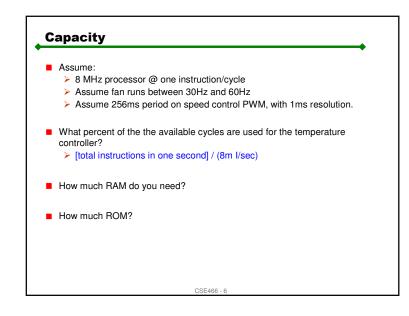
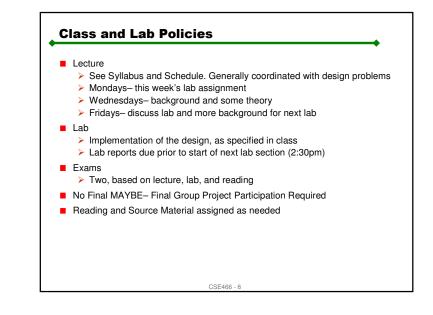
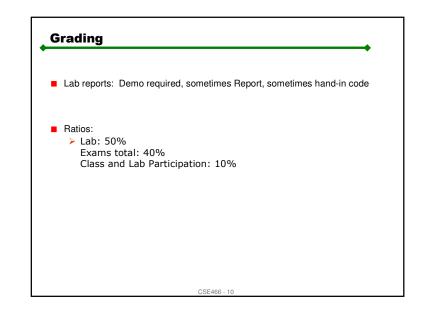

It's not a desktop system Fixed or semi-fixed functionality (not user programmable) Lacks some or all traditional human interfaces: screen, keyboard, pointing device, audio May have stringent real-time requirements (Hard and Soft) Usually has sensors and actuators for interface to physical world It may: replace discrete logic circuits provide feature implementation path Make maintenance easier Protect intellectual property Improve mechanical performance Replace analog circuits


CSE466 - 4

What is an Embedded System?

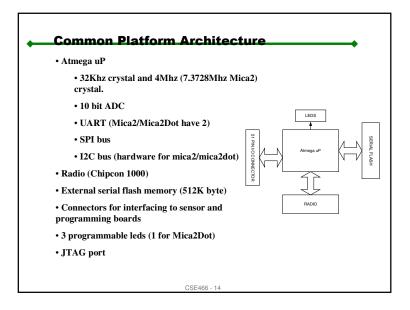


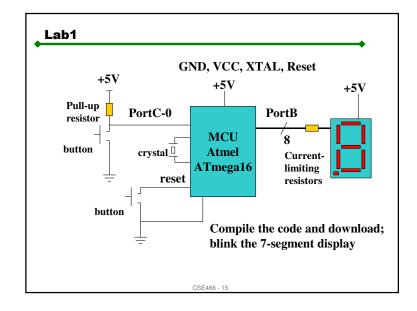
CSE466 - 3


<pre>ask: Tachometer (external interrupt) ow = getTime(); eriod = then - now; //overflow? nen = now; sturn;</pre>		Task: TempControl (periodic, soft constra if (Temp > setpoint) Thi++; if (Temp < setpoint) Thi; if (period <min period="" ="">max) GP4 = 1;</min>			
k: FanPWM (perio nt++; ount == 0) GP0 = ount > Thi) GP0 = rn;	1; 0;	Thi = 0; setup timer setup timer while (1) ;	for 1ms interrupt; for 100ms interrupt;		
Task	ROM	RAM	Instructions/Sec		
Tach	~4	2 (period, then)	4 * 60 = 240		
FanPWM	~8	1 (count)	8 * 1000 = 8000		
TempControl	~10	1 (THI)	10 * 2 = 20		

- Lecture slides will be handed out and on line after class
- Go to the 466/schedule link for links to lecture slides, labs, etc.
- If you have a home PC, get and use the tools!
- The Documents:
 - > Atmel CD-Rom Data Books
 - > ATmega16 Datasheet- on CD, on web, in course pak
 - Prototyping with the Design Kit on web
 - HWLab web page docs
- "Lab equipment required for the duration of a course or project must be first checked out from the Lab Manager and secured with a deposit check of \$200 made payable to "University of Washington" (note that this check will not be cashed but will be returned to the student upon the return of all checked-out equipment in good condition)." from lab policy...
- Sign up for CSE466 mailing list

CSE466 - 9


CSE466 Syllabus-1


- The course will focus on software issues in embedded systems including use of an advanced 8-bit microcontroller and its development environment, interrupt programming and management, and peripheral interfacing and drivers.
- Laboratory assignments will use prototyping boards, LEDs, audio transducers, A/D converters, pulse-width modulators, wireless communications. Berkeley Motes and TinyOS.
- Required Readings: We'll be using the Atmel ATmega16 microprocessor extensively, and will refer to the datasheet, which is found at: <u>http://www.atmel.com/atmel/acrobat/doc2466.pdf</u> It is 323 pages.
- Atmel has made available CD-ROMs of their data and application notes, which will be available for each student at the first lecture. The CD-ROM includes copies of the assembly tools as well.
- Hardbound copies of the datasheet as a coursepak are available at the Communication Copy Center in the Communications bldg, Rm B-042, cost \$21.45.

CSE466 - 11

CSE466 Syllabus-2 Introduction: What is an Embedded System. AVR Development Tools Reading the AVR datasheet The Rule of (Ohm's) Law Timers, Interrupts, A/D converters Interrupt-driven Task Structures Pulse Width Modulation & DACs Table-driven Wave Synthesis Event-driven OS programming- TinyOS Wireless networking- using Motes Debugging tools: Logic analyzer Safety, Ethics, and Societal Impact Design Trade-offs Memory, Speed, Power, Cost Serial Interfaces: SPI, I2C, USB CSE466 - 12

Family of M	lotes				
Mote Type	WeC	Renee	Mica	Mica2	Mica2Dot
Microcontroller					
Туре	AT90LS8535	Atmega163	Atmega128	Atmega128	Atmega12
CPU Clock (Mhz)	4	4	4	7.3827	4
Program Memory (KB)	8	16	128	128	128
Ram (KB)	0.5	1	4	4	4
UARTs	1	1	2 (only 1 used)	2	2
SPI	1	1	1	1	1
I2C	Software	Software	Software	Hardware	Hardware
Nonvolatile storage					
Chip	24LC256		AT45DB041B		
Size (KB)	32		512		
Radio Communication					
Radio	RFM TR1000			Chipcon CC1000	
Frequency	916 (single freq)		916/433 (multiple chann		
Radio speed (kbps)	OOK		ASK	FSK	
Transmit Power Control	Programmable resistor potentiometer			Programmable via CC10 registers	
Encoding	SecDed (software)			Manchester (hardware	

