
CSE 466 – Fall 2002 - Introduction - 1

Embedded Systems Safety

! Terms and Concepts
! Safety Architectures
! Safe Design Process
! Software Specific Stuff
! Sources

" Hard Time by Bruce Powell Douglass, which references Safeware by
Nancy Leveson

CSE 466 – Fall 2002 - Introduction - 2

What is a Safe System?

Brake
Pedal

Pedal
Sensor Processor Bus

Brake
w/ local

controller

Engine
w/ local

controllerIs it safe?

What does “safe” mean?

How can we make it safe?

Add
electronic watch dog
between brake and bus

Add mechanical linkage
from separate brake pedal
directly to brake

Add a third mechanical linkage….

CSE 466 – Fall 2002 - Introduction - 3

! Reliability of component i can be expressed as the probability that
component i is still functioning at some time t.

! Is system reliability Ps (t) = ΠPi(t) ?
! Assuming that all components have the same component reliability, Is a

system w/ fewer components always more reliable ?
! Does component failure # system failure ?

burn
in

period

Terms and Concepts

time

Pi(t) =
Probability
of being
operational
at time t

Low failure rate means nearly constant probability
1/(failure rate) = MTBF

CSE 466 – Fall 2002 - Introduction - 4

A Safety System

! A system is safe if it’s deployment involves assuming an acceptable amount
of risk…acceptable to whom?

! Risk factors
" Probability of something bad happing
" Consequences of something bad happening (Severity)

! Example
" Airplane Travel – high severity, low probability
" Electric shock from battery powered devices – hi probability, low severity

severity

probability

danger zone
(we don’t all have the same
risk tolerance!)

airplane autopilot

mp3 player

PC

safe
zone

CSE 466 – Fall 2002 - Introduction - 5

More Precise Terminology

! Accident or Mishap: (unintended) Damage to property or harm to persons.
Economic impact of failure to meet warranted performance is outside of the
scope of safety.

! Hazard: A state of the the system that will inevitably lead to an accident or
mishap
" Release of Energy
" Release of Toxins
" Interference with life support functions
" Supplying misleading information to safety personnel or control systems.

This is the desktop PC nightmare scenario. Bad information
" Failure to alarm when hazardous conditions exist

CSE 466 – Fall 2002 - Introduction - 6

Faults

! A fault is an “unsatisfactory system condition or state”. A fault is not
necessarily a hazard. In fact, assessments of safety are based on the notion
of fault tolerance.

! Systemic faults
" Design Errors (includes process errors such as failure to test or failure to

apply a safety design process)
" Faults due to software bugs are systemic
" Security breech

! Random Faults
" Random events that can cause permanent or temporary damage to the

system. Includes EMI and radiation, component failure, power supply
problems, wear and tear.

CSE 466 – Fall 2002 - Introduction - 7

Component v. System

! Reliability is a component issue
! Safety and Availability are system issues
! A system can be safe even if it is unreliable!
! If a system has lots of redundancy the likelihood of a component failure (a

fault) increases, but so may increase the safety and availability of that
system.

! Safety and Availability are different and sometimes at odds. Safety may
require the shutdown of a system that may still be able to perform its
function.
" A backup system that can fully operate a nuclear power plant might

always shut it down in the event of failure of the primary system.
" The plant could remain available, but it is unsafe to continue operation

CSE 466 – Fall 2002 - Introduction - 8

Single Fault Tolerance (for safety)

! The existence of any single fault does not result in a hazard
! Single fault tolerant systems are generally considered to be safe, but more

stringent requirements may apply to high risk cases…airplanes, power
plants, etc.

Backup
H2 Valve
Control

Main
H2 Valve
Control

watchdog
protocol

If the handshake
fails, then either one
or both can shut off the gas
supply. Is this a single fault
tolerant system?

CSE 466 – Fall 2002 - Introduction - 9

Terms

! Safety: Assuming acceptable risk
! Accident: Unintended damage
! Hazard: Dangerous system state: accident is inevitable
! Fault: Conditions that lead to hazards

" Systemic (design) faults
" Random faults

! Reliability
System is functioning if all components are functioning

Ps(t) = ΠPi(t)
System is functioning of any component is functioning (redundancy)

Ps(t) = 1- Π(Fi(t))
probability of component failure Fi(t) = 1-Pi(t)

Example:
let P1(T) = P2(T) = 0.9
then F1(T) = F2(T) = 0.1, so Fs(T) = 0.1*0.1 = 0.01
So Ps(T) = 1-Fs(T) = .99

CSE 466 – Fall 2002 - Introduction - 10

Term (cont)

! Latent fault: a fault that does not in itself lead to a hazard, but which cannot
be detected. Must assume that the probability of this fault = 1

! Safety Architectures
" Single Channel Protection
" Redundancy
" Diversity

! Time equation
" Time to Eliminate Hazard < Tolerance Time of Hazard < Time to Next

Fault

CSE 466 – Fall 2002 - Introduction - 11

Single Fault Tolerance (for safety)

! The existence of any single fault does not result in a hazard
! Single fault tolerant systems are generally considered to be safe, but more

stringent requirements may apply to high risk cases…airplanes, power
plants, etc.

Backup
H2 Valve
Control

Main
H2 Valve
Control

watchdog
protocol

If the handshake
fails, then either one
or both can shut off the gas
supply. Is this a single fault
tolerant system?

error

error

CSE 466 – Fall 2002 - Introduction - 12

Is This?

Backup
H2 Valve
Control

Main
H2 Valve
Control

watchdog
handshake

common
mode
failures

CSE 466 – Fall 2002 - Introduction - 13

Now Safe?

Backup
H2 Valve
Control

Main
H2 Valve
Control

watchdog
handshake

•Separate Clock Source
•Power Fail-Safe (non-latching)
Valves

What about power spike that
confuses both processors at the
same time? Maybe the watchdog
can’t be software based.

Does it ever end?

Ttest<T0<T1

detection time is < than single fault tolerance time < time to second failure

have we solved this?

latent faults P = 1

CSE 466 – Fall 2002 - Introduction - 14

Safety Architectures

! Self Checking (Single Channel Protected Design)
! Redundancy
! Diversity or Heterogeneity

Brake
Pedal

Pedal
Sensor Computer Computer

Bus

Brake

Engine
Control

watchdog
protocol

parity/crc
Periodic internal
CRC/Checksum
computation
(code/data corruption)

CSE 466 – Fall 2002 - Introduction - 15

Single Channel Protection

! Self Checking
" perform periodic checksums on code and data
" How long does this take?
" Is Ttest<T0<T1?
" No protection against systemic faults

! Feasibility of Single Channel Protection
" Fault Tolerance Time
" Speed of the processor
" Amount of ROM/RAM
" Special Hardware
" Recurring cost v. Development cost tradeoff

Computer
(code

corruption)

Computer
Bus

Brake

Engine
Control

parity/crc on the bus

CSE 466 – Fall 2002 - Introduction - 16

Redundancy

! Homogeneous Redundancy
" Low development cost…just duplicate
" High recurring cost
" No protection against systemic faults

Computer
(code

corruption)

Brake

Engine
Control

Computer

Computer Voting
Bus

could be implemented similar to collision
detection

what happens if you have an even number of computers?

CSE 466 – Fall 2002 - Introduction - 17

Diversity

! Heterogeneous Redundancy
" Protects against random and

some systemic faults.
" Best if implementation teams are kept

separated
! Space shuttle: five computers, 4 same 1 different

Proc/SW
1

Brake

Engine
ControlProc/SW

2

Voting
Bus

CSE 466 – Fall 2002 - Introduction - 18

Design Process

1. Hazard Identification and Fault Tree Analysis
2. Risk Assessment
3. Define Safety Measures
4. Create Safe Requirements
5. Implement Safety
6. Test,Test,Test,Test,Test

CSE 466 – Fall 2002 - Introduction - 19

Hazard Analysis – Working forward from hazards

0.01secSecondary
valve
opens

0.01secRareRelease
valve stuck
closed

0.05secSeverOver-
pressuriza
tion

N/ADifferent
mechanic
al fittings
for intake
and
exhaust

N/AneverUser mis-
attaches
breathing
hoses

40secC02
sensor
alarm

30secMediumEsophageal
intubation

40secIndep.
pressure
sensor w/
alarm

30secRareMotor Too
Slow

5 min.SevereHypo-
ventilation

Exposure
Time

MechanismDetection
Time

LikelihoodFault
Example

Tolerance
Time

SeverityHazard

Human
in LoopVentilator Example

CSE 466 – Fall 2002 - Introduction - 20

Fault Tree Analysis

Satisfiability Analysis: What combinations of inputs produce the hazard
Explosion Hazard: (SystemOn * FanFailure * PlumbingLeak) +

(SystemOff * MainH2Stuck * PlumbingLeak)
Let Plumbing Leak = 1 (there is always some level of leakage

(SystemOn * FanFailure) + (SystemOff * MainH2Stuck)
Let Tdetect(FanFailure < ToleranceTime)

(MainH2Stuck * System is Off) is our biggest concern.
Mitigation: Open an valve from internal H2 plumbing when off?? Why Not?
Proper Installation Required!

CSE 466 – Fall 2002 - Introduction - 21

FMEA: Same as Hazard Analysis, but Start w/ Faults

! Failure Mode: how a device can fail
" Battery: never voltage spike, only low voltage
" Valve: Stuck open? Stuck Closed?
" Motor or Motor Controller: Stuck fast, stuck slow?
" Hydrogen sensor: Will it be latent or mimic the presence of hydrogen?

! Failure Modes and Effects Analysis
" Great for single fault tolerant systems

! For each system.
" Identify all failure modes and likelihoods
" Identify the hazard that is produced by each failure
" Determine Time tolerance for each potential hazard
" Design Considerations

$ Mitigation
$ Detection

" Response
$ What to do: shutdown, alarm, disable certain features, etc.

! Search space can be quite large

CSE 466 – Fall 2002 - Introduction - 22

Risk Assessment

! Risk is orthogonal to hazard analysis
! Determine how risky your system is

S: Extent of Damage
Slight injury
Single Death
Several Deaths
Catastrophe

E: Exposure Time
infrequent
continuous

G: Preventability
Possible
Impossible

W: Probability
low
medium
high

1

2

3

4

5

6

7

8

3

4

5

7

6

-

1

2

2

3

4

6

5

-

-

1

W3 W2 W1

S1

S3

S2

G2

G1

G2

G1

S4
E2

E1

E2

E1

CSE 466 – Fall 2002 - Introduction - 23

Example Risk Assessment

8W2G2E2S4CrashAirliner

6W3--E1S3ExplosionPower
station
burner
control

5W3G2E2S2Pacing too
slowly
Pacing too
fast

Pacemaker

5W3G2E2S2IrradiationMicrowave
Oven

TUV
Risk
Level

ProbabilityHazard
Prevention

Exposure
Time

Extent of
Damage

HazardDevice

CSE 466 – Fall 2002 - Introduction - 24

Define the Safety Measures

! Obviation: Make it physically impossible (mechanical hookups, etc).
! Education: Educate users to prevent misuse or dangerous use.
! Alarming: Inform the users/operators or higher level automatic monitors of

hazardous conditions
! Interlocks: Take steps to eliminate the hazard when conditions exist (shut off

power, fuel supply, explode, etc.
! Restrict Access. High voltage sources should be in compartments that

require tools to access, w/ proper labels.
! Labeling
! Consider

" Tolerance time
" Supervision of the system: constant, occasional, unattended. Airport

People movers have to be design to a much higher level of safety than
attended trains even if they both have fully automated control

CSE 466 – Fall 2002 - Introduction - 25

Create Safe Requirements: Specifications

! Document the safety functionality
" eg. The system shall NOT pass more than 10mA through the ECG lead.
" Typically the use of NOT implies a much more general requirement

about functionality…in ALL CASES
! Create Safe Designs

" Start w/ a safe architecture
" Keep hazard/risk analysis up to date.
" Search for common mode failures
" Assign responsibility for safe design…hire a safety engineer.
" Design systems that check for latent faults

! Use safe design practices…this is very domain specific, we will talk about
software

CSE 466 – Fall 2002 - Introduction - 26

5. Implement Safety – Safe Software

Language Features
Type and Range Safe Systems
Exception Handling

Re-use, Encapsulation
Objects
Operating Systems
Protocols

Testing
Regression Testing
Exception Testing (Fault Seeding)

CSE 466 – Fall 2002 - Introduction - 27

What happens if
void* a[SZ]; // Data Structure Definition
a[i] = (void*) x; // Range Violation?
x = (myType *)a[i]; // Range and Data Type Violation?

Ideal Error Checking Hierarchy
Automatic:

Compile Time Checking (Static) better than Run Time Checking (Dynamic)
- data types for assignments
- range
- unitialized
- Out of memory….etc.

Programmer:
Semantic error conditions (e.g array not sorted, too many users, etc)

if (i < SZ) a[i] = (void*) x; else what?? // Range Violation?
if (i < SZ) x = (myType *) a[i]; else what?? // Range and Data Type Violation?
Four Main Problems in C
1. Static analysis not defined by the language: a[5] means *(a+5), not “fifth element of the

array a”.
2. There is no run-time checking. OS checks to make sure you stay in your space.
3. Exception flow is indistinguishable from normal flow and exception handling is voluntary
4. Semantic checking onus on user of data structure

CSE 466 – Fall 2002 - Introduction - 28

Language Definition
! static analysis is up to the compiler

" Define the semantics of the language to include all compile time checks
that cannot be caught at run time
$ Un-initialized variables
$ type mismatch

! The run time environment performs dynamic checks that cannot be
caught at compiler time: mainly to make sure that you never access memory
the wrong way
" Null pointer access
" Array out of bounds
" Type mismatch even when casting
" Memory Management and Garbage Collection
a[i] = (void*) x; // raise an exception
x = (myType *) a[i]; // raise and exception
" What happens in the event of an exception?

CSE 466 – Fall 2002 - Introduction - 29

Exception Handling

! Its NOT okay to just let the system crash if some operation fails! You must,
at least, get into safe mode.

! In C it is up to the designer to perform error checking on the value returned
by f1 and f2. Easily put off, or ignored. Can’t distinguish error handling from
normal program flow, no guarantee that all errors are handled gracefully.

! typical C approach:
a = f1(b,c)
if (a) switch (a) {

case 1: handle exception 1
case 2: handle exception 2
…

}
b = f2(e,f)
if (a) switch (a) {

case 1: handle exception 1
case 2: handle exception 2
…

}

In C, the exception flow is
the same as the
normal flow. Use negative
numbers for exceptions?!

CSE 466 – Fall 2002 - Introduction - 30

Exception Handling in Java

void myMethod() throws FatalException {
try {

a = x.f1(b,c)
b = x.f2(e,f)
if (a) … // handle all functional outcomes here!

} catch (IOException e) {
recover and continue if that’s okay.

} catch (ArrayOutOfBoundsException e) {
not recoverable, throw new FatalException(“I’m Dead”);

} finally {
finish up and exit

}
}
All exceptions must be handled or thrown. Exceptions are subclassed so that

you can have very general or very specific exception handlers.

Separates
throwing exceptions
functional code
exception handling

CSE 466 – Fall 2002 - Introduction - 31

Encapsulation: Semantic Checking

! IN C
while (item!=tail) {

process(item);
if (item->next == null) return –1 // exception ?
item = item->next;

}
! In Java

while (item = mylist.next()) { // inside mylist is not my problem
process (item);

}

class list {
Object next() throws CorruptListException {

if (current == tail) return null;
current = current.next; // private field access okay
if (current == null) throw new CorruptListException(this.toString());
return(current.value);

}

CSE 466 – Fall 2002 - Introduction - 32

More Language Features

! Garbage collection
" What is this for
" Is it good or bad for embedded systems

! Inheritance
" Means that type safe systems can still have functions that operate on

generic objects.
" Means that we can re-use commonalities between objects.

! Re-use
" Use trusted systems that have been thoroughly tested
" OS
" Networking
" etc.

CSE 466 – Fall 2002 - Introduction - 33

Java for Embedded Systems

! Why not Java for Embedded Systems
" Its slower
" Code bloat
" Garbage Collection may not be interruptible (Latency, predictability)
" Time resolution – run time support for multithreading and

synchronization must be optimized. Java assumes the existence of a
basic operating system.

" Hardware access – interrupt handlers, event handlers
! TinyOS

" A Component model that seems to be good for “reactive” systems.
Probably does a good job of addressing the four major issues listed
here.

CSE 466 – Fall 2002 - Introduction - 34

Testing

! Regression Test

! Fault Seeding

CSE 466 – Fall 2002 - Introduction - 35

Safe Design Process

! Mainly, the hazard/risk/FMEA analysis is a process not an event!
! How you do things is as important as what you do.
! Standards for specification, documentation, design, review, and test

" ISO9000 defines quality process…one quality level is stable and
predictable.

