iMinutes, iHours;
Atomic/Critical Section — segment/block of code who atements must be executed, without

Void interrupt vUpdateTime (void)

{

interruption because common/shared data is being accessed, in a fixed microprocessor cycles
Needed in task code when variables/data are s . (Non-shared d: essed orprocessed

++iSeconds;
anywhere else in the task code.)

if (iSeconds >= 60)
{
Fig 4.9 shows an example task code, which can return wrong results if the timer asserts an interrupt iSecond:
during the ca tions in the if()-statement ++iMinutes:;
if (iMinutes >= 60)
de is in the section of some part of the {
oid inadvertent ‘enabling’ of the interrupt in the’ iMinutes = 0;
++iHours;
if (iHours >= 24)
de for the return statement is a long- iHours = 0;
MOVE. It doesn’t if it takes multiple short-MOVE operations
}
Fig 4.12 lists a solution that reads/re-reads time value without using explicit enable/disable. It works /! Do whatever needs 10 be done to the hardware
best if compiler optimization is in check to avoid skipping the re-read or while statement by using
the volatile keyword to declare the shared data/variable (continued)

Figure 4.9 (continued) Figure 4.10 Disabling and Restoring Interrupts

long 1SecondsSinceMi

long 1SecondsSinceMidnight (void) {
i long IReturnVal;
! BOOL fInterruptStateOld; /* Interrupts already disabled?*/

fInterruptStateOld = disable ();

IReturnVal = (((iHours * 60) + iMinutes) * 60) + iSeconds;

/* Restore interrupts to previous state */
if (fInterruptStateOld)

enable ();

return (IReturnVal);

Figure 4.11 Another Shared-Data Problem Solution
Static long int 1SecondsTod:

Void interrupt vUpdateTime (void)

{

++ 1SecondsT

long 1S

(
1

return (ISecondsToday

Figure 4.12 (continued)

long 1Sec inceMidnight (
{

g IReturn;
/* When we read the same value twice, it must be good. */
IReturn = ISecondsToday;
while (IReturn !=1SecondsToday)

IReturn = 1SecondsTod

return (IReturn);

Figure 4.12 A Program That Needs the
volatile Keyword
Static long int 1SecondsTc

Void interrupt vUpdateTime (void)

{

++1SecondsToda
if (ISecondsToday = = 60 * 6
ISecondsToday = OL;

(continue)

4. INTERRUPTS

4.4 Interrupt Latenc

How long does it take for my emr

interrupt), when the signal is

Depends on:
- 2. Timeit ta execute/handle the higher priority interrupt (than the current one)
~ 3. Time it takes the microprocessor to save context and jump to the handler

. Time it takes the handler to save the context and start ‘responsive’ work

Measuring each of the time periods
12
* (i) Write short and efficient code and measure how long it takes to run (system time), eliminating
unrelated/auxiliary code (that can be handled differently) from the handler itself
(ii) Look-up and add-up the instruction cycle times for individual instructions

— 3: Look-up from the microprocessor manufacturer’s manuals

4. INTERRUPTS

4.4 Interrupt Latenc
Latency as a function of the time an inferrupt is disabled
E.g., given (the following parameters of a system):
isable time: 125 usec for accessing shared variables in task code
ble time: 250 usec for ing time variables/values from a timer interrupt
ble time: 625 usec for r nding to interprocessor si

Will the system work under these constraints?
Yes, because after the first 125 usec (task code), the timer and processor interrupt requests will
be asserted: the next 250 usec the timer is handled, at wi i clock value will be 3
usec. The prc i
time to finish before the 625 usec deadline.
(See Fig 4.13)
If the microprocessor speed is cut in half, all handling and disabled times will double, and
under the same constraints, th tem will not work.

Adding a network handler with higher priority (than the processor), will cause latency problems,
and won’t work (See Fig 4.14)

Figure 4.14 Worst Case Interrupt Latency

Processor gets to
Processor gets to interprocessor ISR ISR docs

Network ISR. Critigal work.
Task code \

disables interrupts

Network

—
Interrupt [ﬁ
Oceurs

L

)-7 100 psec
fe——300 psec —|
fe——— Time 10 deadline: 625 psec ————]

interrupt oceurs.

Figure 4.13 Worst Case Interrupt Latency

Processor gets to ISR does
interp r 5 Critical work:
Task code

Interprocessor
interrupt occurs.

4. INTERRUPTS

4.4 Interrupt Laten:
Avoiding the Disabling of Interrupts

nd handler code so that both code segments write to, or read from, different parts
(buffers) of a shared data structure

Fig 4.15 - Al A and B, shared between both codes but never a ed at same time

Fig 4.16 — A queue structu ared, but t: d fre jiously written temp
(different cells in the queue), while the handler writes ahead of the task code

Figure 4.15 Avoiding Disabling Inte:

Static int iTemper: Al2];
Static int iTemperaturesB[2];
Static BOOL fTaskCodeUsingTempsB = FALSE;

Void interrupt vReadTemperatures (void)

{

read in value from hardware

read in value from hardware

=!! read in value from hardware

! read in value from hardware

(continued)

Figure 4.16 A Circular Queue Without Disabling Interrupts

#define QUEUE_SIZE 100

int
int iHez 5 Place to add next item */
/* Place to read next itemr

void interrupt vReadTemperatures (void)
{

/* If the queus not full .

if (!((iHead + 2

QU 2&& B

iTemperatureQueue[iHead] = !/ read one temperature;
iTemperatureQueue[iHead+1] = /! read other temperature;

(continued)

Figure 4.15 (continued)

void main (void)

(
1

while (TRUE)
{
if (fTaskCodeUsingTempsB)
if (iTemperaturesB[0] != iTemperaturesB[1])
! Set off howling alarm;
else
if (iTemperaturesA[0] != iTemperaturesA[1])

! Set off howling alarm;

fTaskCodeUsingTempsB = ! kCodeUsingTempsB;

Figure 4.16 (continued)

void main (void)
{

int iTemperaturel, iTemperature2;

e (TRUE)

/* If there is any data . .
if (iTail != iHead)
{
iTemperaturel = iTemperatureQueue[iTail];
emp ture2 = iTemperatureQueue[iTail + 1];

QUEUE_SIZE)
0;

5.0 SURVEY OF SOFTWARE ARCHITECTURES

5.0 Overview
The basic ‘computational model’ that helps structuring or organizing the components
your embedded software

S U RV EY O F SO FTWAR E The underlying criterion is: how much (logical) control is needed to satisfy the required

system ‘response time.
ARC H ITECTU R ES Other fac cting ¢ se’ are: pr J em overhead
Guides:
simple architecture: if response time is not a m

A complex architecture: if there are multiple, r: deadline and priority requirements:

- simple

- fairly complex

- complex
mplex

RO u nd S RO bl n 5.0 SURVEY OF SOFTWARE ARCHITECTURES

Figure 1: Basic cyclic executive

" T~ 5.1 Round-Robin Architecture
Advantages:
— Simple
— No interrupts and no shared data
- No response latency (and no overhead)
- More suitable for systems that require one-at-a-time operation'(e.g., digital
watches, m ave ovens with simple functionality)
Disadvantages:
- If any device or
the microproce
loop,
— Adding more f ality, devic r rocessing introduces
ential ‘timing’ or ‘r se time” p s, which weakens the RR|arch

Figure 5.1 Round-Robin Architecture f——
Figure 5.2 Digital Multimeter

void main (void)

while (TRUE)
{

if (1! I/0 Device A needs service) |

{ /ﬁ-
!! Take care of 1/0 Device A
11 Handle data to or from 1/0 Device A

}
if (/! 1/0 Device B needs service) ﬂ
Probes

{

!l Take care of 1/0 Device B

!1 Handle data to or from I/0 Device B
} 100
etc.
etc. 10 10
if ({1 1/0 Device Z needs service) Amps 100 Vols
{

!! Take care of I/0 Device Z
!! Handle data to or from I/0 Device Z

5.0 SURVEY OF SOFTWARE ARCHITECTURES

Figure 5.3 Code for Digital Multimeter
void vDigitalMultiMetertain (void)
{ 52 5 in wi P
enum {OHHS_1, OHMS_10, ..., VOLTS_100) eSwitchPosition: $12 ot IRelin willh ey
s more control over priorities via hari nterrupts

while (TRUE)
{ Interrupt handlers implement higher priority functions (allowing the assignmentof levels of
priority among ices/handlers)

The handlers set flags, which are polled he t de t tinue when'the handlers
complete their job

eSwitchPosition = !/ Read the position of the switch;
switch (eSwitchPosition)
{

case OHMS_L:
11 Read hardware to measure ohms
11 Format result :
break; « Setting and controlling using priorities
case OHMS_10: N
11 Read hardware to measuré’ohms
11 Format result » Danger of having shared data

Advantage:
advantage:

break; ;
. 3 e« Priorities set in hardware

case VOLTS_100:
11 Read hardware to measure volts
11 Format result
break;
1
11 Write result to display

Figure 5.4 Round-Robin with Interrupts Architecture

BOOL fDeviceA = FALSE;
BOOL fDeviceB = FALSE;

BOOL fDeviceZ = FALSE;
void interrupt vHandleDeviceA (void)

11 Take care of I/0 Device A
fDeviceA = TRUE;
3}

void interrupt vHandleDeviceB (void)
{
!1 Take care of I/0 Device B
fDeviceB = TRUE;
}
void interrupt vHandleDevicez (void)
{
11 Take care of I/0 Device Z
fDeviceZ = TRUE;

(continued)

Figure 5.5 Priority Levels for Round-Robin Architectures

Round-robin Round-robin
with interrupts
High-priority
processing

void main (void)
{

while (TRUE)
{

if (fDeviceA)
{

fDeviceA = FALSE;

11 Handle data to or from 1/0 Device A
b
if (fDeviceB)
€

fDeviceB = FALSE;

!1 Handle data to or from 1/0 Device 8

if (fDeviceZ)
{
fDeviceZ = FALSE;
!! Handle data to or from 1/0 Device Z

Device A ISR

Device B ISR

Device C ISR

Everything Device D ISR

Device ... ISR

Device Z ISR

All Task Code

Low-priority
processing.

5.0 SURVEY OF SOFTWARE ARCHITECTURES

Characteristics of the Round-Robin with Inter

Low priori could experience longer delays, if higher priority tasks execute

code (outside their critical section) which take a long time

Example: If task A takes 200 ms to execute code outside its CS, then the

waiting/response time for lower priority B, C, will be so increased

Moving out-of-CS code for B and C into their interrupt handlers will help regain
ome time or indirectly increa Meaning, the handlers for B
and C will also take 200 ms more to execute, asing the overall response time

for B and C

One way to improve the response time of a task with lower priority is to ‘check’ its

atus flag more frequently than othe ical RR technique in OS)

< which is a processor hog will not be good to model using

a RR with interrupt architecture, since rt nse time will be bad!

10

5.0 SURVEY OF SOFTWARE ARCHITECTURES

5.3 Function-Queue-Scheduling Architecture

Improves the response time of higher priorit

Interrupt routines add function-pointers to a queue for the main task to execute

The main task continuously scans the queue and executes the corresponding function

Allows placing function-pointers in the queue based on preferred priority scheme (placement is
the handlers)

response time for highest-priority tasks is: sum(longest task code, any interrupts this ¢ode
enerates), and not the sum of the response times of all the handle

The response time for lowest-priority tasks could be long when their code ents are long

void main (void)
{
while (TRUE)
{

while (!!Queue of function pointers is empty)

11 Call first function on queue

void function_A (void)

!! Handle actions required by device A
}

void function B (void)
{
!! Handie actions required by device 8

Figure 5.8 Function-Queue-Scheduling Architecture

1! Queue of function pointers;

void interrupt vHandleDeviceA (void)
{
!{ Take care of I/0 Device A
11 Put function_A on queue of function pointers

void interrupt vHandleDeviceB (void)
t
!l Take care of I/0 Device B
!1 Put function_B on queue of function pointers

(continued)

Reference:

An Embedded Software Primer
By David E. Simon
(two copies in lab for checkout)

CSE466

11

