
CSE466-02au Lab Assignment 1

Page 1 of 9

(This document is adapted from Avr-gcc/AVRstudio beginner’s guide dec. 14,2001,
http://www.avrfreaks.net/AVRGCC/)

Part1: Building a new project with AVRstudio and avr-gcc

We will open a new project in AVRstudio, add files to the project, and provide the
necessary mechanics to make GNU make.exe take care of the building of our project.
Go to C:\AVR. There should be a directory called C:\AVR\projects. If the directory isn’t
there, create it.
Go to C:\AVR\projects. The directory should be empty. If not, delete all contents. This is
your working directory for development, and all files stored here should be saved to your
share. When you are finished for a session, save all files and folders to your share,
and delete them here, so the next user doesn’t benefit from your hard work.
We have provided an example folder in the course file area:
\\ntdfs\cs\cse\courses\cse466\02au.
Find a folder called “flash” and copy the folder to C:\AVR\projects.

Make a new project with AVRstudio 3.53
On the Project menu of AVRstudio, click New to see the Select new project dialog. Enter
the name flash for your new project, click the browse button to the right of the Location
textbox and choose the directory of “C:\AVR\projects\flash” as your project directory:

The selected project folder/directory becomes the location where all files generated by
avr-gcc and AVRstudio will be output. This is also where you should keep all your
project files. When done, make sure to select “Generic 3 rd party compiler” as your
Project type before clicking the “OK” button. AVRGCC will be your generic 3 rd party
compiler.

Save the project.

CSE466-02au Lab Assignment 1

Page 2 of 9

The project concept, and using the GNU make utility
We will go for a concept where you stick to using a new makefile for each project, and
hence; stick to using AVRstudio “projects” for each project. All the project files should
be kept in the same directory/folder. This would be the folder you selected in the steps
above.
This is necessary for AVRstudio’s Generic 3 rd party compiler support to work properly.
The GNU tool make that comes with the avr-gcc distribution will use the makefile’s rules
to compileand link our project into a complete .hex file to load into the mcu.
This is a neat, clean and comprehensible way of organizing your work.

As a template for your makefiles, you should use the makefile included here.

Adding files to the project
Now, we need to add the files that compose our little project. In the case of this little test
project, we need:

• Some source code.
• A makefile.

Let’s start by including the C-sourcefile “flash.c” :

• Right-click the “Source files” tab in the Project window of studio.
• Select “Add file”, browse to the file “flash.c” in your project folder.
• Double-click the file, or click “open”.

Now add the makefile for this project:

• Right-click the “Other files” tab in the.
• Select “Add file”, browse to the makefile. If you can’t see it, you may have to

select “All files” in the filetype drop-down.

CSE466-02au Lab Assignment 1

Page 3 of 9

Our project should now look like this:

For every included file, you can double-click its representation in the folder tree of the
project window to open and edit the file.

Open the makefile.

CSE466-02au Lab Assignment 1

Page 4 of 9

The makefile
The template makefile by Volker Oth should look like this in our version (the template is
in the /avrfreaks subdir of your avr-gcc installation):

The only lines you should perhaps have to edit, are these:

• The line saying: “TRG = flash ”. This is the name of your target.
The source file needs to have the same name as the core target name. If it doesn’t,
make simply won’t find your sourcefile.
You can see this from the next line: SRC = $(TRG).c

NB! Do not use any extension/suffix for the target name!
Note the line saying “ include $(AVR)/avrfreaks/avr_make” in the makefile. This line takes care of
including more dependencies and commands for the make process, from the file
“avr_make”. This file is included in the avr-gcc distribution from AVRfreaks. For a
quick introduction to what it contains consult appendix A of the Avr-gcc/AVRstudio
beginner’s guide dec. 14,2001, http://www.avrfreaks.net/AVRGCC/).

Tying it all together

Okay, so now we have an open project, a source file and a makefile all ready to go. But
still a little work remains to make all these things work together. Fear not; when done
with these steps you will have a method to stick with for later that should be relatively
simple to maintain.

CSE466-02au Lab Assignment 1

Page 5 of 9

A few things we have to realize at this point:

• AVRstudio knew nothing about avr-gcc; what it is or where it is, when we started
out.

• Selecting “Generic 3 rd party compiler” as project type did not initiate any magic
event in your computer, so that AVRstudio suddenly knows which compiler and
how to use it.

• Avr-gcc is run from the command-line, as well as the other GNU avr tools like the
assembler, linker and the unix tools. They don’t have nice user interfaces. All
these are most effectively controlled by the program make; run from the
command line.

So the question is: how do we make AVRstudio use avr-gcc?
The trick is:

• To make AVRstudio aware of the path to the GNU tools via environment
parameters.

• To run make and feed it with the right makefile.
Hence,

• Writing a .bat file that points out the right directories and runs make.
• Letting AVRstudio know that it should take a look at that file…

.
Using Win2000 or WinXP:
For Win2000, you need a “start”- file to kick off the compilation

@echo -------- begin --------
@start /MIN /wait cmd /c gcc_cmp2.bat %1
@type c:\tmpout.txt
@del c:\tmpout.txt
@echo -------- end --------

@set AVR=c:\avrgcc
@set CC=avr-gcc
@set PATH=c:\avrgcc\bin
make.exe %1 >c:\tmpout.txt 2>&1

These files have already been modified and saved somewhere in your path.

This setup will start make.exe, which is instructed to direct its screen dump to a file that
is displayed as the compiler output inside AVRstudio, and then deleted.

This is an important step!

Now, set the “target options” in AVRstudio:

CSE466-02au Lab Assignment 1

Page 6 of 9

• Right-click “Target:debug” in the Project window, and select “settings”.
• Uncheck “Run compiler…”.
• Check “Run linker…”
• Enter the name of our clever little gcc_cmp.bat file in the command line window.
• Under “Run stage settings”, opt for “Run code”. In the first text box type “Errors:

none”, in the second type “obj” for object file extension.

And here we go…

Building our first project with AVRstudio and avr-gcc

Now you should be all ready to run.

To build the project:

• Right-click “Target: debug” in the project window of AVRstudio, and select
“build” from the bottom of the menu.

Provided you completed all we went through so far as you should, this project should
build just fine. Watch the the make output appearing in a window inside AVRstudio. As
long as it doesn’t report any errors; all is OK:

CSE466-02au Lab Assignment 1

Page 7 of 9

Programming the AVR with AVRprog

Now you're ready to test your code. The
TA will bring the test board, and connect
it to your serial port. Make sure it’s on,
and one LED segment is blinking.

To load your newly built code onto the
chip, select “AVR prog” from the
“Tools” menu.

Select the “flash.hex” file, and click
“Flash Program”.

The blue progress bar should progress all
the way to the right. Ignore the “ffff”
error message.

Press the reset button on the test board;
your code should run.

Save your work to your share!

CSE466-02au Lab Assignment 1

Page 8 of 9

You can open the “flash.lst” file to examine the output of the compiler:

(You may need to use some other editor to examine this file.)

CSE466-02au Lab Assignment 1

Page 9 of 9

Part 2: Building a new project with AVRstudio 4 in Assembler

Now, create a version of this program in assembler. Use the AVRstudio 4 in the AVR
folder.

Refer to the HELP menu for guidance, and check AVRfreaks and the ATMEL CD for
help in using Studio 4. Also, look for examples. Any code that will run on the STK500
will work. Set up your assembly code for the Atmega16. Call your source file
“flash[your_logon_name].asm”.

We’ll leave the test board in the lab for your use in debugging. Downloading is similar in
Studio 4, using AVRprog.

ASSIGNMENT:

Each member of your lab team should complete this assignment individually. You may
help each other, but collaboration should be indicated in source code comments.

Turn in your completed assembly source code. It’s due at the start of Lab Session 2.

Good luck!

--END--

