
1

Software for Embedded Systems

State Machines and
Concurrent Process Models

Adapted from: Embedded Systems Design: A Unified Hardware/Software
Introduction, (c) 2000 Vahid/Givargis

Slide 2CSE466-02au

Outline

� Models vs. Languages
� State Machine Model

� FSM/FSMD
� HCFSM and Statecharts Language
� Program-State Machine (PSM) Model

� Concurrent Process Model
� Communication
� Synchronization
� Implementation

� Dataflow Model
� Real-Time Systems

Slide 3CSE466-02au

� Describing embedded system�s processing behavior
� Can be extremely difficult

� Complexity increasing with increasing IC capacity
� Past: washing machines, small games, etc.

� Hundreds of lines of code
� Today: TV set-top boxes, Cell phone, etc.

� Hundreds of thousands of lines of code
� Desired behavior often not fully understood in beginning

� Many implementation bugs due to description mistakes/omissions

� English (or other natural language) common starting point
� Precise description difficult to impossible
� Example: Motor Vehicle Code � thousands of pages long...

Introduction

Slide 4CSE466-02au

An example of trying to be precise in English

� California Vehicle Code
� Right-of-way of crosswalks

� 21950. (a) The driver of a vehicle shall yield the right-of-way to a pedestrian crossing
the roadway within any marked crosswalk or within any unmarked crosswalk at an
intersection, except as otherwise provided in this chapter.

� (b) The provisions of this section shall not relieve a pedestrian from the duty of using
due care for his or her safety. No pedestrian shall suddenly leave a curb or other place
of safety and walk or run into the path of a vehicle which is so close as to constitute
an immediate hazard. No pedestrian shall unnecessarily stop or delay traffic while in a
marked or unmarked crosswalk.

� (c) The provisions of subdivision (b) shall not relieve a driver of a vehicle from the
duty of exercising due care for the safety of any pedestrian within any marked
crosswalk or within any unmarked crosswalk at an intersection.

� All that just for crossing the street (and there�s much more)!

Slide 5CSE466-02au

Models and languages

� How can we (precisely) capture behavior?
� We may think of languages (C, C++), but computation model is the key

� Common computation models:
� Sequential program model

� Statements, rules for composing statements, semantics for executing them
� Communicating process model

� Multiple sequential programs running concurrently
� State machine model

� For control dominated systems, monitors control inputs, sets control outputs
� Dataflow model

� For data dominated systems, transforms input data streams into output streams
� Object-oriented model

� For breaking complex software into simpler, well-defined pieces

Slide 6CSE466-02au

Models vs. languages

� Computation models describe system behavior
� Conceptual notion, e.g., recipe, sequential program

� Languages capture models
� Concrete form, e.g., English, C

� Variety of languages can capture one model
� E.g., sequential program model ! C,C++, Java

� One language can capture variety of models
� E.g., C++ → sequential program model, object-oriented model, state machine model

� Certain languages better at capturing certain computation models

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.
program

C++C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C

Slide 7CSE466-02au

Text versus Graphics

� Models versus languages not to be confused with text
versus graphics
� Text and graphics are just two types of languages

� Text: letters, numbers
� Graphics: circles, arrows (plus some letters, numbers)

X = 1;

Y = X + 1;

X = 1

Y = X + 1

Slide 8CSE466-02au

Introductory example: An elevator controller

� Simple elevator
controller
� Request Resolver

resolves various floor
requests into single
requested floor

� Unit Control moves
elevator to this requested
floor

� Try capturing in C...

�Move the elevator either up or down
to reach the requested floor. Once at
the requested floor, open the door for
at least 10 seconds, and keep it open
until the requested floor changes.
Ensure the door is never open while
moving. Don�t change directions
unless there are no higher requests
when moving up or no lower requests
when moving down��

Partial English description

buttons
inside

elevator

Unit
Control

b1

down

open

floor

...

Request
Resolver

...

up/down
buttons on

each
floor

b2
bN

up1
up2
dn2

dnN

req

up

System interface

up3
dn3

Slide 9CSE466-02au

Elevator controller using a sequential
program model

�Move the elevator either up or down
to reach the requested floor. Once at
the requested floor, open the door for
at least 10 seconds, and keep it open
until the requested floor changes.
Ensure the door is never open while
moving. Don�t change directions
unless there are no higher requests
when moving up or no lower requests
when moving down��

Partial English description

buttons
inside

elevator

Unit
Control

b1

down

open

floor

...

Request
Resolver

...

up/down
buttons on

each
floor

b2
bN

up1
up2
dn2

dnN

req

up

System interface

up3
dn3

Sequential program model

void UnitControl()
{

up = down = 0; open = 1;
while (1) {

while (req == floor);
open = 0;
if (req > floor) { up = 1;}
else {down = 1;}
while (req != floor);
up = down = 0;
open = 1;
delay(10);

}
}

void RequestResolver()
{

while (1)
...

req = ...
...

}
void main()
{

Call concurrently:
UnitControl() and
RequestResolver()

}

Inputs: int floor; bit b1..bN; up1..upN-1; dn2..dnN;
Outputs: bit up, down, open;
Global variables: int req;

You might have come up with something having
even more if statements.

Slide 10CSE466-02au

Finite-state machine (FSM) model

� Trying to capture this behavior as sequential program is a bit
awkward

� Instead, we might consider an FSM model, describing the system
as:
� Possible states

� E.g., Idle, GoingUp, GoingDn, DoorOpen
� Possible transitions from one state to another based on input

� E.g., req > floor
� Actions that occur in each state

� E.g., In the GoingUp state, u,d,o,t = 1,0,0,0 (up = 1, down, open, and
timer_start = 0)

� Try it...

Slide 11CSE466-02au

Finite-state machine (FSM) model

Idle

GoingUp

req > floor

req < floor

!(req > floor)

!(timer < 10)

req < floor

DoorOpen

GoingDn

req > floor

u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req == floor

!(req<floor)

timer < 10

t is timer_start

UnitControl process using a state machine

Slide 12CSE466-02au

Formal definition

� An FSM is a 6-tuple F<S, I, O, F, H, s0>
� S is a set of all states {s0, s1, �, sl}
� I is a set of inputs {i0, i1, �, im}
� O is a set of outputs {o0, o1, �, on}
� F is a next-state function (S x I→ S)
� H is an output function (S→ O)
� s0 is an initial state

� Moore-type
� Associates outputs with states (as given above, H maps S → O)

� Mealy-type
� Associates outputs with transitions (H maps S x I→ O)

� Shorthand notations to simplify descriptions
� Implicitly assign 0 to all unassigned outputs in a state
� Implicitly AND every transition condition with clock edge (FSM is synchronous)

Slide 13CSE466-02au

Finite-state machine with datapath model
(FSMD)

� FSMD extends FSM: complex data types and variables for storing data
� FSMs use only Boolean data types and operations, no variables

� FSMD: 7-tuple <S, I , O, V, F, H, s0>
� S is a set of states {s0, s1, �, sl}
� I is a set of inputs {i0, i1, �, im}
� O is a set of outputs {o0, o1, �, on}
� V is a set of variables {v0, v1, …, vn}
� F is a next-state function (S x I x V → S)
� H is an action function (S → O + V)
� s0 is an initial state

� I,O,V may represent complex data types (i.e., integers, floating point, etc.)
� F,H may include arithmetic operations
� H is an action function, not just an output function

� Describes variable updates as well as outputs
� Complete system state now consists of current state, si, and values of all variables

Idle

GoingUp

req > floor

req < floor

!(req > floor)

!(timer < 10)

req < floor

DoorOpen

GoingDn

req > floor

u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req == floor

!(req<floor)

timer < 10

t is timer_start

We described UnitControl as an FSMD

Slide 14CSE466-02au

Describing a system as a state machine

1. List all possible states 2. Declare all variables (none in this example)

3. For each state, list possible transitions, with conditions, to other states
4. For each state and/or transition,

list associated actions
5. For each state, ensure exclusive

and complete exiting transition
conditions
� No two exiting conditions can

be true at same time
� Otherwise nondeterministic

state machine
� One condition must be true at

any given time
� Reducing explicit transitions

should be avoided when first
learning

req > floor

!(req > floor) u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req < floor

req > floor

req == floor

req < floor

!(req<floor)

!(timer < 10)

timer < 10

t is timer_start

Idle

GoingUp

DoorOpen

GoingDn

Slide 15CSE466-02au

State machine vs. sequential program model

� Different thought process used with each model
� State machine:

� Encourages designer to think of all possible states and transitions among states
based on all possible input conditions

� Sequential program model:
� Designed to transform data through series of instructions that may be iterated and

conditionally executed
� State machine description excels in many cases

� More natural means of computing in those cases
� Not due to graphical representation (state diagram)

� Would still have same benefits if textual language used (i.e., state table)
� Besides, sequential program model could use graphical representation (i.e., flowchart)

Slide 16CSE466-02au

Try Capturing Other Behaviors with an FSM

� E.g., Answering machine blinking light when there are
messages

� E.g., A simple telephone answering machine that
answers after 4 rings when activated

� E.g., A simple crosswalk traffic control light
� Others

Slide 17CSE466-02au

Capturing state machines in
sequential programming language

� Despite benefits of state machine model, most popular development tools use
sequential programming language

� C, C++, Java, Ada, VHDL, Verilog, etc.
� Development tools are complex and expensive, therefore not easy to adapt or replace

� Must protect investment

� Two approaches to capturing state machine model with sequential programming
language

� Front-end tool approach
� Additional tool installed to support state machine language

� Graphical and/or textual state machine languages
� May support graphical simulation
� Automatically generate code in sequential programming language that is input to main development tool

� Drawback: must support additional tool (licensing costs, upgrades, training, etc.)
� Language subset approach

� Most common approach...

Slide 18CSE466-02au

Language subset approach

� Follow rules (template) for capturing
state machine constructs in equivalent
sequential language constructs

� Used with software (e.g.,C) and
hardware languages (e.g.,VHDL)

� Capturing UnitControl state machine
in C

� Enumerate all states (#define)
� Declare state variable initialized to

initial state (IDLE)
� Single switch statement branches to

current state�s case
� Each case has actions

� up, down, open, timer_start

� Each case checks transition conditions
to determine next state

� if(�) {state = �;}

#define IDLE0
#define GOINGUP1
#define GOINGDN2
#define DOOROPEN3
void UnitControl() {

int state = IDLE;
while (1) {

switch (state) {
IDLE: up=0; down=0; open=1; timer_start=0;

if (req==floor) {state = IDLE;}
if (req > floor) {state = GOINGUP;}
if (req < floor) {state = GOINGDN;}
break;

GOINGUP: up=1; down=0; open=0; timer_start=0;
if (req > floor) {state = GOINGUP;}
if (!(req>floor)) {state = DOOROPEN;}
break;

GOINGDN: up=1; down=0; open=0; timer_start=0;
if (req < floor) {state = GOINGDN;}
if (!(req<floor)) {state = DOOROPEN;}
break;

DOOROPEN: up=0; down=0; open=1; timer_start=1;
if (timer < 10) {state = DOOROPEN;}
if (!(timer<10)){state = IDLE;}
break;

}
}

}

UnitControl state machine in sequential programming language

Slide 19CSE466-02au

General template

#define S0 0
#define S1 1
...
#define SN N
void StateMachine() {

int state = S0; // or whatever is the initial state.
while (1) {

switch (state) {
S0:

// Insert S0’s actions here & Insert transitions Ti leaving S0:
if(T0’s condition is true) {state = T0’s next state; /*actions*/ }
if(T1’s condition is true) {state = T1’s next state; /*actions*/ }
...
if(Tm’s condition is true) {state = Tm’s next state; /*actions*/ }
break;

S1:
// Insert S1’s actions here
// Insert transitions Ti leaving S1
break;

...
SN:

// Insert SN’s actions here
// Insert transitions Ti leaving SN
break;

}
}

}

Slide 20CSE466-02au

HCFSM and the Statecharts language

� Hierarchical/concurrent state machine model
(HCFSM)

� Extension to state machine model to support
hierarchy and concurrency

� States can be decomposed into another state
machine

� With hierarchy has identical functionality as Without
hierarchy, but has one less transition (z)

� Known as OR-decomposition

� States can execute concurrently
� Known as AND-decomposition

� Statecharts
� Graphical language to capture HCFSM
� timeout: transition with time limit as condition
� history: remember last substate OR-decomposed

state A was in before transitioning to another state B
� Return to saved substate of A when returning from B

instead of initial state

A1 z

B

A2 z

x y w

Without hierarchy

A1 z

B

A2

x y

A

w

With hierarchy

C1

C2

x y

C
B

D1

D2

u v

D

Concurrency

Slide 21CSE466-02au

UnitControl with FireMode

� FireMode
� When fire is true, move elevator

to 1st floor and open door

Without hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req<floor)

fire
fire

fire fire

FireGoingDn

floor>1

u,d,o = 0,1,0

u,d,o = 0,0,1

!fire
FireDrOpen

floor==1

fire

u,d,o = 0,0,1

UnitControl

fire
!fire FireGoingDn

floor>1

u,d,o = 0,1,0

FireDrOpen
floor==1

fire

FireMode

u,d,o = 0,0,1

With hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req>floor)

u,d,o = 0,0,1

NormalMode
UnitControl

NormalMode

FireMode

fire!fire

UnitControl

ElevatorController

RequestResolver

...

With concurrent RequestResolver

� w/o hierarchy: Getting messy!
� w/ hierarchy: Simple!

Slide 22CSE466-02au

Program-state machine model (PSM):
HCFSM plus sequential program model

� Program-state�s actions can be FSM or
sequential program

� Designer can choose most appropriate
� Stricter hierarchy than HCFSM used in

Statecharts
� transition between sibling states only, single entry
� Program-state may �complete�

� Reaches end of sequential program code, OR
� FSM transition to special complete substate
� PSM has 2 types of transitions

� Transition-immediately (TI): taken regardless of
source program-state

� Transition-on-completion (TOC): taken only if
condition is true AND source program-state is
complete

� SpecCharts: extension of VHDL to capture PSM
model

� SpecC: extension of C to capture PSM model

up = down = 0; open = 1;
while (1) {

while (req == floor);
open = 0;
if (req > floor) { up = 1;}
else {down = 1;}
while (req != floor);
open = 1;
delay(10);

}
}

NormalMode

FireMode
up = 0; down = 1; open = 0;
while (floor > 1);
up = 0; down = 0; open = 1;

fire!fire

UnitControl

ElevatorController

RequestResolver

...
req = ...

...

int req;

� NormalMode and FireMode described as
sequential programs

� Black square originating within FireMode
indicates !fire is a TOC transition

� Transition from FireMode to NormalMode
only after FireMode completed

Slide 23CSE466-02au

Role of appropriate model and language

� Finding appropriate model to capture embedded system is an important step
� Model shapes the way we think of the system

� Originally thought of sequence of actions, wrote sequential program
� First wait for requested floor to differ from target floor
� Then, we close the door
� Then, we move up or down to the desired floor
� Then, we open the door
� Then, we repeat this sequence

� To create state machine, we thought in terms of states and transitions among states
� When system must react to changing inputs, state machine might be best model

� HCFSM described FireMode easily, clearly

� Language should capture model easily
� Ideally should have features that directly capture constructs of model
� FireMode would be very complex in sequential program

� Checks inserted throughout code
� Other factors may force choice of different model

� Structured techniques can be used instead
� E.g., Template for state machine capture in sequential program language

Slide 24CSE466-02au

Concurrent process model

� Describes functionality of system in terms of two or more
concurrently executing subtasks

� Many systems easier to describe with concurrent process model
because inherently multitasking

� E.g., simple example:
� Read two numbers X and Y
� Display �Hello world.� every X seconds
� Display �How are you?� every Y seconds

� More effort would be required with sequential program or state
machine model

Subroutine execution over time

time

ReadX ReadY
PrintHelloWorld

PrintHowAreYou

Simple concurrent process example

ConcurrentProcessExample() {
x = ReadX()
y = ReadY()
Call concurrently:
PrintHelloWorld(x) and
PrintHowAreYou(y)

}
PrintHelloWorld(x) {
while(1) {
print "Hello world."
delay(x);

}
}
PrintHowAreYou(x) {
while(1) {
print "How are you?"
delay(y);

}
}

Sample input and output

Enter X: 1
Enter Y: 2
Hello world. (Time = 1 s)
Hello world. (Time = 2 s)
How are you? (Time = 2 s)
Hello world. (Time = 3 s)
How are you? (Time = 4 s)
Hello world. (Time = 4 s)
...

Slide 25CSE466-02au

Dataflow model

� Derivative of concurrent process model
� Nodes represent transformations

� May execute concurrently
� Edges represent flow of tokens (data) from one node to another

� May or may not have token at any given time
� When all of node�s input edges have at least one token, node may

fire
� When node fires, it consumes input tokens processes

transformation and generates output token
� Nodes may fire simultaneously
� Several commercial tools support graphical languages for capture

of dataflow model
� Can automatically translate to concurrent process model for

implementation
� Each node becomes a process

modulate convolve

transform

A B C D

Z

Nodes with more complex
transformations

t1 t2

+ �

*

A B C D

Z

Nodes with arithmetic
transformations

t1 t2

Z = (A + B) * (C - D)

Slide 26CSE466-02au

Synchronous dataflow

� With digital signal-processors (DSPs), data flows at fixed rate
� Multiple tokens consumed and produced per firing
� Synchronous dataflow model takes advantage of this

� Each edge labeled with number of tokens consumed/produced
each firing

� Can statically schedule nodes, so can easily use sequential
program model

� Don�t need real-time operating system and its overhead
� How would you map this model to a sequential programming

language? Try it...
� Algorithms developed for scheduling nodes into �single-

appearance� schedules
� Only one statement needed to call each node�s associated

procedure
� Allows procedure inlining without code explosion, thus reducing

overhead even more

modulate convolve

transform

A B C D

Z

Synchronous dataflow

mt1 ct2

mA mB mC mD

tZ

tt1 tt2

t1 t2

Slide 27CSE466-02au

Concurrent processes and real-time systems

Slide 28CSE466-02au

Concurrent processes

� Consider two examples
having separate tasks running
independently but sharing
data

� Difficult to write system
using sequential program
model

� Concurrent process model
easier
� Separate sequential

programs (processes) for
each task

� Programs communicate with
each other

Heartbeat Monitoring System

B[1..4]

Heart-beat
pulse

Task 1:
Read pulse
If pulse < Lo then

Activate Siren
If pulse > Hi then

Activate Siren
Sleep 1 second
Repeat

Task 2:
If B1/B2 pressed then

Lo = Lo +/� 1
If B3/B4 pressed then

Hi = Hi +/� 1
Sleep 500 ms
Repeat

Set-top Box

Input
Signal

Task 1:
Read Signal
Separate Audio/Video
Send Audio to Task 2
Send Video to Task 3
Repeat

Task 2:
Wait on Task 1
Decode/output Audio
Repeat

Task 3:
Wait on Task 1
Decode/output Video
Repeat

Video

Audio

Slide 29CSE466-02au

Process

� A sequential program, typically an infinite loop
� Executes concurrently with other processes
� We are about to enter the world of �concurrent programming�

� Basic operations on processes
� Create and terminate

� Create is like a procedure call but caller doesn�t wait
� Created process can itself create new processes

� Terminate kills a process, destroying all data
� Suspend and resume

� Suspend puts a process on hold, saving state for later execution
� Resume starts the process again where it left off

� Join
� A process suspends until a particular child process finishes execution

Slide 30CSE466-02au

Communication among processes

� Processes need to communicate data and
signals to solve their computation problem
� Processes that don�t communicate are just

independent programs solving separate problems
� Basic example: producer/consumer

� Process A produces data items, Process B consumes
them

� E.g., A decodes video packets, B display decoded
packets on a screen

� How do we achieve this communication?
� Two basic methods

� Shared memory
� Message passing

processA() {
// Decode packet
// Communicate

packet to B
}

}

void processB() {
// Get packet from A
// Display packet

}

Encoded video
packets

Decoded video
packets

To display

Slide 31CSE466-02au

Shared Memory

� Processes read and write shared variables
� No time overhead, easy to implement
� But, hard to use � mistakes are common

� Example: Producer/consumer with a mistake
� Share buffer[N], count

� count = # of valid data items in buffer

� processA produces data items and stores in buffer
� If buffer is full, must wait

� processB consumes data items from buffer
� If buffer is empty, must wait

� Error when both processes try to update count concurrently (lines 10 and 19)
and the following execution sequence occurs. Say �count� is 3.

� A loads count (count = 3) from memory into register R1 (R1 = 3)
� A increments R1 (R1 = 4)
� B loads count (count = 3) from memory into register R2 (R2 = 3)
� B decrements R2 (R2 = 2)
� A stores R1 back to count in memory (count = 4)
� B stores R2 back to count in memory (count = 2)

� count now has incorrect value of 2

01: data_type buffer[N];
02: int count = 0;
03: void processA() {
04: int i;
05: while(1) {
06: produce(&data);
07: while(count == N);/*loop*/
08: buffer[i] = data;
09: i = (i + 1) % N;
10: count = count + 1;
11: }
12: }
13: void processB() {
14: int i;
15: while(1) {
16: while(count == 0);/*loop*/
17: data = buffer[i];
18: i = (i + 1) % N;
19: count = count - 1;
20: consume(&data);
21: }
22: }
23: void main() {
24: create_process(processA);
25: create_process(processB);
26: }

Slide 32CSE466-02au

Message Passing

� Message passing
� Data explicitly sent from one process to

another
� Sending process performs special operation,

send
� Receiving process must perform special

operation, receive, to receive the data
� Both operations must explicitly specify which

process it is sending to or receiving from
� Receive is blocking, send may or may not be

blocking
� Safer model, but less flexible

void processA() {
while(1) {
produce(&data)
send(B, &data);
/* region 1 */
receive(B, &data);
consume(&data);

}
}

void processB() {
while(1) {
receive(A, &data);
transform(&data)
send(A, &data);
/* region 2 */

}
}

Slide 33CSE466-02au

Back to Shared Memory: Mutual Exclusion

� Certain sections of code should not be performed concurrently
� Critical section

� Possibly noncontiguous section of code where simultaneous updates, by multiple
processes to a shared memory location, can occur

� When a process enters the critical section, all other processes must be locked
out until it leaves the critical section
� Mutex

� A shared object used for locking and unlocking segment of shared data
� Disallows read/write access to memory it guards
� Multiple processes can perform lock operation simultaneously, but only one process

will acquire lock
� All other processes trying to obtain lock will be put in blocked state until unlock

operation performed by acquiring process when it exits critical section
� These processes will then be placed in runnable state and will compete for lock again

Slide 34CSE466-02au

Correct Shared Memory Solution to the
Consumer-Producer Problem

� The primitive mutex is used to ensure critical sections are
executed in mutual exclusion of each other

� Following the same execution sequence as before:
� A/B execute lock operation on count_mutex
� Either A or B will acquire lock

� Say B acquires it
� A will be put in blocked state

� B loads count (count = 3) from memory into register R2 (R2
= 3)

� B decrements R2 (R2 = 2)
� B stores R2 back to count in memory (count = 2)
� B executes unlock operation

� A is placed in runnable state again
� A loads count (count = 2) from memory into register R1 (R1

= 2)
� A increments R1 (R1 = 3)
� A stores R1 back to count in memory (count = 3)

� Count now has correct value of 3

01: data_type buffer[N];
02: int count = 0;
03: mutex count_mutex;
04: void processA() {
05: int i;
06: while(1) {
07: produce(&data);
08: while(count == N);/*loop*/
09: buffer[i] = data;
10: i = (i + 1) % N;
11: count_mutex.lock();
12: count = count + 1;
13: count_mutex.unlock();
14: }
15: }
16: void processB() {
17: int i;
18: while(1) {
19: while(count == 0);/*loop*/
20: data = buffer[i];
21: i = (i + 1) % N;
22: count_mutex.lock();
23: count = count - 1;
24: count_mutex.unlock();
25: consume(&data);
26: }
27: }
28: void main() {
29: create_process(processA);
30: create_process(processB);
31: }

Slide 35CSE466-02au

Process Communication

� Try modeling �req� value of our
elevator controller
� Using shared memory
� Using shared memory and mutexes
� Using message passing buttons

inside
elevator

Unit
Control

b1

down

open

floor

...

Request
Resolver

...

up/down
buttons on

each
floor

b2
bN

up1
up2
dn2

dnN

req

up

System interface

up3
dn3

Slide 36CSE466-02au

A Common Problem in Concurrent
Programming: Deadlock

� Deadlock: A condition where 2 or more processes are
blocked waiting for the other to unlock critical sections of
code

� Both processes are then in blocked state
� Cannot execute unlock operation so will wait forever

� Example code has 2 different critical sections of code that
can be accessed simultaneously

� 2 locks needed (mutex1, mutex2)
� Following execution sequence produces deadlock

� A executes lock operation on mutex1 (and acquires it)
� B executes lock operation on mutex2(and acquires it)
� A/B both execute in critical sections 1 and 2, respectively
� A executes lock operation on mutex2

� A blocked until B unlocks mutex2
� B executes lock operation on mutex1

� B blocked until A unlocks mutex1
� DEADLOCK!

� One deadlock elimination protocol requires locking of
numbered mutexes in increasing order and two-phase
locking (2PL)

� Acquire locks in 1st phase only, release locks in 2nd phase

01: mutex mutex1, mutex2;
02: void processA() {
03: while(1) {
04: …
05: mutex1.lock();
06: /* critical section 1 */
07: mutex2.lock();
08: /* critical section 2 */
09: mutex2.unlock();
10: /* critical section 1 */
11: mutex1.unlock();
12: }
13: }
14: void processB() {
15: while(1) {
16: …
17: mutex2.lock();
18: /* critical section 2 */
19: mutex1.lock();
20: /* critical section 1 */
21: mutex1.unlock();
22: /* critical section 2 */
23: mutex2.unlock();
24: }
25: }

Slide 37CSE466-02au

Synchronization among processes

� Sometimes concurrently running processes must synchronize their execution
� When a process must wait for:

� another process to compute some value
� reach a known point in their execution
� signal some condition

� Recall producer-consumer problem
� processA must wait if buffer is full
� processB must wait if buffer is empty
� This is called busy-waiting

� Process executing loops instead of being blocked
� CPU time wasted

� More efficient methods
� Join operation, and blocking send and receive discussed earlier

� Both block the process so it doesn�t waste CPU time
� Condition variables and monitors

Slide 38CSE466-02au

Condition variables

� Condition variable is an object that has 2 operations, signal and wait
� When process performs a wait on a condition variable, the process is blocked

until another process performs a signal on the same condition variable
� How is this done?

� Process A acquires lock on a mutex
� Process A performs wait, passing this mutex

� Causes mutex to be unlocked
� Process B can now acquire lock on same mutex
� Process B enters critical section

� Computes some value and/or make condition true
� Process B performs signal when condition true

� Causes process A to implicitly reacquire mutex lock
� Process A becomes runnable

Slide 39CSE466-02au

Condition variable example:
consumer-producer

� 2 condition variables
� buffer_empty

� Signals at least 1 free location available in buffer
� buffer_full

� Signals at least 1 valid data item in buffer
� processA:

� produces data item
� acquires lock (cs_mutex) for critical section
� checks value of count
� if count = N, buffer is full

� performs wait operation on buffer_empty
� this releases the lock on cs_mutex allowing

processB to enter critical section, consume data
item and free location in buffer

� processB then performs signal
� if count < N, buffer is not full

� processA inserts data into buffer
� increments count
� signals processB making it runnable if it has

performed a wait operation on buffer_full

01: data_type buffer[N];
02: int count = 0;
03: mutex cs_mutex;
04: condition buffer_empty, buffer_full;
06: void processA() {
07: int i;
08: while(1) {
09: produce(&data);
10: cs_mutex.lock();
11: if(count == N) buffer_empty.wait(cs_mutex);
13: buffer[i] = data;
14: i = (i + 1) % N;
15: count = count + 1;
16: cs_mutex.unlock();
17: buffer_full.signal();
18: }
19: }
20: void processB() {
21: int i;
22: while(1) {
23: cs_mutex.lock();
24: if(count == 0) buffer_full.wait(cs_mutex);
26: data = buffer[i];
27: i = (i + 1) % N;
28: count = count - 1;
29: cs_mutex.unlock();
30: buffer_empty.signal();
31: consume(&data);
32: }
33: }
34: void main() {
35: create_process(processA); create_process(processB);
37: }

Consumer-producer using condition variables

Slide 40CSE466-02au

Monitors

� Collection of data and methods or subroutines that
operate on data similar to an object-oriented
paradigm

� Monitor guarantees only 1 process can execute
inside monitor at a time

� (a) Process X executes while Process Y has to wait

� (b) Process X performs wait on a condition
� Process Y allowed to enter and execute

� (c) Process Y signals condition Process X waiting on
� Process Y blocked
� Process X allowed to continue executing

� (d) Process X finishes executing in monitor or waits
on a condition again

� Process Y made runnable again

Process
X

Monitor

DATA

CODE

(a)

Process
Y Process

X

Monitor

DATA

CODE

(b)

Process
Y

Process
X

Monitor

DATA

CODE

(c)

Process
Y

Process
X

Monitor

DATA

CODE

(d)

Process
Y

Waiting

Waiting

Slide 41CSE466-02au

Monitor example: consumer-producer

� Single monitor encapsulates both
processes along with buffer and count

� One process will be allowed to begin
executing first

� If processB allowed to execute first
� Will execute until it finds count = 0
� Will perform wait on buffer_full condition

variable
� processA now allowed to enter monitor and

execute
� processA produces data item
� finds count < N so writes to buffer and

increments count
� processA performs signal on buffer_full

condition variable
� processA blocked
� processB reenters monitor and continues

execution, consumes data, etc.

01: Monitor {
02: data_type buffer[N];
03: int count = 0;
04: condition buffer_full, condition buffer_empty;
06: void processA() {
07: int i;
08: while(1) {
09: produce(&data);
10: if(count == N) buffer_empty.wait();
12: buffer[i] = data;
13: i = (i + 1) % N;
14: count = count + 1;
15: buffer_full.signal();
16: }
17: }
18: void processB() {
19: int i;
20: while(1) {
21: if(count == 0) buffer_full.wait();
23: data = buffer[i];
24: i = (i + 1) % N;
25: count = count - 1;
26: buffer_empty.signal();
27: consume(&data);
28: buffer_full.signal();
29: }
30: }
31: } /* end monitor */
32: void main() {
33: create_process(processA); create_process(processB);
35: }

Slide 42CSE466-02au

Implementation

� Mapping of system�s functionality
onto hardware processors:

� captured using computational
model(s)

� written in some language(s)
� Implementation choice independent

from language(s) choice
� Implementation choice based on

power, size, performance, timing and
cost requirements

� Final implementation tested for
feasibility

� Also serves as blueprint/prototype
for mass manufacturing of final
product

The choice of
computational

model(s) is based
on whether it

allows the designer
to describe the

system.

The choice of
language(s) is

based on whether
it captures the
computational

model(s) used by
the designer.

The choice of
implementation is

based on whether it
meets power, size,
performance and

cost requirements.

Sequent.
program

State
machine

Data-
flow

Concurrent
processes

C/C++Pascal Java VHDL

Implementation
A

Implementation
B

Implementation
C

Slide 43CSE466-02au

Concurrent process model:
implementation

� Can use single and/or general-purpose processors
� (a) Multiple processors, each executing one process

� True multitasking (parallel processing)
� General-purpose processors

� Use programming language like C and compile to
instructions of processor

� Expensive and in most cases not necessary

� Custom single-purpose processors
� More common

� (b) One general-purpose processor running all
processes

� Most processes don�t use 100% of processor time
� Can share processor time and still achieve necessary

execution rates
� (c) Combination of (a) and (b)

� Multiple processes run on one general-purpose
processor while one or more processes run on own
single_purpose processor

Process1
Process2

Process3
Process4

Processor A

Processor B

Processor C

Processor D C
om

m
un

ic
at

io
n

B
us

(a)

(b)

Process1
Process2

Process3
Process4

General Purpose
Processor

Process1
Process2

Process3
Process4

Processor A

General
Purpose

Processor

C
om

m
un

ic
at

io
n

B
us

(c)

Slide 44CSE466-02au

Implementation:
multiple processes sharing single processor

� Can manually rewrite processes as a single sequential program
� Ok for simple examples, but extremely difficult for complex examples
� Automated techniques have evolved but not common
� E.g., simple Hello World concurrent program from before would look like:

I = 1; T = 0;
while (1) {

Delay(I); T = T + 1;
if X modulo T is 0 then call PrintHelloWorld
if Y modulo T is 0 then call PrintHowAreYou

}

� Can use multitasking operating system
� Much more common
� Operating system schedules processes, allocates storage, and interfaces to peripherals, etc.
� Real-time operating system (RTOS) can guarantee execution rate constraints are met
� Describe concurrent processes with languages having built-in processes (Java, Ada, etc.) or a sequential

programming language with library support for concurrent processes (C, C++, etc. using POSIX threads
for example)

� Can convert processes to sequential program with process scheduling right in code
� Less overhead (no operating system)
� More complex/harder to maintain

Slide 45CSE466-02au

Processes vs. threads

� Different meanings when operating system terminology
� Regular processes

� Heavyweight process
� Own virtual address space (stack, data, code)
� System resources (e.g., open files)

� Threads
� Lightweight process
� Subprocess within process
� Only program counter, stack, and registers
� Shares address space, system resources with other threads

� Allows quicker communication between threads
� Small compared to heavyweight processes

� Can be created quickly
� Low cost switching between threads

Slide 46CSE466-02au

Implementation:
suspending, resuming, and joining

� Multiple processes mapped to single-purpose processors
� Built into processor�s implementation
� Could be extra input signal that is asserted when process suspended
� Additional logic needed for determining process completion

� Extra output signals indicating process done

� Multiple processes mapped to single general-purpose processor
� Built into programming language or special multitasking library like POSIX
� Language or library may rely on operating system to handle

Slide 47CSE466-02au

Implementation: process scheduling

� Must meet timing requirements when multiple concurrent processes
implemented on single general-purpose processor
� Not true multitasking

� Scheduler
� Special process that decides when and for how long each process is executed
� Implemented as preemptive or nonpreemptive scheduler
� Preemptive

� Determines how long a process executes before preempting to allow another process
to execute

� Time quantum: predetermined amount of execution time preemptive scheduler allows each
process (may be 10 to 100s of milliseconds long)

� Determines which process will be next to run
� Nonpreemptive

� Only determines which process is next after current process finishes execution

Slide 48CSE466-02au

Scheduling: priority

� Process with highest priority always selected first by scheduler
� Typically determined statically during creation and dynamically during

execution
� FIFO

� Runnable processes added to end of FIFO as created or become runnable
� Front process removed from FIFO when time quantum of current process is up

or process is blocked
� Priority queue

� Runnable processes again added as created or become runnable
� Process with highest priority chosen when new process needed
� If multiple processes with same highest priority value then selects from them

using first-come first-served
� Called priority scheduling when nonpreemptive
� Called round-robin when preemptive

Slide 49CSE466-02au

Priority assignment

� Period of process
� Repeating time interval the process must complete one execution within

� E.g., period = 100 ms
� Process must execute once every 100 ms

� Usually determined by the description of the system
� E.g., refresh rate of display is 27 times/sec
� Period = 37 ms

� Execution deadline
� Amount of time process must be completed by after it has started

� E.g., execution time = 5 ms, deadline = 20 ms, period = 100 ms
� Process must complete execution within 20 ms after it has begun regardless of its period
� Process begins at start of period, runs for 4 ms then is preempted
� Process suspended for 14 ms, then runs for the remaining 1 ms
� Completed within 4 + 14 + 1 = 19 ms which meets deadline of 20 ms
� Without deadline process could be suspended for much longer

� Rate monotonic scheduling
� Processes with shorter periods have higher priority
� Typically used when execution deadline = period

� Deadline monotonic scheduling
� Processes with shorter deadlines have higher priority
� Typically used when execution deadline < period

Process

A
B
C
D
E
F

Period

25 ms
50 ms
12 ms
100 ms
40 ms
75 ms

Priority

5
3
6
1
4
2

Process

G
H
I
J
K
L

Deadline

17 ms
50 ms
32 ms
10 ms
140 ms
32 ms

Priority

5
2
3
6
1
4

Rate monotonic

Deadline monotonic

Slide 50CSE466-02au

Real-time systems

� Systems composed of 2 or more cooperating, concurrent processes with
stringent execution time constraints
� E.g., set-top boxes have separate processes that read or decode video and/or

sound concurrently and must decode 20 frames/sec for output to appear
continuous

� Other examples with stringent time constraints are:
� digital cell phones
� navigation and process control systems
� assembly line monitoring systems
� multimedia and networking systems
� etc.

� Communication and synchronization between processes for these systems is
critical

� Therefore, concurrent process model best suited for describing these systems

Slide 51CSE466-02au

Real-time operating systems (RTOS)

� Provide mechanisms, primitives, and guidelines for building real-time embedded systems
� Windows CE

� Built specifically for embedded systems and appliance market
� Scalable real-time 32-bit platform
� Supports Windows API
� Perfect for systems designed to interface with Internet
� Preemptive priority scheduling with 256 priority levels per process
� Kernel is 400 Kbytes

� QNX
� Real-time microkernel surrounded by optional processes (resource managers) that provide POSIX and

UNIX compatibility
� Microkernels typically support only the most basic services
� Optional resource managers allow scalability from small ROM-based systems to huge multiprocessor systems

connected by various networking and communication technologies

� Preemptive process scheduling using FIFO, round-robin, adaptive, or priority-driven scheduling
� 32 priority levels per process
� Microkernel < 10 Kbytes and complies with POSIX real-time standard

Slide 52CSE466-02au

Summary

� Computation models are distinct from languages
� Sequential program model is popular

� Most common languages like C support it directly
� State machine models good for control

� Extensions like HCFSM provide additional power
� PSM combines state machines and sequential programs

� Concurrent process model for multi-task systems
� Communication and synchronization methods exist
� Scheduling is critical

� Dataflow model good for signal processing

