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Software for Embedded Systems

State Machines and 
Concurrent Process Models

Adapted from: Embedded Systems Design: A Unified Hardware/Software 
Introduction, (c) 2000 Vahid/Givargis
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Outline

� Models vs. Languages
� State Machine Model

� FSM/FSMD
� HCFSM and Statecharts Language
� Program-State Machine (PSM) Model

� Concurrent Process Model
� Communication
� Synchronization
� Implementation

� Dataflow Model
� Real-Time Systems
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� Describing embedded system�s processing behavior
� Can be extremely difficult

� Complexity increasing with increasing IC capacity
� Past: washing machines, small games, etc.

� Hundreds of lines of code
� Today: TV set-top boxes, Cell phone, etc.

� Hundreds of thousands of lines of code
� Desired behavior often not fully understood in beginning

� Many implementation bugs due to description mistakes/omissions

� English (or other natural language) common starting point
� Precise description difficult to impossible
� Example: Motor Vehicle Code � thousands of pages long...

Introduction
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An example of trying to be precise in English

� California Vehicle Code
� Right-of-way of crosswalks

� 21950. (a) The driver of a vehicle shall yield the right-of-way to a pedestrian crossing 
the roadway within any marked crosswalk or within any unmarked crosswalk at an 
intersection, except as otherwise provided in this chapter.

� (b) The provisions of this section shall not relieve a pedestrian from the duty of using 
due care for his or her safety. No pedestrian shall suddenly leave a curb or other place 
of safety and walk or run into the path of a vehicle which is so close as to constitute 
an immediate hazard. No pedestrian shall unnecessarily stop or delay traffic while in a 
marked or unmarked crosswalk.

� (c) The provisions of subdivision (b) shall not relieve a driver of a vehicle from the 
duty of exercising due care for the safety of any pedestrian within any marked 
crosswalk or within any unmarked crosswalk at an intersection.

� All that just for crossing the street (and there�s much more)!
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Models and languages

� How can we (precisely) capture behavior?
� We may think of languages (C, C++), but computation model is the key

� Common computation models:
� Sequential program model

� Statements, rules for composing statements, semantics for executing them
� Communicating process model

� Multiple sequential programs running concurrently
� State machine model

� For control dominated systems, monitors control inputs, sets control outputs
� Dataflow model

� For data dominated systems, transforms input data streams into output streams
� Object-oriented model

� For breaking complex software into simpler, well-defined pieces
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Models vs. languages

� Computation models describe system behavior
� Conceptual notion, e.g., recipe, sequential program

� Languages capture models
� Concrete form, e.g., English, C

� Variety of languages can capture one model
� E.g., sequential program model ! C,C++, Java 

� One language can capture variety of models
� E.g., C++ → sequential program model, object-oriented model, state machine model

� Certain languages better at capturing certain computation models

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.
program

C++C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C
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Text versus Graphics

� Models versus languages not to be confused with text 
versus graphics
� Text and graphics are just two types of languages

� Text: letters, numbers
� Graphics: circles, arrows (plus some letters, numbers)

X = 1;

Y = X + 1;

X = 1

Y = X + 1
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Introductory example: An elevator controller

� Simple elevator 
controller
� Request Resolver

resolves various floor 
requests into single 
requested floor

� Unit Control moves 
elevator to this requested 
floor

� Try capturing in C...

�Move the elevator either up or down 
to reach the requested floor. Once at 
the requested floor, open the door for 
at least 10 seconds, and keep it open 
until the requested floor changes. 
Ensure the door is never open while 
moving. Don�t change directions 
unless there are no higher requests 
when moving up or no lower requests 
when moving down��

Partial English description

buttons
inside

elevator

Unit
Control

b1

down

open

floor

...

Request
Resolver

...

up/down
buttons on 

each
floor

b2
bN

up1
up2
dn2

dnN

req

up

System interface

up3
dn3
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Elevator controller using a sequential 
program model 

�Move the elevator either up or down 
to reach the requested floor. Once at 
the requested floor, open the door for 
at least 10 seconds, and keep it open 
until the requested floor changes. 
Ensure the door is never open while 
moving. Don�t change directions 
unless there are no higher requests 
when moving up or no lower requests 
when moving down��

Partial English description

buttons
inside

elevator

Unit
Control

b1

down

open

floor

...

Request
Resolver

...

up/down
buttons on 

each
floor

b2
bN

up1
up2
dn2

dnN

req

up

System interface

up3
dn3

Sequential program model

void UnitControl() 
{

up = down = 0; open = 1;
while (1) {

while (req == floor);
open = 0;
if (req > floor) { up = 1;}
else {down = 1;}
while (req != floor);
up = down = 0;
open = 1;
delay(10);

}
}

void RequestResolver() 
{

while (1) 
...

req = ...
...

}
void main() 
{

Call concurrently:
UnitControl() and
RequestResolver()

}

Inputs: int floor; bit b1..bN; up1..upN-1; dn2..dnN;
Outputs: bit up, down, open;
Global variables: int req;

You might have come up with something having 
even more if statements.
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Finite-state machine (FSM) model

� Trying to capture this behavior as sequential program is a bit 
awkward

� Instead, we might consider an FSM model, describing the system 
as:
� Possible states

� E.g., Idle, GoingUp, GoingDn, DoorOpen
� Possible transitions from one state to another based on input

� E.g., req > floor
� Actions that occur in each state

� E.g., In the GoingUp state, u,d,o,t = 1,0,0,0 (up = 1, down, open, and 
timer_start = 0)

� Try it...
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Finite-state machine (FSM) model

Idle

GoingUp

req > floor

req < floor

!(req > floor) 

!(timer < 10)

req < floor

DoorOpen

GoingDn

req > floor

u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req == floor

!(req<floor)

timer < 10

t is timer_start

UnitControl process using a state machine
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Formal definition

� An FSM is a 6-tuple F<S, I, O, F, H, s0>
� S is a set of all states {s0, s1, �, sl}
� I is a set of inputs {i0, i1, �, im}
� O is a set of outputs {o0, o1, �, on}
� F is a next-state function (S x I→ S)
� H is an output function (S→ O)
� s0 is an initial state

� Moore-type
� Associates outputs with states (as given above, H maps S → O)

� Mealy-type
� Associates outputs with transitions (H maps S x I→ O)

� Shorthand notations to simplify descriptions
� Implicitly assign 0 to all unassigned outputs in a state
� Implicitly AND every transition condition with clock edge (FSM is synchronous)
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Finite-state machine with datapath model 
(FSMD)

� FSMD extends FSM: complex data types and variables for storing data
� FSMs use only Boolean data types and operations, no variables

� FSMD: 7-tuple <S, I , O, V, F, H, s0>
� S is a set of states {s0, s1, �, sl}
� I is a set of inputs {i0, i1, �, im}
� O is a set of outputs {o0, o1, �, on}
� V is a set of variables {v0, v1, …, vn}
� F is a next-state function (S x I x V → S)
� H is an action function (S → O + V)
� s0 is an initial state

� I,O,V may represent complex data types (i.e., integers, floating point, etc.)
� F,H may include arithmetic operations
� H is an action function, not just an output function

� Describes variable updates as well as outputs
� Complete system state now consists of current state, si, and values of all variables

Idle

GoingUp

req > floor

req < floor

!(req > floor) 

!(timer < 10)

req < floor

DoorOpen

GoingDn

req > floor

u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req == floor

!(req<floor)

timer < 10

t is timer_start

We described UnitControl as an FSMD
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Describing a system as a state machine

1. List all possible states 2. Declare all variables (none in this example)

3. For each state, list possible transitions, with conditions, to other states
4. For each state and/or transition, 

list associated actions
5. For each state, ensure exclusive 

and complete exiting transition 
conditions
� No two exiting conditions can 

be true at same time
� Otherwise nondeterministic 

state machine
� One condition must be true at 

any given time
� Reducing explicit transitions 

should be avoided when first 
learning

req > floor

!(req > floor) u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req < floor

req > floor

req == floor

req < floor

!(req<floor)

!(timer < 10)

timer < 10

t is timer_start

Idle

GoingUp

DoorOpen

GoingDn
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State machine vs. sequential program model

� Different thought process used with each model
� State machine:

� Encourages designer to think of all possible states and transitions among states 
based on all possible input conditions

� Sequential program model:
� Designed to transform data through series of instructions that may be iterated and 

conditionally executed
� State machine description excels in many cases

� More natural means of computing in those cases
� Not due to graphical representation (state diagram)

� Would still have same benefits if textual language used (i.e., state table)
� Besides, sequential program model could use graphical representation (i.e., flowchart)
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Try Capturing Other Behaviors with an FSM

� E.g., Answering machine blinking light when there are 
messages

� E.g., A simple telephone answering machine that 
answers after 4 rings when activated

� E.g., A simple crosswalk traffic control light
� Others
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Capturing state machines in 
sequential programming language

� Despite benefits of state machine model, most popular development tools use 
sequential programming language

� C, C++, Java, Ada, VHDL, Verilog, etc.
� Development tools are complex and expensive, therefore not easy to adapt or replace

� Must protect investment

� Two approaches to capturing state machine model with sequential programming 
language

� Front-end tool approach
� Additional tool installed to support state machine language

� Graphical and/or textual state machine languages
� May support graphical simulation
� Automatically generate code in sequential programming language that is input to main development tool

� Drawback: must support additional tool (licensing costs, upgrades, training, etc.)
� Language subset approach

� Most common approach...
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Language subset approach

� Follow rules (template) for capturing 
state machine constructs in equivalent 
sequential language constructs

� Used with software (e.g.,C) and 
hardware languages (e.g.,VHDL)

� Capturing UnitControl state machine 
in C

� Enumerate all states (#define)
� Declare state variable initialized to 

initial state (IDLE)
� Single switch statement branches to 

current state�s case
� Each case has actions

� up, down, open, timer_start

� Each case checks transition conditions 
to determine next state

� if(�) {state = �;}

#define IDLE0
#define GOINGUP1
#define GOINGDN2
#define DOOROPEN3
void UnitControl() {

int state = IDLE;
while (1) {

switch (state) {
IDLE: up=0; down=0; open=1; timer_start=0;

if   (req==floor) {state = IDLE;}
if   (req > floor) {state = GOINGUP;}
if   (req < floor) {state = GOINGDN;}
break;

GOINGUP: up=1; down=0; open=0; timer_start=0;
if   (req > floor) {state = GOINGUP;}
if   (!(req>floor)) {state = DOOROPEN;} 
break;

GOINGDN: up=1; down=0; open=0; timer_start=0;
if   (req < floor) {state = GOINGDN;}
if   (!(req<floor)) {state = DOOROPEN;} 
break;

DOOROPEN: up=0; down=0; open=1; timer_start=1;
if (timer < 10) {state = DOOROPEN;}
if (!(timer<10)){state = IDLE;}
break;

}
}

}

UnitControl state machine in sequential programming language
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General template

#define S0 0
#define S1 1
...
#define SN N
void StateMachine() {

int state = S0; // or whatever is the initial state.
while (1) {

switch (state) {
S0: 

// Insert S0’s actions here & Insert transitions Ti leaving S0:
if( T0’s condition is true ) {state = T0’s next state; /*actions*/ }
if( T1’s condition is true ) {state = T1’s next state; /*actions*/ }
...
if( Tm’s condition is true ) {state = Tm’s next state; /*actions*/ }
break;

S1:
// Insert S1’s actions here
// Insert transitions Ti leaving S1
break;

...
SN:

// Insert SN’s actions here
// Insert transitions Ti leaving SN
break;

}
}

}
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HCFSM and the Statecharts language

� Hierarchical/concurrent state machine model 
(HCFSM)

� Extension to state machine model to support 
hierarchy and concurrency

� States can be decomposed into another state 
machine

� With hierarchy has identical functionality as Without 
hierarchy, but has one less transition (z)

� Known as OR-decomposition

� States can execute concurrently
� Known as AND-decomposition

� Statecharts
� Graphical language to capture HCFSM
� timeout: transition with time limit as condition
� history: remember last substate OR-decomposed 

state A was in before transitioning to another state B
� Return to saved substate of A when returning from B 

instead of initial state

A1 z

B

A2 z

x y w

Without hierarchy

A1 z

B

A2

x y

A

w

With hierarchy

C1

C2

x y

C
B

D1

D2

u v

D

Concurrency
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UnitControl with FireMode

� FireMode 
� When fire is true, move elevator 

to 1st floor and open door

Without hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req<floor)

fire
fire

fire fire

FireGoingDn

floor>1

u,d,o = 0,1,0

u,d,o = 0,0,1

!fire
FireDrOpen

floor==1

fire

u,d,o = 0,0,1

UnitControl

fire
!fire FireGoingDn

floor>1

u,d,o = 0,1,0

FireDrOpen
floor==1

fire

FireMode

u,d,o = 0,0,1

With hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req>floor)

u,d,o = 0,0,1

NormalMode
UnitControl

NormalMode

FireMode

fire!fire

UnitControl

ElevatorController

RequestResolver

...

With concurrent RequestResolver

� w/o hierarchy: Getting messy!
� w/ hierarchy: Simple!
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Program-state machine model (PSM): 
HCFSM plus sequential program model

� Program-state�s actions can be FSM or 
sequential program

� Designer can choose most appropriate
� Stricter hierarchy than HCFSM used in 

Statecharts
� transition between sibling states only, single entry
� Program-state may �complete�

� Reaches end of sequential program code, OR
� FSM transition to special complete substate
� PSM has 2 types of transitions

� Transition-immediately (TI): taken regardless of 
source program-state

� Transition-on-completion (TOC): taken only if 
condition is true AND source program-state is 
complete

� SpecCharts: extension of VHDL to capture PSM 
model

� SpecC: extension of C to capture PSM model

up = down = 0; open = 1;
while (1) {

while (req == floor);
open = 0;
if (req > floor) { up = 1;}
else {down = 1;}
while (req != floor);
open = 1;
delay(10);

}
}

NormalMode

FireMode
up = 0; down = 1; open = 0;
while (floor > 1);
up = 0; down = 0; open = 1;

fire!fire

UnitControl

ElevatorController

RequestResolver

...
req = ...

...

int req;

� NormalMode and FireMode described as 
sequential programs

� Black square originating within FireMode
indicates !fire is a TOC transition

� Transition from FireMode to NormalMode
only after FireMode completed
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Role of appropriate model and language

� Finding appropriate model to capture embedded system is an important step
� Model shapes the way we think of the system

� Originally thought of sequence of actions, wrote sequential program
� First wait for requested floor to differ from target floor
� Then, we close the door
� Then, we move up or down to the desired floor
� Then, we open the door
� Then, we repeat this sequence

� To create state machine, we thought in terms of states and transitions among states
� When system must react to changing inputs, state machine might be best model

� HCFSM described FireMode easily, clearly

� Language should capture model easily
� Ideally should have features that directly capture constructs of model
� FireMode would be very complex in sequential program

� Checks inserted throughout code
� Other factors may force choice of different model

� Structured techniques can be used instead
� E.g., Template for state machine capture in sequential program language
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Concurrent process model

� Describes functionality of system in terms of two or more 
concurrently executing subtasks

� Many systems easier to describe with concurrent process model 
because inherently multitasking

� E.g., simple example:
� Read two numbers X and Y
� Display �Hello world.� every X seconds
� Display �How are you?� every Y seconds

� More effort would be required with sequential program or state 
machine model

Subroutine execution over time

time

ReadX ReadY
PrintHelloWorld

PrintHowAreYou

Simple concurrent process example

ConcurrentProcessExample() {
x = ReadX()
y = ReadY()
Call concurrently:
PrintHelloWorld(x) and 
PrintHowAreYou(y)

}
PrintHelloWorld(x) {
while( 1 ) {
print "Hello world."
delay(x);

} 
}
PrintHowAreYou(x) {
while( 1 ) {
print "How are you?" 
delay(y);

}
}

Sample input and output

Enter X: 1
Enter Y: 2
Hello world.  (Time = 1 s)
Hello world.  (Time = 2 s)
How are you?  (Time = 2 s)
Hello world.  (Time = 3 s)
How are you?  (Time = 4 s)
Hello world.  (Time = 4 s)
...
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Dataflow model

� Derivative of concurrent process model
� Nodes represent transformations

� May execute concurrently
� Edges represent flow of tokens (data) from one node to another

� May or may not have token at any given time
� When all of node�s input edges have at least one token, node may

fire
� When node fires, it consumes input tokens processes 

transformation and generates output token
� Nodes may fire simultaneously
� Several commercial tools support graphical languages for capture

of dataflow model
� Can automatically translate to concurrent process model for 

implementation
� Each node becomes a process

modulate convolve

transform

A B C D

Z

Nodes with more complex 
transformations

t1 t2

+ �

*

A B C D

Z

Nodes with arithmetic 
transformations

t1 t2

Z = (A + B) * (C - D)
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Synchronous dataflow

� With digital signal-processors (DSPs), data flows at fixed rate
� Multiple tokens consumed and produced per firing
� Synchronous dataflow model takes advantage of this

� Each edge labeled with number of tokens consumed/produced 
each firing

� Can statically schedule nodes, so can easily use sequential 
program model

� Don�t need real-time operating system and its overhead
� How would you map this model to a sequential programming 

language? Try it...
� Algorithms developed for scheduling nodes into �single-

appearance� schedules
� Only one statement needed to call each node�s associated 

procedure
� Allows procedure inlining without code explosion, thus reducing 

overhead even more

modulate convolve

transform

A B C D

Z

Synchronous dataflow

mt1 ct2

mA mB mC mD

tZ

tt1 tt2

t1 t2
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Concurrent processes and real-time systems
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Concurrent processes

� Consider two examples 
having separate tasks running 
independently but sharing 
data

� Difficult to write system 
using sequential program 
model

� Concurrent process model 
easier
� Separate sequential 

programs (processes) for 
each task

� Programs communicate with 
each other

Heartbeat Monitoring System

B[1..4]

Heart-beat 
pulse

Task 1:
Read pulse
If pulse < Lo then

Activate Siren
If pulse > Hi then

Activate Siren
Sleep 1 second
Repeat

Task 2:
If B1/B2 pressed then

Lo = Lo +/� 1
If B3/B4 pressed then

Hi = Hi +/� 1
Sleep 500 ms
Repeat

Set-top Box

Input 
Signal

Task 1:
Read Signal
Separate Audio/Video
Send Audio to Task 2
Send Video to Task 3
Repeat

Task 2:
Wait on Task 1
Decode/output Audio
Repeat

Task 3:
Wait on Task 1
Decode/output Video
Repeat

Video

Audio
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Process

� A sequential program, typically an infinite loop
� Executes concurrently with other processes
� We are about to enter the world of �concurrent programming�

� Basic operations on processes
� Create and terminate

� Create is like a procedure call but caller doesn�t wait
� Created process can itself create new processes

� Terminate kills a process, destroying all data
� Suspend and resume

� Suspend puts a process on hold, saving state for later execution
� Resume starts the process again where it left off

� Join
� A process suspends until a particular child process finishes execution
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Communication among processes

� Processes need to communicate data and 
signals to solve their computation problem
� Processes that don�t communicate are just 

independent programs solving separate problems
� Basic example: producer/consumer

� Process A produces data items, Process B consumes 
them

� E.g., A decodes video packets, B display decoded 
packets on a screen

� How do we achieve this communication?
� Two basic methods

� Shared memory
� Message passing

processA() {
// Decode packet
// Communicate 

packet to B
}

}

void processB() {
// Get packet from A
// Display packet

}

Encoded video 
packets

Decoded video 
packets

To display
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Shared Memory

� Processes read and write shared variables
� No time overhead, easy to implement
� But, hard to use � mistakes are common

� Example: Producer/consumer with a mistake
� Share buffer[N], count

� count = # of valid data items in buffer

� processA produces data items and stores in buffer
� If buffer is full, must wait

� processB consumes data items from buffer
� If buffer is empty, must wait

� Error when both processes try to update count concurrently (lines 10 and 19) 
and the following execution sequence occurs. Say �count� is 3.

� A loads count (count = 3) from memory into register R1 (R1 = 3)
� A increments R1 (R1 = 4)
� B loads count (count = 3) from memory into register R2 (R2 = 3)
� B decrements R2 (R2 = 2)
� A stores R1 back to count in memory (count = 4)
� B stores R2 back to count in memory (count = 2)

� count now has incorrect value of 2

01: data_type buffer[N];
02: int count = 0;
03: void processA() {
04:   int i;
05:   while( 1 ) {
06:     produce(&data);
07:     while( count == N );/*loop*/
08:     buffer[i] = data;
09:     i = (i + 1) % N;
10:     count = count + 1;
11:   }
12: }
13: void processB() {
14:   int i;
15:   while( 1 ) {
16:     while( count == 0 );/*loop*/
17:     data = buffer[i];
18:     i = (i + 1) % N;
19:     count = count - 1;
20:     consume(&data);
21:   }
22: }
23: void main() {
24:   create_process(processA); 
25:   create_process(processB);
26: }
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Message Passing

� Message passing
� Data explicitly sent from one process to 

another
� Sending process performs special operation, 

send
� Receiving process must perform special 

operation, receive, to receive the data
� Both operations must explicitly specify which 

process it is sending to or receiving from
� Receive is blocking, send may or may not be 

blocking
� Safer model, but less flexible

void processA() {
while( 1 ) {
produce(&data)
send(B, &data);
/* region 1 */
receive(B, &data);
consume(&data);

}
}

void processB() {
while( 1 ) {
receive(A, &data);
transform(&data)
send(A, &data);
/* region 2 */

}
}
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Back to Shared Memory: Mutual Exclusion

� Certain sections of code should not be performed concurrently
� Critical section

� Possibly noncontiguous section of code where simultaneous updates, by multiple 
processes to a shared memory location, can occur

� When a process enters the critical section, all other processes must be locked 
out until it leaves the critical section
� Mutex

� A shared object used for locking and unlocking segment of shared data
� Disallows read/write access to memory it guards
� Multiple processes can perform lock operation simultaneously, but only one process 

will acquire lock
� All other processes trying to obtain lock will be put in blocked state until unlock 

operation performed by acquiring process when it exits critical section
� These processes will then be placed in runnable state and will compete for lock again
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Correct Shared Memory Solution to the 
Consumer-Producer Problem

� The primitive mutex is used to ensure critical sections are 
executed in mutual exclusion of each other

� Following the same execution sequence as before:
� A/B execute lock operation on count_mutex
� Either A or B will acquire lock

� Say B acquires it
� A will be put in blocked state

� B loads count (count = 3) from memory into register R2 (R2 
= 3)

� B decrements R2 (R2 = 2)
� B stores R2 back to count in memory (count = 2)
� B executes unlock operation

� A is placed in runnable state again
� A loads count (count = 2) from memory into register R1 (R1 

= 2)
� A increments R1 (R1 = 3)
� A stores R1 back to count in memory (count = 3)

� Count now has correct value of 3

01: data_type buffer[N];
02: int count = 0;
03: mutex count_mutex;
04: void processA() {
05:   int i;
06:   while( 1 ) {
07:     produce(&data);
08:     while( count == N );/*loop*/
09:     buffer[i] = data;
10:     i = (i + 1) % N;
11:     count_mutex.lock();
12:     count = count + 1;
13:     count_mutex.unlock();
14:   }
15: }
16: void processB() {
17:   int i;
18:   while( 1 ) {
19:     while( count == 0 );/*loop*/
20:     data = buffer[i];
21:     i = (i + 1) % N;
22:     count_mutex.lock();
23:     count = count - 1;
24:     count_mutex.unlock();
25:     consume(&data);
26:   }
27: }
28: void main() {
29:   create_process(processA); 
30:   create_process(processB);
31: }
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Process Communication

� Try modeling �req� value of our 
elevator controller
� Using shared memory
� Using shared memory and mutexes
� Using message passing buttons

inside
elevator

Unit
Control

b1

down

open

floor

...

Request
Resolver

...

up/down
buttons on 

each
floor

b2
bN

up1
up2
dn2

dnN

req

up

System interface

up3
dn3
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A Common Problem in Concurrent 
Programming: Deadlock

� Deadlock: A condition where 2 or more processes are 
blocked waiting for the other to unlock critical sections of 
code

� Both processes are then in blocked state
� Cannot execute unlock operation so will wait forever

� Example code has 2 different critical sections of code that 
can be accessed simultaneously

� 2 locks needed (mutex1, mutex2)
� Following execution sequence produces deadlock

� A executes lock operation on mutex1 (and acquires it)
� B executes lock operation on mutex2( and acquires it)
� A/B both execute in critical sections 1 and 2, respectively
� A executes lock operation on mutex2

� A blocked until B unlocks mutex2
� B executes lock operation on mutex1

� B blocked until A unlocks mutex1
� DEADLOCK!

� One deadlock elimination protocol requires locking of 
numbered mutexes in increasing order and two-phase 
locking (2PL)

� Acquire locks in 1st phase only, release locks in 2nd phase

01: mutex mutex1, mutex2;
02: void processA() {
03:   while( 1 ) {
04:     …
05:     mutex1.lock();
06:     /* critical section 1 */
07:     mutex2.lock();
08:     /* critical section 2 */
09:     mutex2.unlock();
10:     /* critical section 1 */
11:     mutex1.unlock();
12:   }
13: }
14: void processB() {
15:   while( 1 ) {
16:     …
17:     mutex2.lock();
18:     /* critical section 2 */
19:     mutex1.lock();
20:     /* critical section 1 */ 
21:     mutex1.unlock();
22:     /* critical section 2 */
23:     mutex2.unlock();
24:   }
25: }
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Synchronization among processes

� Sometimes concurrently running processes must synchronize their execution
� When a process must wait for:

� another process to compute some value
� reach a known point in their execution
� signal some condition

� Recall producer-consumer problem
� processA must wait if buffer is full
� processB must wait if buffer is empty
� This is called busy-waiting

� Process executing loops instead of being blocked
� CPU time wasted

� More efficient methods
� Join operation, and blocking send and receive discussed earlier

� Both block the process so it doesn�t waste CPU time
� Condition variables and monitors
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Condition variables

� Condition variable is an object that has 2 operations, signal and wait
� When process performs a wait on a condition variable, the process is blocked 

until another process performs a signal on the same condition variable
� How is this done?

� Process A acquires lock on a mutex
� Process A performs wait, passing this mutex

� Causes mutex to be unlocked
� Process B can now acquire lock on same mutex
� Process B enters critical section

� Computes some value and/or make condition true
� Process B performs signal when condition true

� Causes process A to implicitly reacquire mutex lock
� Process A becomes runnable
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Condition variable example:
consumer-producer

� 2 condition variables
� buffer_empty

� Signals at least 1 free location available in buffer
� buffer_full

� Signals at least 1 valid data item in buffer
� processA: 

� produces data item
� acquires lock (cs_mutex) for critical section
� checks value of count
� if count = N, buffer is full

� performs wait operation on buffer_empty
� this releases the lock on cs_mutex allowing 

processB to enter critical section, consume data 
item and free location in buffer

� processB then performs signal
� if count < N, buffer is not full

� processA inserts data into buffer
� increments count
� signals processB making it runnable if it has 

performed a wait operation on buffer_full

01: data_type buffer[N];
02: int count = 0;
03: mutex cs_mutex;
04: condition buffer_empty, buffer_full;
06: void processA() {
07:   int i;
08:   while( 1 ) {
09:     produce(&data);
10:     cs_mutex.lock();
11:     if( count == N ) buffer_empty.wait(cs_mutex);
13:     buffer[i] = data;
14:     i = (i + 1) % N;
15:     count = count + 1;
16:     cs_mutex.unlock();
17:     buffer_full.signal();
18:   }
19: }
20: void processB() {
21:   int i;
22:   while( 1 ) {
23:     cs_mutex.lock();
24:     if( count == 0 ) buffer_full.wait(cs_mutex);
26:     data = buffer[i];
27:     i = (i + 1) % N;
28:     count = count - 1;
29:     cs_mutex.unlock();
30:     buffer_empty.signal();
31:     consume(&data);
32:   }
33: }
34: void main() {
35:   create_process(processA); create_process(processB);
37: }

Consumer-producer using condition variables
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Monitors

� Collection of data and methods or subroutines that 
operate on data similar to an object-oriented 
paradigm

� Monitor guarantees only 1 process can execute 
inside monitor at a time

� (a) Process X executes while Process Y has to wait

� (b) Process X performs wait on a condition
� Process Y allowed to enter and execute

� (c) Process Y signals condition Process X waiting on
� Process Y blocked
� Process X allowed to continue executing

� (d) Process X finishes executing in monitor or waits 
on a condition again

� Process Y made runnable again

Process 
X

Monitor

DATA

CODE

(a)

Process 
Y Process 

X

Monitor

DATA

CODE

(b)

Process 
Y

Process 
X

Monitor

DATA

CODE

(c)

Process 
Y

Process 
X

Monitor

DATA

CODE

(d)

Process 
Y

Waiting

Waiting
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Monitor example: consumer-producer

� Single monitor encapsulates both 
processes along with buffer and count

� One process will be allowed to begin 
executing first

� If processB allowed to execute first
� Will execute until it finds count = 0
� Will perform wait on buffer_full condition 

variable
� processA now allowed to enter monitor and 

execute
� processA produces data item
� finds count < N so writes to buffer and 

increments count
� processA performs signal on buffer_full 

condition variable
� processA blocked
� processB reenters monitor and continues 

execution, consumes data, etc.

01: Monitor {
02:   data_type buffer[N];
03:   int count = 0;
04:   condition buffer_full, condition buffer_empty;
06:   void processA() {
07:     int i;
08:     while( 1 ) {
09:       produce(&data);
10:       if( count == N ) buffer_empty.wait();
12:       buffer[i] = data;
13:       i = (i + 1) % N;
14:       count = count + 1;
15:       buffer_full.signal();
16:     }
17:   }
18:   void processB() {
19:     int i;
20:     while( 1 ) {
21:       if( count == 0 ) buffer_full.wait();
23:       data = buffer[i];
24:       i = (i + 1) % N;
25:       count = count - 1;
26:       buffer_empty.signal();
27:       consume(&data);
28:       buffer_full.signal();
29:     }
30:   }
31: }  /* end monitor */
32: void main() {
33:   create_process(processA); create_process(processB);
35: }
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Implementation

� Mapping of system�s functionality 
onto hardware processors:

� captured using computational 
model(s)

� written in some language(s)
� Implementation choice independent 

from language(s) choice
� Implementation choice based on 

power, size, performance, timing and 
cost requirements

� Final implementation tested for 
feasibility

� Also serves as blueprint/prototype 
for mass manufacturing of final 
product

The choice of 
computational 

model(s) is based 
on whether it 

allows the designer 
to describe the 

system.

The choice of 
language(s) is 

based on whether 
it captures the 
computational 

model(s) used by 
the designer.

The choice of 
implementation is 

based on whether it 
meets power, size, 
performance and 

cost requirements.

Sequent.
program

State
machine

Data-
flow

Concurrent 
processes

C/C++Pascal Java VHDL

Implementation 
A

Implementation 
B

Implementation 
C
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Concurrent process model: 
implementation

� Can use single and/or general-purpose processors
� (a) Multiple processors, each executing one process

� True multitasking (parallel processing)
� General-purpose processors

� Use programming language like C and compile to 
instructions of processor

� Expensive and in most cases not necessary

� Custom single-purpose processors
� More common

� (b) One general-purpose processor running all 
processes

� Most processes don�t use 100% of processor time
� Can share processor time and still achieve necessary 

execution rates
� (c) Combination of (a) and (b)

� Multiple processes run on one general-purpose 
processor while one or more processes run on own 
single_purpose processor
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Implementation: 
multiple processes sharing single processor

� Can manually rewrite processes as a single sequential program
� Ok for simple examples, but extremely difficult for complex examples
� Automated techniques have evolved but not common
� E.g., simple Hello World concurrent program from before would look like:

I = 1; T = 0;
while (1) {

Delay(I); T = T + 1;
if X modulo T is 0 then call PrintHelloWorld
if Y modulo T is 0 then call PrintHowAreYou

}

� Can use multitasking operating system
� Much more common
� Operating system schedules processes, allocates storage, and interfaces to peripherals, etc.
� Real-time operating system (RTOS) can guarantee execution rate constraints are met
� Describe concurrent processes with languages having built-in processes (Java, Ada, etc.) or a sequential 

programming language with library support for concurrent processes (C, C++, etc. using POSIX threads 
for example)

� Can convert processes to sequential program with process scheduling right in code
� Less overhead (no operating system)
� More complex/harder to maintain
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Processes vs. threads

� Different meanings when operating system terminology
� Regular processes

� Heavyweight process
� Own virtual address space (stack, data, code)
� System resources (e.g., open files)

� Threads
� Lightweight process
� Subprocess within process
� Only program counter, stack, and registers
� Shares address space, system resources with other threads

� Allows quicker communication between threads
� Small compared to heavyweight processes

� Can be created quickly
� Low cost switching between threads

Slide 46CSE466-02au

Implementation:
suspending, resuming, and joining

� Multiple processes mapped to single-purpose processors
� Built into processor�s implementation
� Could be extra input signal that is asserted when process suspended
� Additional logic needed for determining process completion

� Extra output signals indicating process done

� Multiple processes mapped to single general-purpose processor
� Built into programming language or special multitasking library like POSIX
� Language or library may rely on operating system to handle
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Implementation: process scheduling

� Must meet timing requirements when multiple concurrent processes
implemented on single general-purpose processor
� Not true multitasking

� Scheduler
� Special process that decides when and for how long each process is executed
� Implemented as preemptive or nonpreemptive scheduler
� Preemptive

� Determines how long a process executes before preempting to allow another process 
to execute

� Time quantum: predetermined amount of execution time preemptive scheduler allows each 
process (may be 10 to 100s of milliseconds long)

� Determines which process will be next to run
� Nonpreemptive

� Only determines which process is next after current process finishes execution

Slide 48CSE466-02au

Scheduling: priority

� Process with highest priority always selected first by scheduler
� Typically determined statically during creation and dynamically during 

execution
� FIFO

� Runnable processes added to end of FIFO as created or become runnable
� Front process removed from FIFO when time quantum of current process is up 

or process is blocked
� Priority queue

� Runnable processes again added as created or become runnable
� Process with highest priority chosen when new process needed
� If multiple processes with same highest priority value then selects from them 

using first-come first-served
� Called priority scheduling when nonpreemptive
� Called round-robin when preemptive
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Priority assignment

� Period of process
� Repeating time interval the process must complete one execution within

� E.g., period = 100 ms 
� Process must execute once every 100 ms

� Usually determined by the description of the system
� E.g., refresh rate of display is 27 times/sec
� Period = 37 ms

� Execution deadline
� Amount of time process must be completed by after it has started

� E.g., execution time = 5 ms, deadline = 20 ms, period = 100 ms
� Process must complete execution within 20 ms after it has begun regardless of its period
� Process begins at start of period, runs for 4 ms then is preempted
� Process suspended for 14 ms, then runs for the remaining 1 ms
� Completed within 4 + 14 + 1 = 19 ms which meets deadline of 20 ms
� Without deadline process could be suspended for much longer

� Rate monotonic scheduling
� Processes with shorter periods have higher priority
� Typically used when execution deadline = period

� Deadline monotonic scheduling
� Processes with shorter deadlines have higher priority
� Typically used when execution deadline < period

Process

A
B
C
D
E
F

Period

25 ms
50 ms
12 ms
100 ms
40 ms
75 ms

Priority

5
3
6
1
4
2

Process

G
H
I
J
K
L

Deadline

17 ms
50 ms
32 ms
10 ms
140 ms
32 ms

Priority

5
2
3
6
1
4

Rate monotonic

Deadline monotonic
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Real-time systems

� Systems composed of 2 or more cooperating, concurrent processes with 
stringent execution time constraints
� E.g., set-top boxes have separate processes that read or decode video and/or 

sound concurrently and must decode 20 frames/sec for output to appear 
continuous

� Other examples with stringent time constraints are:
� digital cell phones
� navigation and process control systems
� assembly line monitoring systems
� multimedia and networking systems 
� etc.

� Communication and synchronization between processes for these systems is 
critical

� Therefore, concurrent process model best suited for describing these systems
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Real-time operating systems (RTOS)

� Provide mechanisms, primitives, and guidelines for building real-time embedded systems
� Windows CE

� Built specifically for embedded systems and appliance market
� Scalable real-time 32-bit platform
� Supports Windows API
� Perfect for systems designed to interface with Internet
� Preemptive priority scheduling with 256 priority levels per process
� Kernel is 400 Kbytes

� QNX
� Real-time microkernel surrounded by optional processes (resource managers) that provide POSIX and 

UNIX compatibility
� Microkernels typically support only the most basic services
� Optional resource managers allow scalability from small ROM-based systems to huge multiprocessor systems 

connected by various networking and communication technologies

� Preemptive process scheduling using FIFO, round-robin, adaptive, or priority-driven scheduling
� 32 priority levels per process
� Microkernel < 10 Kbytes and complies with POSIX real-time standard
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Summary

� Computation models are distinct from languages
� Sequential program model is popular

� Most common languages like C support it directly
� State machine models good for control

� Extensions like HCFSM provide additional power
� PSM combines state machines and sequential programs

� Concurrent process model for multi-task systems
� Communication and synchronization methods exist
� Scheduling is critical

� Dataflow model good for signal processing


