
C51 Compiler
Optimizing 8051 C Compiler

and Library Reference

User’s Guide 01.97

ii

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

© Copyright 1988-1997 Keil Elektronik GmbH., and Keil Software, Inc.
All rights reserved.

Keil C51™ is a trademark of Keil Elektronik GmbH.
Microsoft®, MS-DOS®, and Windows™ are trademarks or registered trademarks
of Microsoft Corporation.
IBM®, PC®, and PS/2® are registered trademarks of International Business
Machines Corporation.
Intel®, MCS® 51, MCS® 251, ASM-51®, and PL/M-51® are registered
trademarks of Intel Corporation.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Keil Software — C51 Compiler User’s Guide iii

Preface
This manual describes how to use the C51 Optimizing C Compiler to compile C
programs for your target 8051 environment. The C51 Compiler package can be
used on all 8051 family processors and is executable under MS-DOS. This
manual assumes that you are familiar with the MS-DOS operating system, know
how to program 8051 processors, and have a working knowledge of the C
language.

NOTE
MS-DOS and PC-DOS are, in essence, the same operating system. This manual
uses MS-DOS or just DOS when referring to either system.

If you have questions about programming in C, or if you would like more
information about the C programming language, refer to “Books About the C
Language” on page 2.

Many of the examples and descriptions in this manual discuss invoking the
compiler from the DOS command prompt. While this may not be applicable to
you if you are running C51 within an integrated development environment,
examples in this manual are universal in that they apply to all programming
environments.

iv Contents

Manual Organization
This user’s guide is divided into eight chapters and six appendices:

“Chapter 1. Introduction,” describes the C51 compiler.

“Chapter 2. Compiling with C51,” explains how to compile a source file using
the C51 cross compiler. This chapter describes the command-line directives that
control file processing, compiling, and output.

“Chapter 3. Language Extensions,” describes the C language extensions
required to support the 8051 system architecture. This chapter provides a
detailed list of commands, functions, and controls not found in ANSI C
compilers.

“Chapter 4. Preprocessor,” describes the components of the C51 preprocessor
and includes examples.

“Chapter 5. 8051 Derivatives,” describes the 8051 family derivatives that the
C51 compiler supports. This chapter also includes tips for improving target
performance.

“Chapter 6. Advanced Programming Techniques,” lists important information
for the experienced developer. This chapter includes customization file
descriptions, and optimizer and segment names. This chapter also discusses how
to interface C51 with other 8051 programming languages.

“Chapter 7. Error Messages,” lists the fatal errors, syntax errors, and warnings
that you may encounter while using C51.

“Chapter 8. Library Reference,” provides you with extensive C51 library routine
reference material. The library routines are listed by category and include file.
An alphabetical reference section, which includes example code for each of the
library routines, concludes the chapter.

The Appendix includes information on the differences between compiler
versions, writing code, and other items of interest.

Keil Software — C51 Compiler User’s Guide v

Document Conventions
This document uses the following conventions:

Examples Description

README.TXT Bold capital text is used for the names of executable programs, data
files, source files, environment variables, and commands you enter at
the MS-DOS command prompt. This text usually represents commands
that you must type in literally. For example:

CLS DIR BL51.EXE

Note that you are not required to enter these commands using all capital
letters.

Language Elements Elements of the C language are presented in bold type. This includes
keywords, operators, and library functions. For example:

if != long
isdigit main >>

Courier Text in this typeface is used to represent information that displays on
screen or prints at the printer.

This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents information that you must provide. For
example, projectfile in a syntax string means that you must supply the
actual project file name.

Occasionally, italics are also used to emphasize words in the text.

Elements that repeat… Ellipses (…) are used in examples to indicate an item that may be
repeated.

Omitted code
.
.
.

Vertical ellipses are used in source code examples to indicate that a
fragment of the program is omitted. For example:

void main (void) {
.
.
.
while (1);

!Optional Items" Optional arguments in command-line and option fields are indicated by
double brackets. For example:

C51 TEST.C PRINT !(filename)"
{ opt1 | opt2 } Text contained within braces, separated by a vertical bar represents a

group of items from which one must be chosen. The braces enclose all
of the choices and the vertical bars separate the choices. One item in
the list must be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue.”

vi Contents

Keil Software — C51 Compiler User’s Guide vii

Contents

Chapter 1. Introduction..1
Books About the C Language ... 2

Chapter 2. Compiling with C51...3
Environment Settings.. 3
Running C51 ... 4

DOS ERRORLEVEL.. 5
C51 Output Files ... 5

Control Directives... 6
Directive Categories.. 6

Reference .. 9
AREGS / NOAREGS.. 10
ASM / ENDASM .. 12
CODE.. 14
COMPACT ... 15
COND / NOCOND ... 16
DEBUG... 18
DEFINE .. 19
DISABLE.. 20
EJECT... 22
FLOATFUZZY... 23
INTERVAL... 24
INTPROMOTE / NOINTPROMOTE .. 25
INTVECTOR / NOINTVECTOR .. 27
LARGE ... 29
LISTINCLUDE... 30
MAXARGS... 31
MOD517 / NOMOD517 ... 32
MODDP2 / NOMODDP2... 34
NOAMAKE .. 35
NOEXTEND... 36
OBJECT / NOOBJECT .. 37
OBJECTEXTEND.. 38
OPTIMIZE.. 39
ORDER... 42
PAGELENGTH .. 43
PAGEWIDTH... 44
PREPRINT.. 45
PRINT / NOPRINT .. 46
REGFILE .. 47
REGISTERBANK .. 48
REGPARMS / NOREGPARMS... 49
ROM ... 50
SAVE / RESTORE ... 51

viii Contents

SMALL ...52
SRC ...53
SYMBOLS..54
WARNINGLEVEL...55

Chapter 3. Language Extensions ...57
Keywords ..57
8051 Memory Areas..58

Program Memory ..58
Internal Data Memory ...59
External Data Memory ..60
Special Function Register Memory ...61

Memory Models..61
Small Model ..61
Compact Model ...62
Large Model ..62

Memory Types ..62
Explicitly Declared Memory Types...63
Implicit Memory Types ...64

Data Types ..64
Bit Types...65
Bit-addressable Objects...66
Special Function Registers ..68

sfr ..68
sfr16 ..69
sbit ...69

Absolute Variable Location ..71
Pointers ...73

Generic Pointers ..73
Memory-specific Pointers..76
Pointer Conversions ..78
Abstract Pointers ...81

Function Declarations ...85
Function Parameters and the Stack..86
Passing Parameters in Registers ..87
Function Return Values ...87
Specifying the Memory Model for a Function...88
Specifying the Register Bank for a Function...89
Register Bank Access ..91
Interrupt Functions ..92
Reentrant Functions...96
Alien Function (PL/M-51 Interface)..99
Real-time Function Tasks..100

Chapter 4. Preprocessor ...101
Directives ..101
Stringize Operator ...102
Token-pasting Operator ..103

Keil Software — C51 Compiler User’s Guide ix

Predefined Macro Constants ... 104

Chapter 5. 8051 Derivatives ...105
AMD 80C321, 80C521, and 80C541 ... 106
Dallas 80C320, 80C520, and 80C530 .. 106
Siemens 80C517 and 80C537... 107

Data Pointers... 107
High-speed Arithmetic .. 108
Library Routines.. 110

Philips/Signetics 8xC750, 8xC751, and 8xC752 .. 111

Chapter 6. Advanced Programming Techniques...113
Customization Files .. 113

STARTUP.A51... 114
START751.A51 .. 118
INIT.A51... 120
INIT751.A51... 121
PUTCHAR.C .. 123
GETKEY.C... 123
CALLOC.C ... 123
FREE.C ... 123
INIT_MEM.C ... 123
MALLOC.C .. 124
REALLOC.C... 124

Optimizer .. 125
General Optimizations .. 126
8051-Specific Optimizations... 126
Options for Code Generation .. 126

Segment Naming Conventions.. 128
Data Objects.. 128
Program Objects.. 129

Interfacing C Programs to Assembler ... 131
Function Parameters.. 131
Parameter Passing in Registers.. 132
Parameter Passing in Fixed Memory Locations .. 133
Function Return Values... 133
Using the SRC Directive ... 134
Register Usage .. 136
Overlaying Segments .. 136
Example Routines ... 136
Small Model Example... 137
Compact Model Example.. 139
Large Model Example... 141

Interfacing C Programs to PL/M-51 ... 143
Data Storage Formats.. 144

Bit Variables ... 144
Signed and Unsigned Characters, Pointers to data, idata, and pdata 145

x Contents

Signed and Unsigned Integers, Enumerations, Pointers to xdata and
code ...145
Signed and Unsigned Long Integers..145
Generic Pointers ..146
Floating-point Numbers...147
Floating-point Errors ...149

Accessing Absolute Memory Locations..150
Absolute Memory Access Macros...150
Linker Location Controls ..151
The _at_ Keyword ...152

Debugging...153

Chapter 7. Error Messages ..155
Fatal Errors ...155

Actions ..156
Errors...157

Syntax and Semantic Errors ..159
Warnings ...171

Chapter 8. Library Reference..175
Intrinsic Routines ..175
Library Files..176
Standard Types..177

jmp_buf ...177
va_list ..177

Absolute Memory Access Macros...178
CBYTE..178
CWORD..178
DBYTE ...179
DWORD..179
PBYTE..180
PWORD ..180
XBYTE ...181
XWORD..181

Routines by Category..182
Buffer Manipulation ..182
Character Conversion and Classification...183
Data Conversion..184
Math ..184
Memory Allocation ...186
Stream Input and Output ...187
String Manipulation...189
Variable-length Argument Lists ..190
Miscellaneous..190

Include Files..191
8051 Special Function Register Include Files ...191
80C517.H ..191
ABSACC.H ...191

Keil Software — C51 Compiler User’s Guide xi

ASSERT.H.. 192
CTYPE.H.. 192
INTRINS.H... 192
MATH.H... 192
SETJMP.H .. 193
STDARG.H... 193
STDDEF.H ... 193
STDIO.H... 193
STDLIB.H... 194
STRING.H .. 194

Reference .. 195
abs ... 196
acos / acos517 ... 197
asin / asin517... 198
assert ... 199
atan / atan517 .. 200
atan2.. 201
atof / atof517 ... 202
atoi .. 203
atol .. 204
cabs ... 205
calloc... 206
ceil... 207
chkfloat ... 208
cos / cos517... 209
cosh ... 210
crol .. 211
cror.. 212
exp / exp517.. 213
fabs.. 214
floor... 215
free .. 216
getchar... 217
_getkey.. 218
gets .. 219
init_mempool .. 220
irol... 221
iror... 222
isalnum.. 223
isalpha ... 224
iscntrl .. 225
isdigit .. 226
isgraph... 227
islower... 228
isprint .. 229
ispunct ... 230
isspace... 231

xii Contents

isupper ...232
isxdigit...233
labs ..234
log / log517 ...235
log10 / log10517 ...236
longjmp ...237
lrol ...239
lror...240
malloc..241
memccpy ...242
memchr..243
memcmp ..244
memcpy ...245
memmove ..246
memset ..247
modf ..248
nop...249
offsetof ..250
pow..251
printf / printf517 ..252
putchar...258
puts ..259
rand..260
realloc..261
scanf ..262
setjmp ..266
sin / sin517 ..267
sinh ..268
sprintf / sprintf517 ...269
sqrt / sqrt517..271
srand ..272
sscanf / sscanf517..273
strcat ..275
strchr..276
strcmp..277
strcpy...278
strcspn ...279
strlen..280
strncat ..281
strncmp..282
strncpy ...283
strpbrk ...284
strpos ...285
strrchr ..286
strrpbrk ..287
strrpos..288
strspn ...289

Keil Software — C51 Compiler User’s Guide xiii

tan / tan517.. 290
tanh.. 291
testbit... 292
toascii .. 293
toint ... 294
tolower .. 295
_tolower .. 296
toupper .. 297
_toupper .. 298
ungetchar... 299
va_arg.. 300
va_end... 302
va_start.. 303
vprintf.. 304
vsprintf .. 306

Appendix A. Differences from ANSI C...309
Compiler-related Differences.. 309
Library-related Differences... 309

Appendix B. Version Differences...313
Version 4 Differences ... 313
Version 3.4 Differences .. 315
Version 3.2 Differences .. 316
Version 3.0 Differences .. 317
Version 2 Differences ... 318
Using C51 Version 5 with Previous Versions... 319

Appendix C. Writing Optimum Code ...321
Memory Model ... 321
Variable Location ... 323
Variable Size... 323
Unsigned Types .. 324
Local Variables... 324
Other Sources.. 324

Appendix D. Compiler Limits..325
Limitations of the C51 Compiler Implementation .. 325
Limitations of the Intel Object Module Format .. 326

Appendix E. Byte Ordering..327

Appendix F. Hints, Tips, and Techniques...329
Recursive Code Reference Error .. 329
Problems Using the printf Routines .. 330
Uncalled Functions ... 331
Trouble with the bdata Memory Type .. 332
Using Monitor-51 ... 333
Function Pointers .. 334

xiv Contents

Glossary...335

Index..343

Keil Software — C51 Compiler User’s Guide xv

Keil Software — C51 Compiler User’s Guide 1

1
Chapter 1. Introduction

The C programming language is a general-purpose, programming language that
provides code efficiency, elements of structured programming, and a rich set of
operators. C is not a big language and is not designed for any one particular area
of application. Its generality, combined with its absence of restrictions, makes C
a convenient and effective programming solution for a wide variety of software
tasks. Many applications can be solved more easily and efficiently with C than
with other more specialized languages.

The C51 Optimizing C Compiler for the MS-DOS operating system is a
complete implementation of the American National Standards Institute (ANSI)
standard for the C language. C51 is not a universal C compiler adapted for the
8051 target. It is a ground-up implementation dedicated to generating extremely
fast and compact code for the 8051 microprocessor. C51 provides you the
flexibility of programming in C and the code efficiency and speed of assembly
language.

The C language on its own is not capable of performing operations (such as input
and output) that would normally require intervention from the operating system.
Instead, these capabilities are provided as part of the standard library. Because
these functions are separate from the language itself, C is especially suited for
producing code that is portable across a wide number of platforms.

Since C51 is a cross compiler, some aspects of the C programming language and
standard libraries are altered or enhanced to address the peculiarities of an
embedded target processor. Refer to “Chapter 3. Language Extensions” on page
57 for more detailed information.

2 Chapter 1. Introduction

1
Books About the C Language

There are a number of books that provide an introduction to the C programming
language. There are even more books that detail specific tasks using C. The
following list is by no means a complete list of books on the subject. The list is
provided only as a reference for those who wish more information.

The C Programming Language, Second Edition
Kernighan & Ritchie
Prentice-Hall, Inc.
ISBN 0-13-110370-9

C: A Reference Manual, Second Edition
Harbison & Steel
Prentice-Hall Software Series
ISBN 0-13-109810-1

C and the 8051: Programming and Multitasking
Schultz
P T R Prentice-Hall, Inc.
ISBN 0-13-753815-4

Keil Software — C51 Compiler User’s Guide 3

2

Chapter 2. Compiling with C51
This chapter explains how to use C51 to compile C source files and discusses the
control directives you may specify. These directives allow you to:

! Direct C51 to generate a listing file

! Define manifest constants on the command line

! Control the amount of information included in the object file

! Specify the level of optimization to use

! Specify the memory models

! Specify the memory space for variables

Environment Settings

To run the compiler and the utilities, you must create new entries in the DOS
environment table. In addition, you must specify a PATH for the compiler
directory. The following table lists the environment variables, their default
paths, and a brief description.

Variable Path Description

PATH \C51\BIN This environment variable specifies the path of the C51
executable programs.

TMP This environment variable specifies which path to use for
temporary files generated by the compiler. For best
performance, specify a RAM disk. If the specified path does
not exist, the compiler generates an error and aborts
compilation.

C51INC \C51\INC This environment variable specifies the location of the
standard C51 include files.

C51LIB \C51\LIB This environment variable specifies the location of the
standard C51 library files.

Typically, these environment settings are automatically placed in your
AUTOEXEC.BAT file when you install the compiler. However, to put these
settings in a separate batch file, use the following:

PATH = C:\C51\BIN
SET TMP = D:\
SET C51INC = C:\C51\INC
SET C51LIB = C:\C51\LIB

4 Chapter 2. Compiling with C51

2

Running C51

To invoke the C51 compiler, type C51 at the DOS prompt. On this command
line, you must include the name of the C source file to be compiled, as well as
any other necessary control directives required to compile your source file. The
format for the C51 command line is:

C51 sourcefile !directives…"

where:

sourcefile is the name of the source program you want to compile.

directives are the directives you want to use to control the function of
the compiler. Refer to “Control Directives” on page 6 for a
detailed list of the available directives.

The following command line example invokes C51, specifies the source file
SAMPLE.C, and uses the controls DEBUG, CODE, and PREPRINT.

C51 SAMPLE.C DEBUG CODE PREPRINT

The C51 compiler displays the following information upon successful invocation
and compilation.

MS-DOS C51 COMPILER V5.0

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

Keil Software — C51 Compiler User’s Guide 5

2

DOS ERRORLEVEL

After compilation, the number of errors and warnings detected is output to the
screen. C51 then sets the DOS ERRORLEVEL to indicate the status of the
compilation. Values are listed in the following table:

ERRORLEVEL Meaning

0 No errors or warnings

1 Warnings only

2 Errors and possibly warnings

3 Fatal errors

You can access the ERRORLEVEL variable in DOS batch files. Refer to your
DOS user’s guide for more information on ERRORLEVEL or batch files.

C51 Output Files

C51 generates a number of output files during compilation. By default, each of
these output files shares the same basename as the source file. However, each
has a different file extension. The following table lists the files and gives a brief
description of each.

File Extension Description

basename.LST Files with this extension are listing files that contain the formatted source
text along with any errors detected by the compiler. Listing files may
optionally contain the used symbols and the generated assembly code.
See the PRINT directive in the following sections for more information.

basename.OBJ Files with this extension are object modules that contain relocatable object
code. Object modules may be linked to an absolute object module by the
BL51 Linker/Locator.

basename.I Files with this extension contain the source text as expanded by the
preprocessor. All macros are expanded and all comments are deleted in
this listing. See the PREPRINT directive in the following sections for more
information.

basename.SRC Files with this extension are assembly source files generated from your C
source code. These files can be assembled with the A51 assembler. See
the SRC directive in the following sections for more information.

6 Chapter 2. Compiling with C51

2

Control Directives

C51 offers a number of control directives that you can use to control the
operation of the compiler. Directives are composed of one or more letters or
digits and, unless otherwise specified, can be specified after the filename on the
command line or within a source file using the #pragma directive.

Example
C51 testfile.c SYMBOLS CODE DEBUG

#pragma SYMBOLS CODE DEBUG

In the above examples, SYMBOLS, CODE, and DEBUG are all control directives.
testfile.c is the source file to be compiled.

NOTE
The syntax is the same for the command line and the #pragma directive.
Multiple options, however, may be specified on the #pragma line.

Typically, each control directive may be specified only once at the beginning of
a source file. If a directive is specified more than once, the compiler generates a
fatal error and aborts compilation. Directives that may be specified more than
once are so noted in the following sections.

Directive Categories

Control directives can be divided into three groups: source controls, object
controls, and listing controls.

! Source controls define macros on the command line and determine the name
of the file to be compiled.

! Object controls affect the form and content of the generated object module
(*.OBJ). These directives allow you to specify the optimizing level or
include debugging information in the object file.

! Listing controls govern various aspects of the listing file (*.LST), in
particular its format and specific content.

Keil Software — C51 Compiler User’s Guide 7

2

The following table is an alphabetical list of the control directives. This list
shows each directive’s abbreviation, class, and description.

Directive and
(Abbreviation)

Class Description

AREGS (AR),
NOAREGS (NOAR)

Object Enable or disable absolute register (ARn) addressing.

ASM, ENDASM Object Marks the beginning and the end of an inline assembly
block.

CODE (CD) † Listing Add an assembly listing to the listing file.

COMPACT (CP) † Object Select COMPACT memory model.

COND (CO),
NOCOND (NOCO) †

Listing Include or exclude source lines skipped from the
preprocessor.

DEBUG (DB) † Object Include debugging information in the object file.

DEFINE (DF) Source Define preprocessor names in the C51 invocation line.

DISABLE Object Disables interrupts for the duration of a function.

EJECT (EJ) Listing Inserts a form feed character into the listing file.

FLOATFUZZY (FF) Object Specify number of bits rounded during floating compare.

INTERVAL † Object Specify the interval for interrupt vectors for SIECO
derivatives.

INTPROMOTE (IP),
NOINTPROMOTE (NOIP) †

Object Enable or disable ANSI integer promotion.

INTVECTOR (IV),
NOINTVECTOR (NOIV) †

Object Specify base address for interrupt vectors or disable
vectors.

LARGE (LA) † Object Select LARGE memory model.

LISTINCLUDE (LC) Listing Display contents of include files in the listing file.

MAXARGS (MA) † Object Specify size of variable argument lists.

MOD517,
NOMOD517

Object Enable or disable code to support the additional hardware
features of the 80C517 and derivatives.

MODDP2,
NOMODDP2

Object Enable or disable code to support the additional hardware
features of the Dallas Semiconductor 320 and AMD
derivatives.

NOAMAKE (NOAM) † Object Disable information records for AutoMAKE.

NOEXTEND † Source Disable C51 extensions to ANSI C.

OBJECT (OJ),
NOOBJECT (NOOJ) †

Object Enable object file and optionally specify name or suppress
the object file.

OBJECTEXTEND (OE) † Object Include additional variable type information in the object
file.

OPTIMIZE (OT) Object Specify the level of optimization performed by the
compiler.

ORDER (OR) † Object Variables are allocated in the order in which they appear in
the source file.

PAGELENGTH (PL) † Listing Specify number of rows on the page.

PAGEWIDTH (PW) † Listing Specify number of columns on the page.

8 Chapter 2. Compiling with C51

2

Directive and
(Abbreviation)

Class Description

PREPRINT (PP) † Listing Produce a preprocessor listing file where all macros are
expanded.

PRINT (PR),
NOPRINT (NOPR) †

Listing Specify a name for the listing file or disable the listing file.

REGFILE (RF) † Object Specify a register definition file for global register
optimization.

REGISTERBANK (RB) Object Select the register bank that is used for absolute register
accesses.

REGPARMS,
NOREGPARMS

Object Enable or disable register parameter passing.

ROM † Object Control generation of AJMP/ACALL instructions.

SAVE,
RESTORE

Object Saves and restores settings for AREGS, REGPARMS,
and OPTIMIZE directives.

SMALL (SM) † Object Select SMALL memory model. (Default.)

SRC † Object Create an assembler source file instead of an object
module.

SYMBOLS (SB) † Listing Include a list of all symbols used within the module in the
listing file.

WARNINGLEVEL (WL) † Listing Selects the level of Warning detection.

† These directives may be specified only once on the command line or at the beginning of a source
file using in the #pragma statement. They may not be used more than once in a source file.

Control directives and their arguments, with the exception of arguments
specified with the DEFINE directive, are case insensitive.

Keil Software — C51 Compiler User’s Guide 9

2

Reference

The remainder of this chapter is devoted to describing each of the available C51
compiler control directives. The directives are listed in alphabetical order, and
each is divided into the following sections:

Abbreviation: Gives any abbreviations that may be substituted for the
directive name.

Arguments: Describes and lists optional and required directive
arguments.

Default: Shows the directive’s default setting.

Description: Provides a detailed description of the directive and how to
use it.

See Also: Names related directives.

Example: Shows you an example of how to use and, sometimes, the
effects of the directive.

10 Chapter 2. Compiling with C51

2

AREGS / NOAREGS

Abbreviation: None.

Arguments: None.

Default: AREGS

Description: The AREGS control causes the compiler to use absolute
register addressing for registers R0 through R7. Absolute
addressing improves the efficiency of the generated code.
For example, PUSH and POP instructions function only
with direct or absolute addresses. Using the AREGS
directive, allows you to directly push and pop registers.

You may use the REGISTERBANK directive to define
which register bank to use.

The NOAREGS directive disables absolute register
addressing for registers R0 through R7. Functions which are
compiled with NOAREGS are not dependent on the register
bank and may use all 8051 register banks. This directive
may be used for functions that are called from other
functions using different register banks.

NOTE
Though it may be defined several times in a program, the
AREGS / NOAREGS option is valid only when defined
outside of a function declaration.

Keil Software — C51 Compiler User’s Guide 11

2

Example: The following is a source and code listing which uses both
NOAREGS and AREGS.

stmt level source
 1 extern char func ();
 2 char k;
 3
 4 #pragma NOAREGS
 5 noaregfunc () {
 6 1 k = func () + func ();
 7 1 }
 8
 9 #pragma AREGS
 10 aregfunc () {
 11 1 k = func () + func ();
 12 1 }

 ; FUNCTION noaregfunc (BEGIN)
 ; SOURCE LINE # 6
0000 120000 E LCALL func
0003 EF MOV A,R7
0004 C0E0 PUSH ACC
0006 120000 E LCALL func
0009 D0E0 POP ACC
000B 2F ADD A,R7
000C F500 R MOV k,A
 ; SOURCE LINE # 7
000E 22 RET
 ; FUNCTION noaregfunc (END)

 ; FUNCTION aregfunc (BEGIN)
 ; SOURCE LINE # 11
0000 120000 E LCALL func
0003 C007 PUSH AR7
0005 120000 E LCALL func
0008 D0E0 POP ACC
000A 2F ADD A,R7
000B F500 R MOV k,A
 ; SOURCE LINE # 12
000D 22 RET
 ; FUNCTION aregfunc (END)

Note the different methods of saving R7 on the stack. The
code generated for the function noaregfunc is:

MOV A,R7
PUSH ACC

while the code for the aregfunc function is:

PUSH AR7

12 Chapter 2. Compiling with C51

2

ASM / ENDASM

Abbreviation: None.

Arguments: None.

Default: None.

Description: The ASM directive signals the beginning merge of a block
of source text into the .SRC file generated using the SRC
directive.

This source text can be thought of as in-line assembly.
However, it is output to the source file generated only when
using the SRC directive. The source text is not assembled
and output to the object file.

The ENDASM directive is used to signal the end of the
source text block.

NOTE
The ASM / ENDASM directive can occur only in the source
file, as part of a #pragma directive.

Keil Software — C51 Compiler User’s Guide 13

2

Example: #pragma asm / #pragma endasm

The following C source file:

.

.

.
stmt level source
 1 extern void test ();
 2
 3 main () {
 4 1 test ();
 5 1
 6 1 #pragma asm
 7 1 JMP $; endless loop
 8 1 #pragma endasm
 9 1 }
.
.
.

generates the following .SRC file.

; ASM.SRC generated from: ASM.C
NAME ASM
?PR?main?ASM SEGMENT CODE
EXTRN CODE (test)
EXTRN CODE (?C_STARTUP)
PUBLIC main
; extern void test ();
;
; main () {
 RSEG ?PR?main?ASM
 USING 0
main:
 ; SOURCE LINE # 3
; test ();
 ; SOURCE LINE # 4
 LCALL test
;
; #pragma asm
 JMP $; endless loop
; #pragma endasm
; }
 ; SOURCE LINE # 9
 RET ; END OF main
 END

14 Chapter 2. Compiling with C51

2

CODE

Abbreviation: CD

Arguments: None.

Default: No assembly code listing is generated.

Description: The CODE directive appends an assembly mnemonics list to
the listing file. The assembler code is represented for each
function contained in the source program. By default, no
assembly code listing is included in the listing file.

Example: C51 SAMPLE.C CD

#pragma code

The following example shows the C source followed by the
resulting object code and its representative mnemonics. The
line number of each statement that produced the code is
displayed between the assembly lines. The characters R and
E stand for Relocatable and External, respectively.

stmt level source
 1 extern unsigned char a, b;
 2 unsigned char c;
 3
 4 main()
 5 {
 6 1 c = 14 + 15 * ((b / c) + 252);
 7 1 }
.
.
.
ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION main (BEGIN)
 ; SOURCE LINE # 5
 ; SOURCE LINE # 6
0000 E500 E MOV A,b
0002 8500F0 R MOV B,c
0005 84 DIV AB
0006 75F00F MOV B,#0FH
0009 A4 MUL AB
000A 24D2 ADD A,#0D2H
000C F500 R MOV c,A
 ; SOURCE LINE # 7
000E 22 RET
 ; FUNCTION main (END)

Keil Software — C51 Compiler User’s Guide 15

2

COMPACT

Abbreviation: CP

Arguments: None.

Default: SMALL

Description: This directive implements the COMPACT memory model.

In the COMPACT memory model, all function and
procedure variables and local data segments reside in the
external data memory of the 8051 system. This external
data memory may be up to 256 bytes (one page) long. With
this model, the short form of addressing the external data
memory through @R0/R1 is used.

Regardless of memory model type, you may declare
variables in any of the 8051 memory ranges. However,
placing frequently used variables (such as loop counters and
array indices) in internal data memory significantly
improves system performance.

NOTE
The stack required for function calls is always placed in
IDATA memory.

See Also: SMALL, LARGE, ROM

Example: C51 SAMPLE.C COMPACT

#pragma compact

16 Chapter 2. Compiling with C51

2

COND / NOCOND

Abbreviation: CO

Arguments: None.

Default: COND

Description: This directive determines whether or not those portions of
the source file affected by conditional compilation are
displayed in the listing file.

The COND directive forces lines omitted from compilation
to appear in the listing file. Line numbers and nesting levels
are not output. This allows for easier visual identification.

The effect of this directive takes place one line after it is
detected by the preprocessor.

The NOCOND directive determines whether or not those
portions of the source file affected by conditional
compilation are displayed in the listing file.

This directive also prevents lines omitted from compilation
from appearing in the listing file.

Keil Software — C51 Compiler User’s Guide 17

2

Example: The following example shows the listing file for a source
file compiled with the COND directive.

.

.

.
stmt level source
 1 extern unsigned char a, b;
 2 unsigned char c;
 3
 4 main()
 5 {
 6 1 #if defined (VAX)
 c = 13;
 #elif defined (_ _TIME_ _)
 9 1 b = 14;
 10 1 a = 15;
 11 1 #endif
 12 1 }
.
.
.

The following example shows the listing file for a source
file compiled with the NOCOND directive.

.

.

.
stmt level source
 1 extern unsigned char a, b;
 2 unsigned char c;
 3
 4 main()
 5 {
 6 1 #if defined (VAX)
 9 1 b = 14;
 10 1 a = 15;
 11 1 #endif
 12 1 }
.
.
.

18 Chapter 2. Compiling with C51

2

DEBUG

Abbreviation: DB

Arguments: None.

Default: No Debug information is generated.

Description: The DEBUG directive instructs the compiler to include
debugging information in the object file. By default,
debugging information is excluded from the generated
object file.

Debug information is necessary for the symbolic testing of
programs. This information contains both global and local
variable definitions and their addresses, as well as function
names and their line numbers. Debug information contained
in each object module remains valid through the BL51
Link/Locate procedure. This information can be used by
DS51 or by any of the Intel-compatible emulators.

NOTE
The OBJECTEXTEND directive can be used to instruct the
compiler to include additional variable type definition
information in the object file.

See Also: OBJECTEXTEND

Example: C51 SAMPLE.C DEBUG

#pragma db

Keil Software — C51 Compiler User’s Guide 19

2

DEFINE

Abbreviation: DF

Arguments: One or more names separated by commas, in accordance
with the naming conventions of the C language. An optional
argument can be specified for each name given in the define
directive.

Default: None.

Description: The DEFINE directive defines names on the invocation line
which may be queried by the preprocessor with #if, #ifdef,
and #ifndef. The defined names are copied exactly as they
are entered. This command is case-sensitive. As an option
each name can be followed by an argument string.

NOTE
The DEFINE directive can be specified only on the
command line. Use the C preprocessor #define directive for
use inside a C source.

Example: C51 SAMPLE.C DEFINE (check, NoExtRam)

C51 MYPROG.C DF (X1="1+5",iofunc="getkey ()")

20 Chapter 2. Compiling with C51

2

DISABLE

Abbreviation: None.

Arguments: None.

Default: None.

Description: The DISABLE directive instructs the compiler to generate
code that disables all interrupts for the duration of a
function. DISABLE must be specified with a #pragma
directive immediately before a function declaration. The
DISABLE control applies to one function only and must be
re-specified for each new function.

NOTE
DISABLE may be specified using the #pragma directive
only, and may not be specified at the command line.

DISABLE can be specified more than once in a source file
and must be specified once for each function that is to
execute with interrupts disabled.

A function with disabled interrupts cannot return a bit value
to the caller.

Keil Software — C51 Compiler User’s Guide 21

2

Example: The following example is a source and code listing of a
function using the DISABLE directive. Note that the EA
special function register is cleared at the beginning of the
function (JBC EA,?C0002) and restored at the end
(MOV EA,C).

.

.

.
stmt level source
 1 typedef unsigned char uchar;
 2
 3 #pragma disable /* Disable Interrupts */
 4 uchar dfunc (uchar p1, uchar p2) {
 5 1 return (p1 * p2 + p2 * p1);
 6 1 }

 ; FUNCTION _dfunc (BEGIN)
0000 D3 SETB C
0001 10AF01 JBC EA,?C0002
0004 C3 CLR C
0005 ?C0002:
0005 C0D0 PUSH PSW
;---- Variable 'p1' assigned to register 'R7' ----
;---- Variable 'p2' assigned to register 'R5' ----
 ; SOURCE LINE # 4
 ; SOURCE LINE # 5
0007 ED MOV A,R5
0008 8FF0 MOV B,R7
000A A4 MUL AB
000B 25E0 ADD A,ACC
000D FF MOV R7,A
 ; SOURCE LINE # 6
000E ?C0001:
000E D0D0 POP PSW
0010 92AF MOV EA,C
0012 22 RET
 ; FUNCTION _dfunc (END)
.
.
.

22 Chapter 2. Compiling with C51

2

EJECT

Abbreviation: EJ

Arguments: None.

Default: None.

Description: The EJECT directive causes a form feed character to be
inserted into the listing file.

NOTE
The EJECT directive occurs only in the source file, and
must be part of a #pragma directive.

Example: #pragma eject

Keil Software — C51 Compiler User’s Guide 23

2

FLOATFUZZY

Abbreviation: FF

Arguments: A number between 0 and 7.

Default: FLOATFUZZY (3)

Description: The FLOATFUZZY directive determines the number of
bits rounded before a floating-point compare is executed.
The default value of 3 specifies that the three least
significant bits of a float value are rounded before the
floating-point compare is executed.

Example: C51 MYFILE.C FLOATFUZZY (2)

#pragma FF (0)

24 Chapter 2. Compiling with C51

2

INTERVAL

Abbreviation: None

Arguments: An optional interval, in parentheses, for the interrupt vector
table.

Default: INTERVAL (8)

Description: The INTERVAL directive specifies an interval for interrupt
vectors. The interval specification is required for SIECO-51
derivatives which define interrupt vectors in 3-byte
intervals. Using this directive, the compiler locates interrupt
vectors at the absolute address calculated by:

(interval × n) + offset + 3,

where:

interval is the argument of the INTERVAL
directive (default 8).

n is the interrupt number.

offset is the argument of the INTVECTOR
directive (default 0).

See Also: INTVECTOR / NOINTVECTOR

Example: C51 SAMPLE.C INTERVAL(3)

#pragma interval(3)

Keil Software — C51 Compiler User’s Guide 25

2

INTPROMOTE / NOINTPROMOTE

Abbreviation: IP / NOIP

Arguments: None.

Default: INTPROMOTE

Description: The INTPROMOTE directive enables ANSI integer
promotion rules. Expressions used in if statements are
promoted from smaller types to integer expressions before
comparison. This allows Microsoft C and Borland C
programs to be ported to C51 with fewer modifications.

Because the 8051 is an 8-bit processor, use of the
INTPROMOTE directive generates inefficient code in
some applications.

The NOINTPROMOTE directive disables automatic
integer promotions. Integer promotions are normally
enabled to provide the greatest compatibility between C51
and other ANSI compilers. However, integer promotions
can yield inefficient code on the 8051.

Example: C51 SAMPLE.C INTPROMOTE

#pragma intpromote

C51 SAMPLE.C NOINTPROMOTE

The following example demonstrates code generated using
the INTPROMOTE, and the NOINTPROMOTE control
directive.

stmt lvl source

 1 char c;
 2 unsigned char c1,c2;
 3 int i;
 4
 5 main () {
 6 1 if (c == 0xff) c = 0; /* never true! */
 7 1 if (c == -1) c = 1; /* works */
 8 1 i = c + 5;
 9 1 if (c1 < c2 +4) c1 = 0;
 10 1 }

26 Chapter 2. Compiling with C51

2

Code generated with INTPROMOTE Code generated with NOINTPROMOTE

 ; FUNCTION main (BEGIN)
 ; SOURCE LINE # 6
0000 AF00 MOV R7,c
0002 EF MOV A,R7
0003 33 RLC A
0004 95E0 SUBB A,ACC
0006 FE MOV R6,A
0007 EF MOV A,R7
0008 F4 CPL A
0009 4E ORL A,R6
000A 7002 JNZ ?C0001
000C F500 MOV c,A
000E ?C0001:
 ; SOURCE LINE # 7
000E E500 MOV A,c
0010 B4FF03 CJNE A,#0FFH,?C0002
0013 750001 MOV c,#01H
0016 ?C0002:
 ; SOURCE LINE # 8
0016 AF00 MOV R7,c
0018 EF MOV A,R7
0019 33 RLC A
001A 95E0 SUBB A,ACC
001C FE MOV R6,A
001D EF MOV A,R7
001E 2405 ADD A,#05H
0020 F500 MOV i+01H,A
0022 E4 CLR A
0023 3E ADDC A,R6
0024 F500 MOV i,A
 ; SOURCE LINE # 9
0026 E500 MOV A,c2
0028 2404 ADD A,#04H
002A FF MOV R7,A
002B E4 CLR A
002C 33 RLC A
002D FE MOV R6,A
002E C3 CLR C
002F E500 MOV A,c1
0031 9F SUBB A,R7
0032 EE MOV A,R6
0033 6480 XRL A,#080H
0035 F8 MOV R0,A
0036 7480 MOV A,#080H
0038 98 SUBB A,R0
0039 5003 JNC ?C0004
003B E4 CLR A
003C F500 MOV c1,A
 ; SOURCE LINE # 10
003E ?C0004:
003E 22 RET
 ; FUNCTION main (END)

 ; FUNCTION main (BEGIN)
 ; SOURCE LINE # 6
0000 AF00 MOV R7,c
0002 EF MOV A,R7
0003 33 RLC A
0004 95E0 SUBB A,ACC
0006 FE MOV R6,A
0007 EF MOV A,R7
0008 F4 CPL A
0009 4E ORL A,R6
000A 7002 JNZ ?C0001
000C F500 MOV c,A
000E ?C0001:
 ; SOURCE LINE # 7
000E E500 MOV A,c
0010 B4FF03 CJNE A,#0FFH,?C0002
0013 750001 MOV c,#01H
0016
 ; SOURCE LINE # 8
0016 E500 MOV A,c
0018 2405 ADD A,#05H
001A FF MOV R7,A
001B 33 RLC A
001C 95E0 SUBB A,ACC
001E F500 MOV i,A
0020 8F00 MOV i+01H,R7

 ; SOURCE LINE # 9
0022 E500 MOV A,c2
0024 2404 ADD A,#04H
0026 FF MOV R7,A
0027 E500 MOV A,c1
0029 C3 CLR C
002A 9F SUBB A,R7
002B 5003 JNC ?C0004
002D E4 CLR A
002E F500 MOV c1,A

 ; SOURCE LINE # 10
0030 ?C0004:
0030 22 RET
 ; FUNCTION main (END)

CODE SIZE = 63 Bytes CODE SIZE = 49 Bytes

Keil Software — C51 Compiler User’s Guide 27

2

INTVECTOR / NOINTVECTOR

Abbreviation: IV / NOIV

Arguments: An optional offset, in parentheses, for the interrupt vector
table.

Default: INTVECTOR (0)

Description: The INTVECTOR directive instructs the compiler to
generate interrupt vectors for functions which require them.
An offset may be entered if the vector table starts at an
address other than 0.

Using this directive, the compiler generates an interrupt
vector entry using either an AJMP or LJMP instruction
depending upon the size of the program memory specified
with the ROM directive.

The NOINTVECTOR directive prevents the generation of
an interrupt vector table. This flexibility allows the user to
provide interrupt vectors with other programming tools.

The compiler normally generates an interrupt vector entry
using a 3-byte jump instruction (LJMP). Vectors are
located starting at absolute address:

(interval × n) + offset + 3,

where:

n is the interrupt number.

interval is the argument of the INTERVAL
directive (default 8).

offset is the argument of the INTVECTOR
directive (default 0).

See Also: INTERVAL

28 Chapter 2. Compiling with C51

2

Example: C51 SAMPLE.C INTVECTOR(0x8000)

#pragma iv(0x8000)

C51 SAMPLE.C NOINTVECTOR

#pragma noiv

Keil Software — C51 Compiler User’s Guide 29

2

LARGE

Abbreviation: LA

Arguments: None.

Default: SMALL

Description: This directive implements the LARGE memory model. In
the LARGE memory model, all variables and local data
segments of functions and procedures reside (as defined) in
the external data memory of the 8051 system. Up to
64 KBytes of external data memory may be accessed. This,
however, requires the long and therefore inefficient form of
data access through the data pointer (DPTR).

Regardless of memory model type, you may declare
variables in any of the 8051 memory ranges. However,
placing frequently used variables (such as loop counters and
array indices) in internal data memory significantly
improves system performance.

NOTE
The stack required for function calls is always placed in
IDATA memory.

See Also: SMALL, COMPACT, ROM

Example: C51 SAMPLE.C LARGE

#pragma large

30 Chapter 2. Compiling with C51

2

LISTINCLUDE

Abbreviation: LC

Arguments: None.

Default: NOLISTINCLUDE

Description: The LISTINCLUDE directive displays the contents of the
include files in the listing file. By default, include files are
not listed in the listing file.

Example: C51 SAMPLE.C LISTINCLUDE

#pragma listinclude

Keil Software — C51 Compiler User’s Guide 31

2

MAXARGS

Abbreviation: None.

Arguments: Number of bytes compiler reserves for variable-length
argument lists.

Default: MAXARGS(15) for small and compact models.

MAXARGS(40) for large model.

Description: With the MAXARGS directive, you specify the buffer size
for parameters passed in variable-length argument lists.
MAXARGS defines the maximum number of parameters.
The MAXARGS directive must be applied before the C
function. This directive has no impact on the maximum
number of arguments that may be passed to reentrant
functions.

Example: C51 SAMPLE.C MAXARGS(20)

#pragma maxaregs (4) /* allow 4 bytes for parameters */

#include <stdarg.h>

void func (char typ, ...) {
 va_list ptr;
 char c;
 int i;

 va_start (ptr, typ);
 switch *typ) {
 case 0: /* a CHAR is passed */
 c = va_arg (ptr, char); break;

 case 1: /* an INT is passed */
 i = va_arg (ptr, int); break;
 }
}

void testfunc (void) {
 func (0, 'c'); /* pass a char variable */
 func (1, 0x1234); /* pass an int variable */
}

32 Chapter 2. Compiling with C51

2

MOD517 / NOMOD517

Abbreviation: None.

Arguments: Optional parameters, enclosed in parentheses, to control
support for individual components of the 80C517.

Default: NOMOD517

Description: The MOD517 directive instructs the C51 compiler to
produce code for the additional hardware components (the
arithmetic processor and the additional data pointers) of the
Siemens 80C517. This feature dramatically impacts the
execution of integer, long, and floating-point math
operations as well as functions that make use of the
additional data pointers.

The following library functions take advantage of the extra
data pointers: memcpy, memmove, memcmp, strcpy, and
strcmp.

Library functions which take advantage of the arithmetic
processor are so indicated by a 517 suffix. (Refer to
“Chapter 8. Library Reference” on page 175 for details on
these functions.)

Additional parameters may be specified with MOD517 to
control C51 support of the individual components of the
80C517. When specified, the parameters must appear
within parentheses immediately following the MOD517
directive. Parentheses are not required if none of these
additional parameters is specified.

Directive Description

NOAU When specified, C51 uses only the additional data
pointers of the 80C517. The arithmetic processor is not
used. The NOAU parameter is useful for functions that
are called by an interrupt while the arithmetic processor is
already being used.

NODP8 When specified, C51 uses only the arithmetic processor.
The additional data pointers are not used. The NODP8
parameter is useful for interrupt functions declared without
the using function attribute. In this case, the extra data
pointers are not used and, therefore, do not need to be
saved on the stack during the interrupt.

Keil Software — C51 Compiler User’s Guide 33

2

Specifying both of these additional parameters with
MOD517 has the same effect as using the NOMOD517
directive.

The NOMOD517 directive disables generation of code that
utilizes the additional hardware components of the 80C517.

NOTE
Though it may be defined several times in a program, the
MOD517 directive is valid only when defined outside of a
function declaration.

See Also: MODDP2

Example: C51 SAMPL517.C MOD517

#pragma MOD517 (NOAU)

#pragma MOD517 (NODP8)

#pragma MOD517 (NODP8, NOAU)

C51 SAMPL517.C NOMOD517

#pragma NOMOD517

34 Chapter 2. Compiling with C51

2

MODDP2 / NOMODDP2

Abbreviation: None.

Arguments: MODDP2

Default: NOMODDP2

Description: The MODDP2 directive instructs the C51 compiler to
produce code for the additional hardware components
(specifically, the additional CPU data pointers) available in
the Dallas 80C320, C520, C530, AMD 80C521, and
compatible derivatives. Using additional data pointers can
improve the performance of the following library functions:
memcpy, memmove, memcmp, strcpy, and strcmp.

The NOMODDP2 directive disables generation of code that
utilizes the additional CPU data pointers.

See Also: MOD517 / NOMOD517

Example: C51 SAMPL517.C MODDP2

#pragma moddp2

C51 SAMPL517.C NOMODDP2

#pragma nomoddp2

Keil Software — C51 Compiler User’s Guide 35

2

NOAMAKE

Abbreviation: NOAM

Arguments: None.

Default: AutoMAKE information is generated.

Description: NOAMAKE disables the project information records
produced by the C51 compiler for use with AutoMAKE.
This option also disables the register optimization
information. Use NOAMAKE to generate object files that
can be used with older versions of the 8051 development
tool chain.

Example: C51 SAMPLE.C NOAMAKE

#pragma NOAM

36 Chapter 2. Compiling with C51

2

NOEXTEND

Abbreviation: None.

Arguments: None.

Default: All language extensions are enabled.

Description: The NOEXTEND control instructs the compiler to process
only ANSI C language constructs. The C51 language
extensions are disabled. Reserved keywords such as bit,
reentrant, and using are not recognized and generate
compilation errors or warnings.

Example: C51 SAMPLE.C NOEXTEND

#pragma NOEXTEND

Keil Software — C51 Compiler User’s Guide 37

2

OBJECT / NOOBJECT

Abbreviation: OJ / NOOJ

Arguments: An optional filename enclosed in parentheses.

Default: OBJECT (basename.OBJ)

Description: The OBJECT(filename) directive changes the name of the
object file to the name provided. By default, the name and
path of the source file with the extension .OBJ is used.

The NOOBJECT control disables the generation of an
object file.

Example: C51 SAMPLE.C OBJECT(sample1.obj)

#pragma oj(sample_1.obj)

C51 SAMPLE.C NOOBJECT

#pragma nooj

38 Chapter 2. Compiling with C51

2

OBJECTEXTEND

Abbreviation: OE

Arguments: None.

Default: None.

Description: The OBJECTEXTEND directive instructs the compiler to
include additional variable-type, definition information in
the generated object file. This additional information is
used to identify objects within different scopes that have the
same names so that they may be correctly differentiated by
various emulators and simulators.

NOTE
Object files generated using this directive contain a superset
of the OMF-51 specification for relocatable object formats.
Emulators or simulators must provide enhanced object
loaders to use this feature. If in doubt, do not use
OBJECTEXTEND.

See Also: DEBUG

Example: C51 SAMPLE.C OBJECTEXTEND DEBUG

#pragma oe db

Keil Software — C51 Compiler User’s Guide 39

2

OPTIMIZE

Abbreviation: OT

Arguments: A decimal number between 0 and 6 enclosed in parentheses.
In addition, OPTIMIZE (SIZE) or OPTIMIZE (SPEED)
may be used to select whether the optimization emphasis
should be placed on code size or on execution speed.

Default: OPTIMIZE (6, SPEED)

Description: The OPTIMIZE directive sets the optimization level and
emphasis.

NOTE
Each higher optimization level contains all of the
characteristics of the preceding lower optimization level.

Level Description

0 Constant Folding: The compiler performs calculations that
reduce expressions to numeric constants, where possible.
This includes calculations of run-time addresses.

Simple Access Optimizing: The compiler optimizes access
of internal data and bit addresses in the 8051 system.

Jump Optimizing: The compiler always extends jumps to the
final target. Jumps to jumps are deleted.

1 Dead Code Elimination: Unused code fragments and
artifacts are eliminated.

Jump Negation: Conditional jumps are closely examined to
see if they can be streamlined or eliminated by the inversion of
the test logic.

2 Data Overlaying: Data and bit segments suitable for static
overlay are identified and internally marked. The BL51
Linker/Locator has the capability, through global data flow
analysis, of selecting segments which can then be overlaid.

3 Peephole Optimizing: Redundant MOV instructions are
removed. This includes unnecessary loading of objects from
the memory as well as load operations with constants.
Complex operations are replaced by simple operations when
memory space or execution time can be saved.

40 Chapter 2. Compiling with C51

2

Level Description

4 Register Variables: Automatic variables and function
arguments are located in registers when possible.
Reservation of data memory for these variables is omitted.

Extended Access Optimizing: Variables from the IDATA,
XDATA, PDATA and CODE areas are directly included in
operations. The use of intermediate registers is not necessary
most of the time.

Local Common Subexpression Elimination: If the same
calculations are performed repetitively in an expression, the
result of the first calculation is saved and used further
whenever possible. Superfluous calculations are eliminated
from the code.

Case/Switch Optimizing: Code involving switch and case
statements is optimized as jump tables or jump strings.

5 Global Common Subexpression Elimination: Identical sub
expressions within a function are calculated only once when
possible. The intermediate result is stored in a register and
used instead of a new calculation.

Simple Loop Optimizing: Program loops that fill a memory
range with a constant are converted and optimized.

6 Loop Rotation: Program loops are rotated if the resulting
program code is faster and more efficient.

OPTIMIZE level 6 includes all optimizations of levels
0 to 5.

NOTE
The global optimizations beginning with level 4 are
performed by the compiler completely in memory and do not
utilize temporary disk files. If there is not enough memory
available to complete the optimization, global optimization
is only partially completed, if at all. In this event, the
following error message displays:

*** can't optimize function filename, no memory
available

The code produced is less optimal, but nonetheless correct.
To resolve this problem, try to either write smaller C
functions or increase the amount of available memory for
the compiler.

Keil Software — C51 Compiler User’s Guide 41

2

Example: C51 SAMPLE.C OPTIMIZE (4)

C51 SAMPLE.C OPTIMIZE (0)

#pragma ot(6, SIZE)

#pragma ot(size)

42 Chapter 2. Compiling with C51

2

ORDER

Abbreviation: OR

Arguments: None.

Default: The variables are not ordered.

Description: The ORDER directive instructs C51 to order all variables in
memory according to their order of definition in the C
source file. ORDER disables the hash algorithm used by
the C compiler. The C51 compiler runs a little slower.

Example: C51 SAMPLE.C ORDER

#pragma OR

Keil Software — C51 Compiler User’s Guide 43

2

PAGELENGTH

Abbreviation: PL

Arguments: A decimal number up to 65535 enclosed in parentheses.

Default: PAGELENGTH (60)

Description: The PAGELENGTH directive specifies the number of lines
printed per page in the listing file. The default is 60 lines
per page. This includes headers and empty lines.

See Also: PAGEWIDTH

Example: C51 SAMPLE.C PAGELENGTH (70)

#pragma pl (70)

44 Chapter 2. Compiling with C51

2

PAGEWIDTH

Abbreviation: PW

Arguments: A decimal number in range 78 to 132 enclosed in
parentheses.

Default: PAGEWIDTH (132)

Description: The PAGEWIDTH directive specifies the number of
characters per line that can be printed to the listing file.
Lines containing more than the specified number of
characters are broken into two or more lines.

See Also: PAGELENGTH

Example: C51 SAMPLE.C PAGEWIDTH(79)

#pragma pw(79)

Keil Software — C51 Compiler User’s Guide 45

2

PREPRINT

Abbreviation: PP

Arguments: An optional filename enclosed in parentheses.

Default: No preprocessor listing is generated.

Description: The PREPRINT directive instructs the compiler to produce
a preprocessor listing. Macro calls are expanded and
comments are deleted. If PREPRINT is used without an
argument, the source filename with the extension .I is
defined as the list filename. If this is not desired, you must
specify a filename. By default, C51 does not generate a
preprocessor output file.

NOTE
The PREPRINT directive may be specified only on the
command line. It may not be specified in the C source file
by means of the #pragma directive.

Example: C51 SAMPLE.C PREPRINT

C51 SAMPLE.C PP (PREPRO.LSI)

46 Chapter 2. Compiling with C51

2

PRINT / NOPRINT

Abbreviation: PR / NOPR

Arguments: An optional filename enclosed in parentheses.

Default: PRINT (basename.LST)

Description: The compiler produces a listing of each compiled program
using the extension .LST. Using the PRINT directive, you
may redefine the name of the listing file.

The NOPRINT directive prevents the compiler from
generating a listing file.

Example: C51 SAMPLE.C PRINT(CON:)

#pragma pr (\usr\list\sample.lst)

C51 SAMPLE.C NOPRINT

#pragma nopr

Keil Software — C51 Compiler User’s Guide 47

2

REGFILE

Abbreviation: RF

Arguments: A file name enclosed in parentheses.

Default: None.

Description: With REGFILE, the C51 compiler reads a register
definition file for global register optimization. The register
definition file specifies the register usage of external
functions. With this information the C51 compiler knows
about the register utilization of external functions. This
enables global program-wide register optimization.

Example: C51 SAMPLE.C REGFILE(sample.reg)

#pragma REGFILE(sample.reg)

48 Chapter 2. Compiling with C51

2

REGISTERBANK

Abbreviation: RB

Arguments: A number between 0 and 3 enclosed in parentheses.

Default: REGISTERBANK (0)

Description: The REGISTERBANK directive selects which register
bank to use for subsequent functions declared in the source
file. Resulting code may use the absolute form of register
access when the absolute register number can be computed.
The using function attribute supersedes the effects of the
REGISTERBANK directive.

NOTE
Unlike the using function attribute, the REGISTERBANK
control does not switch the register bank.

Functions that return a value to the caller, must always use
the same register bank as the caller. If the register banks
are not the same, return values may be returned in registers
of the wrong register bank.

The REGISTERBANK directive may appear more than
once in a source program; however, the directive is ignored
if used within a function declaration.

Example: C51 SAMPLE.C REGISTERBANK(1)

#pragma rb(3)

Keil Software — C51 Compiler User’s Guide 49

2

REGPARMS / NOREGPARMS

Abbreviation: None.

Arguments: None.

Default: REGPARMS

Description: The REGPARMS directive enables the compiler to
generate code that passes up to three function arguments in
registers. This type of parameter passing is similar to what
you would use when writing in assembly and is significantly
faster than storing function arguments in memory.
Parameters that cannot be located in registers are passed
using fixed memory areas.

The NOREGPARMS directive forces all function
arguments to be passed in fixed memory areas. This
directive generates parameter passing code which is
compatible with C51, Version 2 and Version 1.

NOTE
You may specify both the REGPARMS and
NOREGPARMS directives several times within a source
program. This allows you to create some program sections
with register parameters and other sections using the old
style of parameter passing. Use NOREGPARMS to access
existing older assembler functions or library files without
having to reassemble or recompile them. This is illustrated
in the following example program.

#pragma NOREGPARMS /* Parm passing-old method */
extern int old_func (int, char);

#pragma REGPARMS /* Parm passing-new method */
extern int new_func (int, char);

main () {
 char a;
 int x1, x2;
 x1 = old_func (x2, a);
 x1 = new_func (x2, a);
}

Example: C51 SAMPLE.C NOREGPARMS

50 Chapter 2. Compiling with C51

2

ROM

Abbreviation: None.

Arguments: (SMALL), (COMPACT), or (LARGE)

Default: ROM (LARGE)

Description: You use the ROM directive to specify the size of the
program memory. This directive affects the coding of the
JMP and CALL instructions.

Memory Size Description

SMALL CALL and JMP instructions are coded as ACALL and
AJMP. The maximum program size may be 2 KBytes.
The entire program must be allocated within the
2 KByte program memory space.

COMPACT CALL instructions are coded as LCALL. JMP
instructions are coded as AJMP within a function. The
size of a function must not exceed 2 KBytes. The
entire program may, however, comprise a maximum
of 64 KBytes. The type of application determines
whether or not ROM (COMPACT) is more
advantageous than ROM (LARGE). Any code space
saving advantages in using ROM (COMPACT) must
be empirically determined.

LARGE CALL and JMP instructions are coded as LCALL and
LJMP. This allows you to use the entire address
space without any restrictions. Program size is limited
to 64 KBytes. Function size is also limited to
64 KBytes.

See Also: SMALL, COMPACT, LARGE

Example: C51 SAMPLE.C ROM (SMALL)

#pragma ROM (SMALL)

Keil Software — C51 Compiler User’s Guide 51

2

SAVE / RESTORE

Abbreviation: None.

Arguments: None.

Default: None.

Description: The SAVE directive stores the current settings of AREGS
and REGPARMS, and the current OPTIMIZE level and
emphasis. These settings are saved, for example, before an
#include directive and restored afterwards using
RESTORE.

The RESTORE directive fetches the values of the last
SAVE directive from the save stack.

The maximum nesting depth for SAVE directives is eight
levels.

NOTE
SAVE and RESTORE may be specified only as an argument
of a #pragma statement. You may not specify this control
option in the command line.

Example: #pragma save
#pragma noregparms

extern void test1 (char c, int i);
extern char test2 (long l, float f);

#pragma restore

In the above example, parameter passing in registers is
disabled for the two external functions, test1 and test2.
The settings at the time of the SAVE directive are restored
by the RESTORE directive.

52 Chapter 2. Compiling with C51

2

SMALL

Abbreviation: SM

Arguments: None.

Default: SMALL

Description: This directive implements the SMALL memory model. The
SMALL memory model places all function variables and
local data segments in the internal data memory of the 8051
system. This allows for very efficient access to data objects.
The address space of the SMALL memory model, however,
is limited.

Regardless of memory model type, you may declare
variables in any of the 8051 memory ranges. However,
placing frequently used directives (such as loop counters and
array indices) in internal data memory significantly
improves system performance.

NOTE
The stack required for function calls is always placed in
IDATA memory.

Always start by using the SMALL memory model. Then, as
your application grows, you can place large variables and
data in other memory areas by explicitly declaring the
memory area with the variable declaration.

See Also: COMPACT, LARGE, ROM

Example: C51 SAMPLE.C SMALL

#pragma small

Keil Software — C51 Compiler User’s Guide 53

2

SRC

Abbreviation: None.

Arguments: An optional filename in parentheses.

Default: None.

Description: Use the SRC directive to create an assembler source file
instead of an object file. This source file may be assembled
with the A51 assembler. If a filename is not specified in
parentheses, the base name and path of the C source file are
used with the .SRC extension.

NOTE
The compiler cannot simultaneously produce a source file
and an object file.

See Also: ASM, ENDASM

Example: C51 SAMPLE.C SRC

C51 SAMPLE.C SRC(SML.A51)

54 Chapter 2. Compiling with C51

2

SYMBOLS

Abbreviation: SB

Arguments: None.

Default: No list of symbols is generated.

Description: The SYMBOLS directive instructs the compiler to generate
a list of all symbols used in and by the program module
being compiled. This list is included in the listing file. The
memory category, memory type, offset, and size are listed
for each symbolic object.

Example: C51 SAMPLE.C SYMBOLS

#pragma SYMBOLS

The following excerpt from a listing file shows the symbol
listing:

NAME CLASS MSPACE TYPE OFFSET SIZE
==== ===== ====== ==== ====== ====
EA ABSBIT ----- BIT 00AFH 1
update PUBLIC CODE PROC ----- -----
 dtime. PARAM DATA PTR 0000H 3
setime PUBLIC CODE PROC ----- -----
 mode PARAM DATA PTR 0000H 3
 dtime. PARAM DATA PTR 0003H 3
 setuptime. . . . AUTO DATA STRUCT 0006H 3
time * TAG * ----- STRUCT ----- 3
 hour MEMBER DATA U_CHAR 0000H 1
 min. MEMBER DATA U_CHAR 0001H 1
 sec. MEMBER DATA U_CHAR 0002H 1
SBUF SFR DATA U_CHAR 0099H 1
ring PUBLIC DATA BIT 0001H 1
SCON SFR DATA U_CHAR 0098H 1
TMOD SFR DATA U_CHAR 0089H 1
TCON SFR DATA U_CHAR 0088H 1
mnu. PUBLIC CODE ARRAY 00FDH 119

Keil Software — C51 Compiler User’s Guide 55

2

WARNINGLEVEL

Abbreviation: WL

Arguments: A number from 0-2.

Default: WARNINGLEVEL (2)

Description: The WARNINGLEVEL directive allows you to suppress
compiler warnings. Refer to “Chapter 7. Error Messages”
on page 155 for a full list of the compiler warnings.

Warning Level Description

0 Disables almost all compiler warnings.

1 Lists only those warnings which may generate
incorrect code.

2 (Default) Lists all WARNING messages including
warnings about unused variables, expressions,
or labels.

Example: C51 SAMPLE.C WL (1)

#pragma WARNINGLEVEL (0)

56 Chapter 2. Compiling with C51

2

Keil Software — C51 Compiler User’s Guide 57

3

Chapter 3. Language Extensions
C51 provides a number of extensions for ANSI Standard C. Most of these
provide direct support for elements of the 8051 architecture. C51 includes
extensions for:

! Memory Types and Areas on the 8051

! Memory Models

! Memory Type Specifiers

! Variable Data Type Specifiers

! Bit variables and bit-addressable data

! Special Function Registers

! Pointers

! Function Attributes

The following sections describe each of these in detail.

Keywords

To facilitate many of the features of the 8051, C51 adds a number of new
keywords to the scope of the C language. The following is a list of the keywords
available in C51, Version 4:

at
alien
bdata
bit
code
compact
data

idata
interrupt
large
pdata
priority
reentrant
sbit

sfr
sfr16
small
task
using
xdata

You can disable these extensions using the NOEXTEND control directive.
Refer to “Chapter 2. Compiling with C51” on page 3 for more information.

58 Chapter 3. Language Extensions

3

8051 Memory Areas

The 8051 architecture supports a number of physically separate memory areas or
memory spaces for program and data. Each memory area offers certain
advantages and disadvantages. There are memory spaces that can be read from
but not written to, memory spaces that can be read from or written to, and
memory spaces that can be read from or written to more quickly than other
memory spaces. This wide variety of memory space is quite different from most
mainframe, minicomputer, and microcomputer architectures where the program,
data, and constants are all loaded into the same physical memory space within
the computer. Refer to the Intel 8-Bit Embedded Controllers handbook or other
8051 data books for more information about the 8051 memory architecture.

Program Memory

Program (CODE) memory is read only; it cannot be written to. Program memory
may reside within the 8051 CPU, it may be external, or it may be both,
depending upon the 8051 derivative and the hardware design. There may be up
to 64 KBytes of program memory. Program code including all functions and
library routines are stored in program memory. Constant variables may be stored
in program memory, as well. The 8051 executes programs stored in program
memory only.

Program memory can be accessed by using the code memory type specifier in
C51.

Keil Software — C51 Compiler User’s Guide 59

3

Internal Data Memory

Internal data memory resides within the 8051 CPU and can be read from and
written to. Up to 256 bytes of internal data memory are available depending
upon the 8051 derivative. The first 128 bytes of internal data memory are both
directly addressable and indirectly addressable. The upper 128 bytes of data
memory (from 0x80 to 0xFF) can be addressed only indirectly. There is also a
16 byte area starting at 20h that is bit-addressable.

Access to internal data memory is very fast because it can be accessed using an
8-bit address. However, internal data memory is limited to a maximum of 256
bytes.

Internal data can be broken down into three distinct data types when using C51:
data, idata, and bdata.

The data memory specifier always refers to the first 128 bytes of internal data
memory. Variables stored here are accessed using direct addressing.

The idata memory specifier refers to all 256 bytes of internal data memory;
however, this memory type specifier code is generated by indirect addressing
which is slower than direct addressing.

The bdata memory specifier refers to the 16 bytes of bit-addressable memory in
the internal data area (20h to 2Fh). This memory type specifier allows you to
declare data types that can also be accessed at the bit level.

60 Chapter 3. Language Extensions

3

External Data Memory

External data memory can be read from and written to and is physically located
externally from the 8051 CPU. Access to external data is very slow when
compared to access to internal data. This is because external data memory is
accessed indirectly through the data pointer (DPTR) register which must be
loaded with a 16-bit address before accessing the external memory.

There may be up to 64 KBytes of external data memory; though, this address
space does not necessarily have to be used as memory. Your hardware design
may map peripheral devices into the memory space. If this is the case, your
program would access external data memory to program and control the
peripheral. This technique is referred to as memory-mapped I/O.

There are two different data types in C51 with which you may access external
data: xdata and pdata.

The xdata memory specifier refers to any location in the 64 KByte address space
of external data memory.

The pdata memory type specifier refers to only 1 page or 256 bytes of external
data memory. See “Compact Model” on page 62 for more information on pdata.

Keil Software — C51 Compiler User’s Guide 61

3

Special Function Register Memory

The 8051 also provides 128 bytes of memory for Special Function Registers
(SFRs). SFRs are bit, byte, or word-sized registers that are used to control
timers, counters, serial I/O, port I/O, and peripherals. Refer to “Special Function
Registers” on page 68 for more information on SFRs.

Memory Models

The memory model determines which default memory type to use for function
arguments, automatic variables, and declarations with no explicit memory type
specifier. You specify the memory model on the C51 command line using the
SMALL, COMPACT, and LARGE control directives. Refer to “Control
Directives” on page 6 for more information about these directives.

NOTE
Except in very special selected applications, always use the default SMALL
memory model. It generates the fastest, most efficient code.

By explicitly declaring a variable with a memory type specifier, you may
override the default memory type imposed by the memory model . Refer to
“Memory Types” on page 62 for more information.

Small Model

In this model, all variables, by default, reside in the internal data memory of the
8051 system. (This is the same as if they were declared explicitly using the data
memory type specifier.) In this memory model, variable access is very efficient.
However, all objects, as well as the stack must fit into the internal RAM. Stack
size is critical because the real stack size depends upon the nesting depth of the
various functions. Typically, if the linker/locator is configured to overlay
variables in the internal data memory, the small model is the best model to use.

62 Chapter 3. Language Extensions

3

Compact Model

Using the compact model, all variables, by default, reside in one page of external
data memory. (This is as if they were explicitly declared using the pdata
memory type specifier.) This memory model can accommodate a maximum of
256 bytes of variables. The limitation is due to the addressing scheme used,
which is indirect through registers R0 and R1 (@R0, @R1). This memory
model is not as efficient as the small model, therefore, variable access is not as
fast. However, the compact model is faster than the large model.

When using the compact model, C51 accesses external memory with instructions
that utilize the @R0 and @R1 operands. R0 and R1 are byte registers and
provide only the low-order byte of the address. If the compact model is used
with more than 256 bytes of external memory, the high-order address byte
(or page) is provided by Port 2 on the 8051. In this case, you must initialize Port
2 with the proper external memory page to use. This can be done in the startup
code. You must also specify the starting address for PDATA to the linker.
Refer to “STARTUP.A51” on page 114 for more information on using the
compact model.

Large Model

In the large model, all variables, by default, reside in external data memory (up
to 64 KBytes). (This is the same as if they were explicitly declared using the
xdata memory type specifier.) The data pointer (DPTR) is used for addressing.
Memory access through this data pointer is inefficient, especially on variables
with a length of two or more bytes. This type of data access mechanism
generates more code than the small or compact models.

Memory Types

The C51 compiler explicitly supports the architecture of the 8051 and its
derivatives and provides access to all memory areas of the 8051. Each variable
may be explicitly assigned to a specific memory space.

Accessing the internal data memory is considerably faster than accessing the
external data memory. For this reason, place frequently used variables in
internal data memory. Place larger, less frequently used variables in external
data memory.

Keil Software — C51 Compiler User’s Guide 63

3

Explicitly Declared Memory Types

By including a memory type specifier in the variable declaration, you may
specify where variables are stored.

The following table summarizes the available memory type specifiers.

Memory Type Description

code Program memory (64 KBytes); accessed by opcode MOVC @A+DPTR.

data Directly addressable internal data memory; fastest access to variables
(128 bytes).

idata Indirectly addressable internal data memory; accessed across the full internal
address space (256 bytes).

bdata Bit-addressable internal data memory; allows mixed bit and byte access
(16 bytes).

xdata External data memory (64 KBytes); accessed by opcode MOVX @DPTR.

pdata Paged (256 bytes) external data memory; accessed by opcode MOVX @Rn.

As with the signed and unsigned attributes, you may include memory type
specifiers in the variable declaration.

Example:
char data var1;
char code text[] = "ENTER PARAMETER:";
unsigned long xdata array[100];
float idata x,y,z;
unsigned int pdata dimension;
unsigned char xdata vector[10][4][4];
char bdata flags;

NOTE
For compatibility with previous versions of the C51 compiler, you may specify
the memory area before the data type. For example, the following declaration

data char x;

is equivalent to

char data x;

Nonetheless, this feature should not be used in new programs because it may not
be supported in future versions of the C51 compiler.

64 Chapter 3. Language Extensions

3

Implicit Memory Types

If the memory type specifier is omitted in a variable declaration, the default or
implicit memory type is automatically selected. Function arguments and
automatic variables which cannot be located in registers are also stored in the
default memory area.

The default memory type is determined by the SMALL, COMPACT and
LARGE compiler control directives. Refer to “Memory Models” on page 61 for
more information.

Data Types

C51 provides you with a number of basic data types to use in your C programs.
C51 offers you the standard C data types and also supports several data types
that are unique to the 8051 platform. The following table lists the available C51
data types.

Data Type Bits Bytes Value Range

bit † 1 0 to 1

signed char 8 1 -128 to +127

unsigned char 8 1 0 to 255

enum 16 2 -32768 to +32767

signed short 16 2 -32768 to +32767

unsigned short 16 2 0 to 65535

signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to 2147483647

unsigned long 32 4 0 to 4294967295

float 32 4 ±1.175494E-38 to ±3.402823E+38

sbit † 1 0 to 1

sfr † 8 1 0 to 255

sfr16 † 16 2 0 to 65535

† The bit, sbit, sfr, and sfr16 data types are not provided in ANSI C and are unique to C51.
These data types are described in detail in the following sections.

Keil Software — C51 Compiler User’s Guide 65

3

Bit Types

C51 provides you with a bit data type which may be used for variable
declarations, argument lists, and function return values. A bit variable is
declared just as other C data types are declared.

Example:
static bit done_flag = 0; /* bit variable */

bit testfunc (/* bit function */
 bit flag1, /* bit arguments */
 bit flag2)
{
.
.
.
return (0); /* bit return value */
}

All bit variables are stored in a bit segment located in the internal memory area
of the 8051. Because this area is only 16 bytes long, a maximum of 128 bit
variables may be declared within any one scope.

Memory types may be included in the declaration of a bit variable. However,
because bit variables are stored in the internal data area of the 8051, the data
and idata memory types only may be included in the declaration. Any other
memory types are invalid.

The following restrictions apply to bit variables and bit declarations:

! Functions which use disabled interrupts (#pragma disable), and functions
that are declared using an explicit register bank (using n) cannot return a bit
value. The C51 compiler generates an error message for functions of this
type that attempt to return a bit type.

! A bit cannot be declared as a pointer. For example:

bit *ptr; /* invalid */

! An array of type bit is invalid. For example:

bit ware [5]; /* invalid */

66 Chapter 3. Language Extensions

3

Bit-addressable Objects

Bit-addressable objects are objects which can be addressed as bytes or as bits.
Only data objects that occupy the bit-addressable area of the 8051 internal
memory fall into this category. The C51 compiler places variables declared with
the bdata memory type into this bit-addressable area. You may declare these
variables as shown below:

int bdata ibase; /* Bit-addressable int */

char bdata bary [4]; /* Bit-addressable array */

The variables ibase and bary are bit-addressable. Therefore, the individual
bits of these variables may be directly accessed and modified. Use the sbit
keyword to declare new variables that access the bits of variables declared using
bdata. For example:

sbit mybit0 = ibase ^ 0; /* bit 0 of ibase */
sbit mybit15 = ibase ^ 15; /* bit 15 of ibase */

sbit Ary07 = bary[0] ^ 7; /* bit 7 of bary[0] */
sbit Ary37 = bary[3] ^ 7; /* bit 7 of bary[3] */

The above example represents declarations, not assignments to the bits of the
ibase and bary variables declared above. The expression following the carat
symbol (‘^’) in the example, specifies the position of the bit to access with this
declaration. This expression must be a constant value. The range depends on
the type of the base variable included in the declaration. The range is 0 to 7 for
char and unsigned char, 0 to 15 for int, unsigned int, short, and unsigned
short, and 0 to 31 for long and unsigned long.

You may provide external variable declarations for the sbit type to access these
types in other modules. For example:

extern bit mybit0; /* bit 0 of ibase */
extern bit mybit15; /* bit 15 of ibase */

extern bit Ary07; /* bit 7 of bary[0] */
extern bit Ary37; /* bit 7 of bary[3] */

Declarations involving the sbit type require that the base object be declared with
the memory type bdata. The only exceptions are the variants for special
function bits. Refer to “Special Function Registers” on page 68 for more
information.

Keil Software — C51 Compiler User’s Guide 67

3

The following example shows how to change the ibase and bary bits using the
above declarations.

Ary37 = 0; /* clear bit 7 in bary[3] */
bary[3] = 'a'; /* Byte addressing */
ibase = -1; /* Word addressing */
mybit15 = 1; /* set bit 15 in ibase */

The bdata memory type is handled like the data memory type except that
variables declared with bdata reside in the bit-addressable portion of the
internal data memory. Note that the total size of this area of memory may not
exceed 16 bytes.

In addition to declaring sbit variables for scalar types, you may also declare sbit
variables for structures and unions. For example:

union lft
 {
 float mf;
 long ml;
 };

bdata struct bad
 {
 char m1;
 union lft u;
 } tcp;

sbit tcpf31 = tcp.u.ml ^ 31; /* bit 31 of float */
sbit tcpm10 = tcp.m1 ^ 0;
sbit tcpm17 = tcp.m1 ^ 7;

NOTE
You may not specify bit variables for the bit positions of a float. However, you
may include the float and a long in a union. Then, you may declare bit
variables to access the bits in the long type.

The sbit data type uses the specified variable as a base address and adds the bit
position to obtain a physical bit address. Physical bit addresses are not
equivalent to logical bit positions for certain data types. Physical bit position 0
refers to bit position 0 of the first byte. Physical bit position 8 refers to bit
position 0 of the second byte. Because int variables are stored high-byte first,
bit 0 of the integer is located in bit position 0 of the second byte. This is physical
bit position 8 when accessed using an sbit data type.

68 Chapter 3. Language Extensions

3

Special Function Registers

The 8051 family of microprocessors provides you with a distinct memory area
for accessing Special Function Registers (SFRs). SFRs are used in your program
to control timers, counters, serial I/Os, port I/Os, and peripherals. SFRs reside
from address 0x80 to 0xFF and can be accessed as bits, bytes, and words. For
more information about special function registers, refer to the Intel 8-Bit
Embedded Controllers handbook or other 8051 data books.

Within the 8051 family, the number and type of SFRs vary. Note that no SFR
names are predefined by the C51 compiler. However, declarations for SFRs are
provided in include files.

C51 provides you with a number of include files for various 8051 derivatives.
Each file contains declarations for the SFRs available on that derivative. See
“8051 Special Function Register Include Files” on page 191 for more
information about include files.

C51 provides access to SFRs with the sfr, sfr16, and sbit data types. The
following sections describe each of these data types.

sfr

SFRs are declared in the same fashion as other C variables. The only difference
is that the data type specified is sfr rather than char or int. For example:

sfr P0 = 0x80; /* Port-0, address 80h */
sfr P1 = 0x90; /* Port-1, address 90h */
sfr P2 = 0xA0; /* Port-2, address 0A0h */
sfr P3 = 0xB0; /* Port-3, address 0B0h */

P0, P1, P2, and P3 are the SFR name declarations. Names for sfr variables are
defined just like other C variable declarations. Any symbolic name may be used
in an sfr declaration.

The address specification after the equal sign (=) must be a numeric constant.
(Expressions with operators are not allowed.) This constant expression must lie
in the SFR address range (0x80 to 0xFF).

Keil Software — C51 Compiler User’s Guide 69

3

sfr16

Many of the newer 8051 derivatives use two SFRs with consecutive addresses to
specify 16-bit values. For example, the 8052 uses addresses 0xCC and 0xCD for
the low and high bytes of timer/counter 2. C51 provides the sfr16 data type to
access 2 SFRs as a 16-bit SFR.

Access to 16-bit SFRs is possible only when the low byte immediately precedes
the high byte. The low byte is used as the address in the sfr16 declaration. For
example:

sfr16 T2 = 0xCC; /* Timer 2: T2L 0CCh, T2H 0CDh */
sfr16 RCAP2 = 0xCA; /* RCAP2L 0CAh, RCAP2H 0CBh */

In this example, T2 and RCAP2 are declared as 16-bit special function registers.

The sfr16 declarations follow the same rules as outlined for sfr declarations.
Any symbolic name can be used in an sfr16 declaration. The address
specification after the equal sign (‘=’) must be a numeric constant. Expressions
with operators are not allowed. The address must be the low byte of the SFR
low-byte, high-byte pair.

sbit

With typical 8051 applications, it is often necessary to access individual bits
within an SFR. The C51 compiler makes this possible with the sbit data type.
The sbit data type allows you to access bit-addressable SFRs. For example:

sbit EA = 0xAF;

This declaration defines EA to be the SFR bit at address 0xAF. On the 8051,
this is the enable all bit in the interrupt enable register.

NOTE
Not all SFRs are bit-addressable. Only those SFRs whose address is evenly
divisible by 8 are bit-addressable. The lower nibble of the SFR’s address must
be 0 or 8. For example, SFRs at 0xA8 and 0xD0 are bit-addressable, whereas
SFRs at 0xC7 and 0xEB are not. To calculate an SFR bit address, add the bit
position to the SFR byte address. So, to access bit 6 in the SFR at 0xC8, the SFR
bit address would be 0xCE (0xC8 + 6).

70 Chapter 3. Language Extensions

3

Any symbolic name can be used in an sbit declaration. The expression to the
right of the equal sign (=) specifies an absolute bit address for the symbolic
name. There are three variants for specifying the address:

Variant 1: sfr_name ^ int_constant
This variant uses a previously declared sfr (sfr_name) as the
base address for the sbit. The address of the existing SFR
must be evenly divisible by 8. The expression following the
carat symbol (^) specifies the position of the bit to access
with this declaration. The bit position must be a number in
the 0 to 7 range. For example:

sfr PSW = 0xD0;
sfr IE = 0xA8;
sbit OV = PSW ^ 2;
sbit CY = PSW ^ 7;
sbit EA = IE ^ 7;

Variant 2: int_constant ^ int_constant
This variant uses an integer constant as the base address for
the sbit. The base address value must be evenly divisible by
8. The expression following the carat symbol (‘^’) specifies
the position of the bit to access with this declaration. The
bit position must be a number in the 0 to 7 range. For
example:

sbit OV = 0xD0 ^ 2;
sbit CY = 0xD0 ^ 7;
sbit EA = 0xA8 ^ 7;

Variant 3: int_constant
This variant uses an absolute bit address for the sbit. For
example:

sbit OV = 0xD2;
sbit CY = 0xD7;
sbit EA = 0xAF;

NOTE
Special function bits represent an independent declaration class that may not be
interchangeable with other bit declarations or bit fields.

The sbit data type declaration may be used to access individual bits of variables
declared with the bdata memory type specifier. Refer to “Bit-addressable
Objects” on page 66 for more information.

Keil Software — C51 Compiler User’s Guide 71

3

Absolute Variable Location

Variables may be located at absolute memory locations in your C program
source modules using the _at_ keyword. The usage for this feature is:

!memory_space" type variable_name _at_ constant;

where:

memory_space is the memory space for the variable. If missing from the
declaration, the default memory space is used. Refer to
“Memory Models” on page 61 for more information about
the default memory space.

type is the variable type.

variable_name is the variable name.

constant is the address at which to locate the variable.

The absolute address following _at_ must conform to the physical boundaries of
the memory space for the variable. C51 checks for invalid address
specifications.

The following restrictions apply to absolute variable location:

1. Absolute variables cannot be initialized.

2. Functions and variables of type bit cannot be located at an absolute address.

72 Chapter 3. Language Extensions

3

The following example demonstrates how to locate several different variable
types using the _at_ keyword.

struct link
 {
 struct link idata *next;
 char code *test;
 };

idata struct link list _at_ 0x40; /* list at idata 0x40 */
xdata char text[256] _at_ 0xE000; /* array at xdata 0xE000 */
xdata int i1 _at_ 0x8000; /* int at xdata 0x8000 */

void main (void) {
 link.next = (void *) 0;
 i1 = 0x1234;
 text [0] = 'a';
}

Often, you may wish to declare your variables in one source module and access
them in another. Use the following external declarations to access the _at_
variables defined above in another source file.

struct link
 {
 struct link idata *next;
 char code *test;
 };

extern idata struct link list; /* list at idata 0x40 */
extern xdata char text[256]; /* array at xdata 0xE000 */
extern xdata int i1; /* int at xdata 0x8000 */

Keil Software — C51 Compiler User’s Guide 73

3

Pointers

C51 supports the declaration of variable pointers using the * character. C51
pointers can be used to perform all operations available in standard C. However,
because of the unique architecture of the 8051 and its derivatives, C51 provides
two different types of pointers: memory-specific pointers and generic pointers.
Each of these pointer types, as well as conversion methods are discussed in the
following sections.

Generic Pointers

Generic pointers are declared in the same fashion as standard C pointers. For
example:

char *s; /* string ptr */
int *numptr; /* int ptr */
long *state; /* Texas */

Generic pointers are always stored using three bytes. The first byte is for the
memory type, the second is for the high-order byte of the offset, and the third is
for the low-order byte of the offset. The following table contains the memory
type byte values and their associated memory type.

Memory Type idata / data / bdata xdata pdata code

Value 0x00 0x01 0xFE 0xFF

Generic pointers may be used to access any variable regardless of its location in
8051 memory space. Many of the C51 library routines use these pointer types
for this reason. By using these generic pointers, a function can access data
regardless of the memory in which it is stored.

NOTE
The code generated for a generic pointer executes more slowly than the
equivalent code generated for a memory-specific pointer. This is because the
memory area is not known until run-time. The compiler cannot optimize memory
accesses and must generate generic code that can access any memory area. If
execution speed is a priority, you should use memory-specific pointers instead of
generic pointers wherever possible.

74 Chapter 3. Language Extensions

3

The following code and assembly listing shows the values assigned to generic
pointers for variables in different memory areas. Note that the first value is the
memory space followed by the high-order byte and low-order byte of the
address.

stmt level source
 1 char *c_ptr; /* char ptr */
 2 int *i_ptr; /* int ptr */
 3 long *l_ptr; /* long ptr */
 4
 5 void main (void)
 6 {
 7 1 char data dj; /* data vars */
 8 1 int data dk;
 9 1 long data dl;
 10 1
 11 1 char xdata xj; /* xdata vars */
 12 1 int xdata xk;
 13 1 long xdata xl;
 14 1
 15 1 char code cj = 9; /* code vars */
 16 1 int code ck = 357;
 17 1 long code cl = 123456789;
 18 1
 19 1
 20 1 c_ptr = &dj; /* data ptrs */
 21 1 i_ptr = &dk;
 22 1 l_ptr = &dl;
 23 1
 24 1 c_ptr = &xj; /* xdata ptrs */
 25 1 i_ptr = &xk;
 26 1 l_ptr = &xl;
 27 1
 28 1 c_ptr = &cj; /* code ptrs */
 29 1 i_ptr = &ck;
 30 1 l_ptr = &cl;
 31 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION main (BEGIN)
 ; SOURCE LINE # 5
 ; SOURCE LINE # 6
 ; SOURCE LINE # 20
0000 750000 R MOV c_ptr,#00H
0003 750000 R MOV c_ptr+01H,#HIGH dj
0006 750000 R MOV c_ptr+02H,#LOW dj
 ; SOURCE LINE # 21
0009 750000 R MOV i_ptr,#00H
000C 750000 R MOV i_ptr+01H,#HIGH dk
000F 750000 R MOV i_ptr+02H,#LOW dk
 ; SOURCE LINE # 22
0012 750000 R MOV l_ptr,#00H
0015 750000 R MOV l_ptr+01H,#HIGH dl
0018 750000 R MOV l_ptr+02H,#LOW dl
 ; SOURCE LINE # 24
001B 750001 R MOV c_ptr,#01H
001E 750000 R MOV c_ptr+01H,#HIGH xj

Keil Software — C51 Compiler User’s Guide 75

3

0021 750000 R MOV c_ptr+02H,#LOW xj
 ; SOURCE LINE # 25
0024 750001 R MOV i_ptr,#01H
0027 750000 R MOV i_ptr+01H,#HIGH xk
002A 750000 R MOV i_ptr+02H,#LOW xk
 ; SOURCE LINE # 26
002D 750001 R MOV l_ptr,#01H
0030 750000 R MOV l_ptr+01H,#HIGH xl
0033 750000 R MOV l_ptr+02H,#LOW xl
 ; SOURCE LINE # 28
0036 7500FF R MOV c_ptr,#0FFH
0039 750000 R MOV c_ptr+01H,#HIGH cj
003C 750000 R MOV c_ptr+02H,#LOW cj
 ; SOURCE LINE # 29
003F 7500FF R MOV i_ptr,#0FFH
0042 750000 R MOV i_ptr+01H,#HIGH ck
0045 750000 R MOV i_ptr+02H,#LOW ck
 ; SOURCE LINE # 30
0048 7500FF R MOV l_ptr,#0FFH
004B 750000 R MOV l_ptr+01H,#HIGH cl
004E 750000 R MOV l_ptr+02H,#LOW cl
 ; SOURCE LINE # 31
0051 22 RET
 ; FUNCTION main (END)

In the above example listing, the generic pointers c_ptr, i_ptr, and l_ptr
are all stored in the internal data memory of the 8051. However, you may
specify the memory area in which a generic pointer is stored by using a memory
type specifier. For example:

char * xdata strptr; /* generic ptr stored in xdata */
int * data numptr; /* generic ptr stored in data */
long * idata varptr; /* generic ptr stored in idata */

These examples are pointers to variables that may be stored in any memory area.
The pointers, however, are stored in xdata, data, and idata respectively.

76 Chapter 3. Language Extensions

3

Memory-specific Pointers

Memory-specific pointers always include a memory type specification in the
pointer declaration and always refer to a specific memory area. For example:

char data *str; /* ptr to string in data */
int xdata *numtab; /* ptr to int(s) in xdata */
long code *powtab; /* ptr to long(s) in code */

Because the memory type is specified at compile-time, the memory type byte
required by generic pointers is not needed by memory-specific pointers.
Memory-specific pointers can be stored using only one byte (idata, data, bdata,
and pdata pointers) or two bytes (code and xdata pointers).

NOTE
The code generated for a memory-specific pointer executes more quickly than
the equivalent code generated for a generic pointer. This is because the memory
area is known at compile-time rather than at run-time. The compiler can use
this information to optimize memory accesses. If execution speed is a priority,
you should use memory-specific pointers instead of generic pointers wherever
possible.

Like generic pointers, you may specify the memory area in which a
memory-specific pointer is stored. To do so, prefix the pointer declaration with
a memory type specifier. For example:

char data * xdata str; /* ptr in xdata to data char */
int xdata * data numtab; /* ptr in data to xdata int */
long code * idata powtab; /* ptr in idata to code long */

Memory-specific pointers may be used to access variables in the declared 8051
memory area only. Memory-specific pointers provide the most efficient method
of accessing data objects, but at the cost of reduced flexibility.

Keil Software — C51 Compiler User’s Guide 77

3

The following code and assembly listing shows how pointer values are assigned
to memory-specific pointers. Note that the code generated for these pointers is
much less involved than the code generated in the generic pointers example
listing in the previous section.

stmt level source

 1 char data *c_ptr; /* memory-specific char ptr */
 2 int xdata *i_ptr; /* memory-specific int ptr */
 3 long code *l_ptr; /* memory-specific long ptr */
 4
 5 long code powers_of_ten [] =
 6 {
 7 1L,
 8 10L,
 9 100L,
 10 1000L,
 11 10000L,
 12 100000L,
 13 1000000L,
 14 10000000L,
 15 100000000L
 16 };
 17
 18 void main (void)
 19 {
 20 1 char data strbuf [10];
 21 1 int xdata ringbuf [1000];
 22 1
 23 1 c_ptr = &strbuf [0];
 24 1 i_ptr = &ringbuf [0];
 25 1 l_ptr = &powers_of_ten [0];
 26 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION main (BEGIN)
 ; SOURCE LINE # 18
 ; SOURCE LINE # 19
 ; SOURCE LINE # 23
0000 750000 R MOV c_ptr,#LOW strbuf
 ; SOURCE LINE # 24
0003 750000 R MOV i_ptr,#HIGH ringbuf
0006 750000 R MOV i_ptr+01H,#LOW ringbuf
 ; SOURCE LINE # 25
0009 750000 R MOV l_ptr,#HIGH powers_of_ten
000C 750000 R MOV l_ptr+01H,#LOW powers_of_ten
 ; SOURCE LINE # 26
000F 22 RET
 ; FUNCTION main (END)

78 Chapter 3. Language Extensions

3

Pointer Conversions

C51 can convert between memory-specific pointers and generic pointers.
Pointer conversions can be forced by explicit program code using type casts or
can be coerced by the compiler.

The C51 compiler coerces a memory-specific pointer into a generic pointer when
the memory-specific pointer is passed as an argument to a function which
requires a generic pointer. This is the case for functions such as printf, sprintf,
and gets which use generic pointers as arguments. For example:

extern int printf (void *format, ...);

extern int myfunc (void code *p, int xdata *pq);

int xdata *px;
char code *fmt = "value = %d | %04XH\n";

void debug_print (void) {
 printf (fmt, *px, *px); /* fmt is converted */
 myfunc (fmt, px); /* no conversions */
}

In the call to printf, the argument fmt which represents a 2-byte code pointer is
automatically converted or coerced into a 3-byte generic pointer. This is done
because the prototype for printf requires a generic pointer as the first argument.

NOTE
A memory-specific pointer used as an argument to a function is always
converted into a generic pointer if no function prototype is present. This can
cause errors if the called function actually expects a shorter pointer as an
argument. In order to avoid these kinds of errors in programs, use #include
files, and prototype all external functions. This guarantees conversion of the
necessary types by the compiler and increases the likelihood that the compiler
detects type conversion errors.

Keil Software — C51 Compiler User’s Guide 79

3

The following table details the process involved in converting generic pointers
(generic *) to memory-specific pointers (code *, xdata *, idata *, data *,
pdata *).

Conversion Type Description

generic * to code * The offset section (2 bytes) of the generic pointer is used.

generic * to xdata * The offset section (2 bytes) of the generic pointer is used.

generic * to data * The low-order byte of the generic pointer offset is used.
The high-order byte is discarded.

generic * to idata * The low-order byte of the generic pointer offset is used.
The high-order byte is discarded.

generic * to pdata * The low-order byte of the generic pointer offset is used.
The high-order byte is discarded.

The following table describes the process involved in converting
memory-specific pointers (code *, xdata *, idata *, data *, pdata *) to generic
pointers (generic *).

Conversion Type Description

xdata * to generic * The memory type of the generic pointer is set to 0x01 for xdata.
The 2-byte offset of the xdata * is used.

code * to generic * The memory type of the generic pointer is set to 0xFF for code.
The 2-byte offset of the code * is used.

idata * to generic *
data * to generic *

The memory type of the generic pointer is set to 0x00 for idata / data.
The 1-byte offset of the idata * / data * is converted to an unsigned
int and used as the offset.

pdata * to generic * The memory type of the generic pointer is set to 0xFE for pdata.
The 1-byte offset of the pdata * is converted to an unsigned int and
used as the offset.

80 Chapter 3. Language Extensions

3

The following listing illustrates a few pointer conversions and the resulting code:

stmt level source
 1 int *p1; /* generic ptr (3 bytes) */
 2 int xdata *p2; /* xdata ptr (2 bytes) */
 3 int idata *p3; /* idata ptr (1 byte) */
 4 int code *p4; /* code ptr (2 bytes */
 5
 6 void pconvert (void) {
 7 1 p1 = p2; /* xdata* to generic* */
 8 1 p1 = p3; /* idata* to generic* */
 9 1 p1 = p4; /* code* to generic* */
 10 1
 11 1 p4 = p1; /* generic* to code* */
 12 1 p3 = p1; /* generic* to idata* */
 13 1 p2 = p1; /* generic* to xdata* */
 14 1
 15 1 p2 = p3; /* idata* to xdata* (WARN) */
*** WARNING 259 IN LINE 15 OF P.C: pointer: different mspace
 16 1 p3 = p4; /* code* to idata* (WARN) */
*** WARNING 259 IN LINE 16 OF P.C: pointer: different mspace
 17 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE
 ; FUNCTION pconvert (BEGIN)
 ; SOURCE LINE # 7
0000 750001 R MOV p1,#01H
0003 850000 R MOV p1+01H,p2
0006 850000 R MOV p1+02H,p2+01H
 ; SOURCE LINE # 8
0009 750000 R MOV p1,#00H
000C 750000 R MOV p1+01H,#00H
000F 850000 R MOV p1+02H,p3
 ; SOURCE LINE # 9
0012 7B05 MOV R3,#0FFH
0014 AA00 R MOV R2,p4
0016 A900 R MOV R1,p4+01H
0018 8B00 R MOV p1,R3
001A 8A00 R MOV p1+01H,R2
001C 8900 R MOV p1+02H,R1
 ; SOURCE LINE # 11
001E AE02 MOV R6,AR2
0020 AF01 MOV R7,AR1
0022 8E00 R MOV p4,R6
0024 8F00 R MOV p4+01H,R7
 ; SOURCE LINE # 12
0026 AF01 MOV R7,AR1
0028 8F00 R MOV p3,R7
 ; SOURCE LINE # 13
002A AE02 MOV R6,AR2
002C 8E00 R MOV p2,R6
002E 8F00 R MOV p2+01H,R7
 ; SOURCE LINE # 15
0030 750000 R MOV p2,#00H
0033 8F00 R MOV p2+01H,R7
 ; SOURCE LINE # 16
0035 850000 R MOV p3,p4+01H
 ; SOURCE LINE # 17
0038 22 RET
 ; FUNCTION pconvert (END)

Keil Software — C51 Compiler User’s Guide 81

3

Abstract Pointers

Abstract pointer types let you access fixed memory locations in any memory
area. You may also use abstract pointers to call functions located at absolute or
fixed addresses.

Abstract pointer types are described here through code examples which use the
following variables.

char xdata *px; /* ptr to xdata */
char idata *pi; /* ptr to idata */
char code *pc; /* ptr to code */

char c; /* char variable in data space */
int i; /* int variable in data space */

The following example assigns the address of the main C function to a pointer
(stored in data memory) to a char stored in code memory.

Source pc = (void *) main;

Object 0000 750000 R MOV pc,#HIGH main
0003 750000 R MOV pc+01H,#LOW main

The following example casts the address of the variable i (which is an
int data *) to a pointer to a char in idata. Since i is stored in data and since
indirectly accessed data is idata, this pointer conversion is valid.

Source pi = (char idata *) &i;

Object 0000 750000 R MOV pi,#LOW i

The following example casts a pointer to a char in xdata to a pointer to a char
in idata. Since xdata pointers occupy 2 bytes and idata pointers occupy 1 byte,
this pointer conversion may not yield the desired results since the upper byte of
the xdata pointer is ignored. Refer to “Pointer Conversions” on page 78 for
more information about converting between different pointer types.

Source pi = (char idata *) px;

Object 0000 850000 R MOV pi,px+01H

The following example casts 0x1234 as a pointer to a char in code memory.

Source pc = (char code *) 0x1234;

Object 0000 750012 R MOV pc,#012H
0003 750034 R MOV pc+01H,#034H

82 Chapter 3. Language Extensions

3

The following example casts 0xFF00 as a function pointer that takes no
arguments and returns an int, invokes the function, and assigns the return value
to the variable i. The portion of this example that performs the function pointer
type cast is: ((int (code *)(void)) 0xFF00). By adding the argument list to the
end of the function pointer, the compiler can correctly invoke the function.

Source i = ((int (code *)(void)) 0xFF00) ();

Object 0000 12FF00 LCALL 0FF00H
0003 8E00 R MOV i,R6
0005 8F00 R MOV i+01H,R7

The following example casts 0x8000 as a pointer to a char in code memory,
extracts the char pointed to, and assigns it to the variable c.

Source c = *((char code *) 0x8000);

Object 0000 908000 MOV DPTR,#08000H
0003 E4 CLR A
0004 93 MOVC A,@A+DPTR
0005 F500 R MOV c,A

The following example casts 0xFF00 as a pointer to a char in xdata memory,
extracts the char pointed to, and adds it to the variable c.

Source c += *((char xdata *) 0xFF00);

Object 0000 90FF00 MOV DPTR,#0FF00H
0003 E0 MOVX A,@DPTR
0004 2500 R ADD A,c
0006 F500 R MOV c,A

The following example casts 0xF0 as a pointer to a char in idata memory,
extracts the char pointed to, and adds it to the variable c.

Source c += *((char idata *) 0xF0);

Object 0000 78F0 MOV R0,#0F0H
0002 E6 MOV A,@R0
0003 2500 R ADD A,c
0005 F500 R MOV c,A

Keil Software — C51 Compiler User’s Guide 83

3

The following example casts 0xE8 as a pointer to a char in pdata memory,
extracts the char pointed to, and adds it to the variable c.

Source c += *((char pdata *) 0xE8);

Object 0000 78E8 MOV R0,#0E8H
0002 E2 MOVX A,@R0
0003 2500 R ADD A,c
0005 F500 R MOV c,A

The following example casts 0x2100 as a pointer to an int in code memory,
extracts the int pointed to, and assigns it to the variable i.

Source i = *((int code *) 0x2100);

Object 0000 902100 MOV DPTR,#02100H
0003 E4 CLR A
0004 93 MOVC A,@A+DPTR
0005 FE MOV R6,A
0006 7401 MOV A,#01H
0008 93 MOVC A,@A+DPTR
0009 8E00 R MOV i,R6
000B F500 R MOV i+01H,A

The following example casts 0x4000 as a pointer to a pointer in xdata that
points to a char in xdata. The assignment extracts the pointer stored in xdata
that points to the char which is also stored in xdata.

Source px = *((char xdata * xdata *) 0x4000);

Object 0000 904000 MOV DPTR,#04000H
0003 E0 MOVX A,@DPTR
0004 FE MOV R6,A
0005 A3 INC DPTR
0006 E0 MOVX A,@DPTR
0007 8E00 R MOV px,R6
0009 F500 R MOV px+01H,A

84 Chapter 3. Language Extensions

3

Like the previous example, this example casts 0x4000 as a pointer to a pointer in
xdata that points to a char in xdata. However, the pointer is accessed as an
array of pointers in xdata. The assignment accesses array element 0 (which is
stored at 0x4000 in xdata) and extracts the pointer there that points to the char
stored in xdata.

Source px = ((char xdata * xdata *) 0x4000) [0];

Object 0000 904000 MOV DPTR,#04000H
0003 E0 MOVX A,@DPTR
0004 FE MOV R6,A
0005 A3 INC DPTR
0006 E0 MOVX A,@DPTR
0007 8E00 R MOV px,R6
0009 F500 R MOV px+01H,A

The following example is identical to the previous one except that the
assignment accesses element 1 from the array. Since the object pointed to is a
pointer in xdata (to a char), the size of each element in the array is 2 bytes. The
assignment accesses array element 1 (which is stored at 0x4002 in xdata) and
extracts the pointer there that points to the char stored in xdata.

Source px = ((char xdata * xdata *) 0x4000) [1];

Object 0000 904002 MOV DPTR,#04002H
0003 E0 MOVX A,@DPTR
0004 FE MOV R6,A
0005 A3 INC DPTR
0006 E0 MOVX A,@DPTR
0007 8E00 R MOV px,R6
0009 F500 R MOV px+01H,A

Keil Software — C51 Compiler User’s Guide 85

3

Function Declarations

C51 provides you with a number of extensions for standard C function
declarations. These extensions allow you to:

! Specify a function as an interrupt procedure

! Choose the register bank used

! Select the memory model

! Specify reentrancy

! Specify alien (PL/M-51) functions

You include these extensions or attributes (many of which may be combined) in
the function declaration. Use the following standard format for your C51
function declarations.

!return_type" funcname (!args") !{small | compact | large}"
!reentrant" !interrupt n" !using n"

where:

return_type is the type of the value returned from the function.
If no type is specified, int is assumed.

funcname is the name of the function.

args is the argument list for the function.

small, compact, or large is the explicit memory model for the function.

reentrant indicates that the function is recursive or reentrant.

interrupt indicates that the function is an interrupt function.

using specifies which register bank the function uses.

Descriptions of these attributes and other features are described in detail in the
following sections.

86 Chapter 3. Language Extensions

3

Function Parameters and the Stack

The stack pointer on the 8051 accesses internal data memory only. C51 locates
the stack area immediately following all variables in the internal data memory.
The stack pointer accesses internal memory indirectly and can use all of the
internal data memory up to the 0xFF limit.

The total stack space is quite limited: only 256 bytes maximum. Rather than
consume stack space with function parameters or arguments, C51 assigns a fixed
memory location for each function parameter. When a function is called, the
caller must copy the arguments into the assigned memory locations before
transferring control to the desired function. The function then extracts its
parameters, as needed, from these fixed memory locations. Only the return
address is stored on the stack during this process. Interrupt functions require
more stack space because they must switch register banks and save the values of
a few registers on the stack.

By default, the C51 compiler passes up to three function arguments in registers.
This enhances speed performance. For more information, refer to “Passing
Parameters in Registers” on page 87.

NOTE
Some 8051 derivatives provide as little as 64 bytes of internal memory. The
8051 provides 128 and the 8052 provides 256. Take this into consideration
when determining which memory model to use, because the amount of internal
data memory directly affects the amount of stack space.

Keil Software — C51 Compiler User’s Guide 87

3

Passing Parameters in Registers

The C51 compiler allows up to three function arguments to be passed in CPU
registers. This mechanism significantly improves system performance as
arguments do not have to be written to and read from memory. Argument or
parameter passing can be controlled by the REGPARMS and NOREGPARMS
control directives defined in the previous chapter.

The following table details the registers used for different argument positions
and data types.

Argument Number char, 1-byte ptr int, 2-byte ptr long, float generic ptr

1 R7 R6 & R7 R4—R7 R1—R3

2 R5 R4 & R5 R4—R7 R1—R3

3 R3 R2 & R3 R1—R3

If no registers are available for argument passing, fixed memory locations are
used for function parameters.

Function Return Values

CPU registers are always used for function return values. The following table
lists the return types and the registers used for each.

Return Type Register Description

bit Carry Flag

char, unsigned char,
1-byte ptr

R7

int, unsigned int,
2-byte ptr

R6 & R7 MSB in R6, LSB in R7

long, unsigned long R4-R7 MSB in R4, LSB in R7

float R4-R7 32-Bit IEEE format

generic ptr R1-R3 Memory type in R3, MSB R2, LSB R1

NOTE
If the first parameter of a function is of type bit, other parameters are not passed
in registers. This is because the parameters that can be passed in registers are
out of sequence with the numbering scheme shown above. For this reason, bit
parameters should be declared at the end of the argument list.

88 Chapter 3. Language Extensions

3

Specifying the Memory Model for a Function

C51 functions normally use the default memory model to determine which
memory space to use for function arguments and local variables. Refer to
“Memory Models” on page 61 for more information.

You may, however, specify which memory model to use for a single function by
including the small, compact, or large function attribute in the function
declaration. For example:

#pragma small /* Default to small model */

extern int calc (char i, int b) large reentrant;
extern int func (int i, float f) large;
extern void *tcp (char xdata *xp, int ndx) small;

int mtest (int i, int y) /* Small model */
 {
 return (i * y + y * i + func(-1, 4.75));
 }

int large_func (int i, int k) large /* Large model */
 {
 return (mtest (i, k) + 2);
 }

The advantage of functions using the SMALL memory model is that the local
data and function argument parameters are stored in the internal 8051 RAM.
Therefore, data access is very efficient. The internal memory is limited,
however. Occasionally, the limited amount of internal data memory available
when using the small model cannot satisfy the requirements of a very large
program, and other memory models must be used. In this situation, you may
declare that a function use a different memory model, as shown above.

By specifying the function model attribute in the function declaration, you can
select which of the three possible reentrant stacks and frame pointers are used.
Stack access in the SMALL model is more efficient than in the LARGE model.

Keil Software — C51 Compiler User’s Guide 89

3

Specifying the Register Bank for a Function

The lowest 32 bytes of all members of the 8051 family are grouped into 4 banks
of 8 registers each. Programs can access these registers as R0 through R7. The
register bank is selected by two bits of the program status word (PSW). Register
banks are useful when processing interrupts or when using a real-time operating
system. Rather than saving the 8 registers, the CPU can switch to a different
register bank for the duration of the interrupt service routine.

The using function attribute is used to specify which register bank a function
uses. For example:

void rb_function (void) using 3
 {
 .
 .
 .
 }

The using attribute takes as an argument an integer constant in the 0 to 3 range
value. Expressions with operators are not allowed, and the using attribute is not
allowed in function prototypes. The using attribute affects the object code of the
function as follows:

! The currently selected register bank is saved on the stack at function entry.

! The specified register bank is set.

! The former register bank is restored before the function is exited.

90 Chapter 3. Language Extensions

3

The following example shows how to specify the using function attribute and
what the generated assembly code for the function entry and exit looks like.

stmt level source

 1
 2 extern bit alarm;
 3 int alarm_count;
 4 extern void alfunc (bit b0);
 5
 6 void falarm (void) using 3 {
 7 1 alarm_count++;
 8 1 alfunc (alarm = 1);
 9 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION falarm (BEGIN)
0000 C0D0 PUSH PSW
0002 75D018 MOV PSW,#018H
 ; SOURCE LINE # 6
 ; SOURCE LINE # 7
0005 0500 R INC alarm_count+01H
0007 E500 R MOV A,alarm_count+01H
0009 7002 JNZ ?C0002
000B 0500 R INC alarm_count
000D ?C0002:
 ; SOURCE LINE # 8
000D D3 SETB C
000E 9200 E MOV alarm,C
0010 9200 E MOV ?alfunc?BIT,C
0012 120000 E LCALL alfunc
 ; SOURCE LINE # 9
0015 D0D0 POP PSW
0017 22 RET
 ; FUNCTION falarm (END)

In the previous example, the code starting at offset 0000h saves the initial PSW
on the stack and sets the new register bank. The code starting at offset 0015h
restores the original register bank by popping the original PSW from the stack.

The using attribute may not be used in functions that return a value in registers.
You must exercise extreme care to ensure that register bank switches are
performed only in carefully controlled areas. Failure to do so may yield
incorrect function results. Even when you use the same register bank, functions
declared with the using attribute cannot return a bit value.

Typically, the using attribute is most useful in functions that also specify the
interrupt attribute. It is most common to specify a different register bank for
each interrupt priority level. Therefore, you could use one register bank for all
non-interrupt code, one for the high-level interrupt, and one for the low-level
interrupt.

Keil Software — C51 Compiler User’s Guide 91

3

Register Bank Access

The C51 compiler allows you to define the default register bank in a function.
The REGISTERBANK control directive allows you to specify which default
register bank to use for all functions in a source file. This directive, however,
does not generate code to switch the register bank.

Upon reset, the 8051 loads the PSW with 00h which selects register bank 0. By
default, all non-interrupt functions use register bank 0. To change this, you
must:

! Modify the startup code to select a different register bank

! Specify the REGISTERBANK control directive along with the new register
bank number

By default, the C51 compiler generates code that accesses the registers R0—R7
using absolute addresses. This is done for maximum performance. Absolute
register accesses are controlled by the AREGS and NOAREGS control
directives. Functions which employ absolute register accesses must not be called
from another function that uses a different register bank. Doing so causes
unpredictable results because the called function assumes that a different register
bank is selected. To make a function insensitive to the current register bank, the
function must be compiled using the NOAREGS control directive. This would
be useful for a function that was called from the main program and also from an
interrupt function that uses a different register bank.

NOTE
The C51 compiler does not and cannot detect a register bank mismatch between
functions. Therefore, make sure that functions using alternate register banks
call only other functions that do not assume a default register bank.

Refer to “Chapter 2. Compiling with C51” on page 3 for more information
regarding the REGISTERBANK, AREGS, and NOARGES directives.

92 Chapter 3. Language Extensions

3

Interrupt Functions

The 8051 and its derivatives provide a number of hardware interrupts that may
be used for counting, timing, detecting external events, and sending and
receiving data using the serial interface. The standard interrupts found on an
8051 are listed in the following table:

Interrupt Number Interrupt Description Address

0 EXTERNAL INT 0 0003h

1 TIMER/COUNTER 0 000Bh

2 EXTERNAL INT 1 0013h

3 TIMER/COUNTER 1 001Bh

4 SERIAL PORT 0023h

As 8051 vendors created new parts, more interrupts were added. The Keil C51
compiler supports interrupt functions for 32 interrupts (0-31). Use the interrupt
vector address in the following table to determine the interrupt number.

Interrupt Number Address Interrupt Number Address

0 0003h 16 0083h

1 000Bh 17 008Bh

2 0013h 18 0093h

3 001Bh 19 009Bh

4 0023h 20 00A3h

5 002Bh 21 00ABh

6 0033h 22 00B3h

7 003Bh 23 00BBh

8 0043h 24 00C3h

9 004Bh 25 00CBh

10 0053h 26 00D3h

11 005Bh 27 00DBh

12 0063h 28 00E3h

13 006Bh 29 00EBh

14 0073h 30 00F3h

15 007Bh 31 00FBh

Keil Software — C51 Compiler User’s Guide 93

3

The C51 compiler provides you with a method of calling a C function when an
interrupt occurs. This support lets you create interrupt service routines in C.
You need only be concerned with the interrupt number and register bank
selection. The compiler automatically generates the interrupt vector and entry
and exit code for the interrupt routine. The interrupt function attribute, when
included in a declaration, specifies that the associated function is an interrupt
function. For example:

unsigned int interruptcnt;
unsigned char second;

void timer0 (void) interrupt 1 using 2 {
 if (++interruptcnt == 4000) { /* count to 4000 */
 second++; /* second counter */
 interruptcnt = 0; /* clear int counter */
 }
}

The interrupt attribute takes as an argument an integer constant in the 0 to 31
value range. Expressions with operators are not allowed, and the interrupt
attribute is not allowed in function prototypes. The interrupt attribute affects
the object code of the function as follows:

! The contents of the SFR ACC, B, DPH, DPL, and PSW, when required, are
saved on the stack at the function invocation time.

! All working registers that are used in the interrupt function are stored on the
stack if a register bank is not specified with the using attribute.

! The working registers and special registers that were saved on the stack are
restored before exiting the function.

! The function is terminated by the 8051 RETI instruction.

94 Chapter 3. Language Extensions

3

The following sample program shows you how to use the interrupt attribute.
The program also shows you what the code generated to enter and exit the
interrupt function looks like. The using function attribute is also used in the
example to select a register bank different from that of the non-interrupt program
code. However, because no working registers are needed in this function, the
code generated to switch the register bank is eliminated by the optimizer.

stmt level source

 1 extern bit alarm;
 2 int alarm_count;
 3
 4
 5 void falarm (void) interrupt 1 using 3 {
 6 1 alarm_count *= 2;
 7 1 alarm = 1;
 8 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION falarm (BEGIN)
0000 C0E0 PUSH ACC
0002 C0D0 PUSH PSW
 ; SOURCE LINE # 5
 ; SOURCE LINE # 6
0004 E500 R MOV A,alarm_count+01H
0006 25E0 ADD A,ACC
0008 F500 R MOV alarm_count+01H,A
000A E500 R MOV A,alarm_count
000C 33 RLC A
000D F500 R MOV alarm_count,A
 ; SOURCE LINE # 7
000F D200 E SETB alarm
 ; SOURCE LINE # 8
0011 D0D0 POP PSW
0013 D0E0 POP ACC
0015 32 RETI
 ; FUNCTION falarm (END)

In the example above, note that the ACC and PSW registers are saved at offset
0000h and restored at offset 0011h. Note also the RETI instruction generated
to exit the interrupt.

Keil Software — C51 Compiler User’s Guide 95

3

The following rules apply to interrupt functions.

! No function arguments may be specified for an interrupt function. The
compiler emits an error message if an interrupt function is declared with any
arguments.

! Interrupt function declarations may not include a return value. They must be
declared as void (see the above examples). The compiler emits an error
message if any attempt is made to define a return value for the interrupt
function. The implicit int return value, however, is ignored by the compiler.

! The compiler recognizes direct invocations of interrupt functions and
summarily rejects them. It is pointless to invoke interrupt procedures
directly, because exiting the procedure causes execution of the RETI
instruction which affects the hardware interrupt system of the 8051 chip.
Because no interrupt request on the part of the hardware existed, the effect of
this instruction is indeterminate and usually fatal. Do not call an interrupt
function indirectly through a function pointer.

! The compiler generates an interrupt vector for each interrupt function. The
code generated for the vector is a jump to the beginning of the interrupt
function. Generation of interrupt vectors can be suppressed by including the
NOINTVECTOR control directive in the C51 command line. In this case,
you must provide interrupt vectors from separate assembly modules. Refer to
the INTVECTOR and INTERVAL control directives for more information
about the interrupt vector table.

! The C51 compiler allows interrupt numbers within the 0 to 31 range. Refer
to your 8051 derivative document to determine which interrupts are available.

! Functions that are invoked from an interrupt procedure must function with the
same register bank as the interrupt procedure. When the NOAREGS
directive is not explicitly specified, the compiler may generate absolute
register accesses using the register bank selected (by the using attribute or by
the REGISTERBANK control) for that function. Unpredictable results may
occur when a function assumes a register bank other than the one currently
selected. Refer to “Register Bank Access” on page 91 for more information.

96 Chapter 3. Language Extensions

3

Reentrant Functions

A reentrant function can be shared by several processes at the same time. When
a reentrant function is executing, another process can interrupt the execution and
then begin to execute that same reentrant function. Normally, functions in C51
cannot be called recursively or in a fashion which causes reentrancy. The reason
for this limitation is that function arguments and local variables are stored in
fixed memory locations. The reentrant function attribute allows you to declare
functions that may be reentrant and, therefore, may be called recursively. For
example:

int calc (char i, int b) reentrant {
 int x;
 x = table [i];
 return (x * b);
}

Reentrant functions can be called recursively and can be called simultaneously
by two or more processes. Reentrant functions are often required in real-time
applications or in situations where interrupt code and non-interrupt code must
share a function.

As in the above example, you may selectively define (using the reentrant
attribute) functions as being reentrant. For each reentrant function, a reentrant
stack area is simulated in internal or external memory depending upon the
memory model used, as follows:

! Small model reentrant functions simulate the reentrant stack in idata
memory.

! Compact model reentrant functions simulate the reentrant stack in pdata
memory.

! Large model reentrant functions simulate the reentrant stack in xdata
memory.

Keil Software — C51 Compiler User’s Guide 97

3

Reentrant functions use the default memory model to determine which memory
space to use for the reentrant stack. You may specify (with the small, compact,
and large function attributes) which memory model to use for a function. Refer
to “Specifying the Memory Model for a Function” on page 88 for more
information about memory models and function declarations.

The following rules apply to functions declared with the reentrant attribute.

! bit type function arguments may not be used. Local bit scalars are also not
available. The reentrant capability does not support bit-addressable variables.

! Reentrant functions must not be called from alien functions.

! Reentrant function cannot use the alien attribute specifier to enable PL/M-51
argument passing conventions.

! A reentrant function may simultaneously have other attributes like using and
interrupt and may include an explicit memory model attribute (small,
compact, large).

! Return addresses are stored in the 8051 hardware stack. Any other required
PUSH and POP operations also affect the 8051 hardware stack.

! Reentrant functions using different memory models may be intermixed.
However, each reentrant function must be properly prototyped and must
include its memory model attribute in the prototype. This is necessary for
calling routines to place the function arguments in the proper reentrant stack.

! Each of the three possible reentrant models contains its own reentrant stack
area and stack pointer. For example, if small and large reentrant functions
are declared in a module, both small and large reentrant stacks are created
along with two associated stack pointers (one for small and one for large).

The reentrant stack simulation architecture is inefficient, but necessary due to a
lack of suitable addressing methods available on the 8051. For this reason, use
reentrant functions sparingly.

The simulated stack used by reentrant functions has its own stack pointer which
is independent of the 8051 stack and stack pointer. The stack and stack pointer
are defined and initialized in the STARTUP.A51 file.

98 Chapter 3. Language Extensions

3

The following table details the stack pointer assembler variable name, data area,
and size for each of the three memory models.

Model Stack Pointer Stack Area

SMALL ?C_IBP (1 Byte) Indirectly accessible internal memory (idata).
256 bytes maximum stack area.

COMPACT ?C_PBP (1 Byte) Page-addressable external memory (pdata).
256 bytes maximum stack area.

LARGE ?C_XBP (2 Bytes) Externally accessible memory (xdata). 64 KBytes
maximum stack area.

The simulated stack area for reentrant functions is organized from top to bottom.
The 8051 hardware stack is just the opposite and is organized bottom to top.
When using the SMALL memory model, both the simulated stack and the 8051
hardware stack share the same memory area but from opposite directions.

The simulated stack and stack pointers are declared and initialized in the C51
startup code in STARTUP.A51 which can be found in the LIB subdirectory. You
must modify the startup code to specify which simulated stack(s) to initialize in
order to use reentrant functions. You can also modify the starting address for the
top of the simulated stack(s) in the startup code. Refer to “STARTUP.A51” on
page 114 for more information on reentrant function stack areas.

Keil Software — C51 Compiler User’s Guide 99

3

Alien Function (PL/M-51 Interface)

C51 lets you call routines written in PL/M-51 from your C programs. You can
access PL/M-51 routines from C by declaring them external along with the alien
function type specifier. For example:

extern alien char plm_func (int, char);

char c_func (void) {
 int i;
 char c;

 for (i = 0; i < 100; i++) {
 c = plm_func (i, c); /* call PL/M func */
 }
 return (c);
}

You may also create functions in C that can be invoked by PL/M-51 routines.
To do this, use the alien function type specifier in the C function declaration.
For example:

alien char c_func (char a, int b) {
 return (a * b);
}

Parameters and return values of PL/M-51 functions may be any of the following
types: bit, char, unsigned char, int, and unsigned int. Other types, including
long, float, and all types of pointers, can be declared in C functions with the
alien type specifier. However, use these types with care because PL/M-51 does
not directly support 32-bit binary integers or floating-point numbers.

Public variables declared in the PL/M-51 module are available to your C
programs by declaring them external like you would for any C variable.

100 Chapter 3. Language Extensions

3

Real-time Function Tasks

The C51 compiler provides support for the RTX51 Full and RTX51 Tiny
real-time multitasking operating systems through use of the _task_ and
priority keywords. The _task_ keyword lets you define a function as a
real-time task. The _priority_ keyword lets you specify the priority for the task.

For example:
void func (void) _task_ num _priority_ pri

where:

num is a task ID number from 0 to 255 for RTX51 Full or 0 to 15
for RTX51 Tiny.

pri is the priority for the task. Refer to the RTX51 User’s Guide
or the RTX51 Tiny User’s Guide for more information.

Task functions must be declared with a void return type and a void argument list.

Keil Software — C51 Compiler User’s Guide 101

4

Chapter 4. Preprocessor
The preprocessor built into the C51 compiler handles directives found in the
source file. C51 supports all of the ANSI Standard C directives. This chapter
gives a brief overview of the directives and elements provided by the
preprocessor.

Directives

Preprocessor directives must be the first non-whitespace text specified on a line.
All directives are prefixed with the pound or number-sign character (‘#’). For
example:

#pragma
#include <stdio.h>
#define DEBUG 1

The following table lists the preprocessor directives and gives a brief description
of each.

Directive Description

define Defines a preprocessor macro or constant.

elif Initiates an alternative branch of the if condition, when the previous if, ifdef, ifndef,
or elif branch was not taken.

else Initiates an alternative branch when the previous if, ifdef, or ifndef branch was not
taken.

endif Ends an if, ifdef, ifndef, elif, or else block.

error Outputs an error message defined by the user. This directive instructs the
compiler to emit the specified error message.

ifdef Evaluates an expression for conditional compilation. The argument to be evaluated
is the name of a definition.

ifndef Same as ifdef but the evaluation succeeds if the definition is not defined.

if Evaluates an expression for conditional compilation.

include Reads source text from an external file. The notation sequence determines the
search sequence of the included files. C51 searches for include files specified
with less-than/greater-than symbols (‘<’ ‘>’) in the include file directory. C51
searches for include files specified with double-quotes (“ “) in the current directory.

line Specifies a line number together with an optional filename. These specifications
are used in error messages to identify the error position.

pragma Allows you to specify control directives that may be included on the C51 command
line. Pragmas may contain the same control directives that are specified on the
command line.

undef Deletes a preprocessor macro or constant definition.

102 Chapter 4. Preprocessor

4

Stringize Operator

The stringize or number-sign operator (‘#’), when used within a macro
definition, converts a macro parameter into a string constant. This operator may
be used only in a macro that has a specified argument or parameter list.

When the stringize operator immediately precedes the name of one of the macro
parameters, the parameter passed to the macro is enclosed within quotation
marks and is treated as a string literal. For example:

#define stringer(x) printf (#x "\n")

stringer (text)

results in the following actual output from the preprocessor.

printf ("text\n")

The expansion shows that the parameter is converted literally as if it were a
string. When the preprocessor stringizes the x parameter, the resulting line is:

printf ("text" "\n")

Because strings separated by whitespace are concatenated at compile time, these
two strings are combined into "text\n".

If the string passed as a parameter contains characters that should normally be
literalized or escaped (for example, " and \), the required \ character is
automatically added.

Keil Software — C51 Compiler User’s Guide 103

4

Token-pasting Operator

The token-pasting operator (##) within a macro definition combines two
arguments. It permits two separate tokens in the macro definition to be joined
into a single token.

If the name of a macro parameter used in the macro definition is immediately
preceded or followed by the token-pasting operator, the macro parameter and the
token-pasting operator are replaced by the value of the passed parameter. Text
that is adjacent to the token-pasting operator that is not the name of a macro
parameter is not affected. For example:

#define paster(n) printf ("token" #n " = %d", token##n)

paster (9);

results in the following actual output from the preprocessor.

printf ("token9 = %d", token9);

This example shows the concatenation of token##n into token9. Both the
stringize and the token-pasting operators are used in this example.

104 Chapter 4. Preprocessor

4

Predefined Macro Constants

C51 provides you with predefined constants to use in preprocessor directives and
C code for more portable programs. The following table lists and describes each
one.

Constant Description

_ _C51_ _ Version number of the C51 compiler (for example, 300 for version 3.00).

_ _DATE_ _ Date when the compilation was started.

_ _FILE_ _ Name of the file being compiled.

_ _LINE_ _ Current line number in the file being compiled.

_ _MODEL_ _ Memory model selected (0 for small, 1 for compact, 2 for large).

_ _TIME_ _ Time when the compilation was started.

__STDC_ _ Defined to 1 to indicate full conformance with the ANSI C Standard.

Keil Software — C51 Compiler User’s Guide 105

5

Chapter 5. 8051 Derivatives
A number of 8051 derivatives are available that provide enhanced performance
while remaining compatible with the 8051 core. These derivatives provide
additional data pointers, very fast math operations, and reduced instruction sets.

The C51 compiler directly supports the enhanced features of the following
8051-based microcontrollers:

! AMD 80C321, 80C521, and 80C541 (2 data pointers).

! Dallas 80C320, 80C520, and 80C530 (2 data pointers).

! Phillips/Signetics 8xC750, 8xC751, and 8xC752 (maximum code space of
2 KBytes, no LCALL or LJMP instructions, 64 bytes internal, no external
data memory).

! Siemens 80C517 and 80C537 (high-speed 32-bit and 16-bit binary arithmetic
operations, 8 data pointers).

The C51 compiler provides you with support for these CPUs through the use of
special libraries, library routines, and the command-line directives MODDP2
and MOD517. These directives enable C51 to generate object code that takes
advantage of the enhancements mentioned above. Refer to “Chapter 3.
Language Extensions” on page 57 for more information about these directives.

106 Chapter 5. 8051 Derivatives

5

AMD 80C321, 80C521, and 80C541

The AMD 80C321, 80C521, and 80C541 provide 2 data pointers which can be
used for memory access. Using multiple data pointers can improve the speed of
library functions like memcpy, memmove, memcmp, strcpy, and strcmp.

The MODDP2 control directive instructs the C51 compiler to generate code that
uses both data pointers in your program.

The C51 compiler uses at least one data pointer in an interrupt function. If an
interrupt function is compiled using the MODDP2 directive, both data pointers
are saved on the stack. This happens even if the interrupt function uses only one
data pointer.

To conserve stack space, you may compile interrupt functions with the
NOMODDP2 directive. The C51 compiler does not use the second data pointer
when this directive is used.

Dallas 80C320, 80C520, and 80C530

The Dallas Semiconductor 80C320, 80C520, and 80C530 provide 2 data pointers
which can be used for memory access. Using multiple data pointers can improve
the speed of library functions like memcpy, memmove, memcmp, strcpy, and
strcmp.

The MODDP2 control directive instructs the C51 compiler to generate code that
uses both data pointers in your program.

The C51 compiler uses at least one data pointer in an interrupt function. If an
interrupt function is compiled using the MODDP2 directive, both data pointers
are saved on the stack. This happens even if the interrupt function uses only one
data pointer.

To conserve stack space, you may compile interrupt functions with the
NOMODDP2 directive. The C51 compiler does not use the second data pointer
when this directive is used.

Keil Software — C51 Compiler User’s Guide 107

5

Siemens 80C517 and 80C537

The Siemens 80C517 and 80C537 provide high-speed 32-bit and 16-bit
arithmetic operations as well as 8 data pointers which can be used for memory
access. Using the high-speed arithmetic unit improves the performance of many
int, long, and float operations.

The MOD517 control directive instructs the C51 compiler to generate code that
utilizes the advanced features of these CPUs.

Data Pointers

The Siemens 80C517 and 80C537 provide 8 data pointers which can be used to
improve memory accesses. Using multiple data pointers can improve the
execution of library functions such as: memcpy, memmove, memcmp, strcpy,
and strcmp. The 8 data pointers of the 80C517 and 80C537 can also reduce the
stack load of interrupt functions.

C51 uses only 2 of the 8 data pointers of the 80C517 at a time. In order to keep
the stack load in the interrupt routines low, C51 switches to 2 unused data
pointers when switching the register bank. In this case, the contents of the
register DPSEL are saved on the stack, and a new pair of data pointers is
selected. Saving the data pointers on the stack is no longer required.

If an interrupt routine does not switch to another register bank (for example, the
function is declared without the using attribute), the data pointers must be saved
on the stack (using 4 bytes of stack space). To keep the size of the stack as small
as possible, use the MOD517(NODP8) directive to compile the interrupt routine
and the functions called from within the interrupt. This generates code for the
interrupt that uses only one data pointer and, therefore, only 2 bytes of stack
space.

108 Chapter 5. 8051 Derivatives

5

High-speed Arithmetic

C51 uses the 32-bit and 16-bit arithmetic operations of the 80C517 to improve
performance of a number of math-intensive operations. C language programs
execute considerably faster when using either of these CPUs.

The following tables show execution times for various arithmetic operations and
compare the performance of the standard 8051 to that of the 80C517 CPU.

16-bit Binary Integer Operations

Operation CPU Routine Min. Avg. Max.

Signed/unsigned multiplication 8051
80517

IMUL
intrinsic

29
17

29
17

29
17

Unsigned division 8051
80517

UIDIV
UIDIV517

16
22

128
22

153
22

Signed division 8051
80517

SIDIV
SIDIV517

53
35

141
52

181
60

Times are shown in CPU cycles.

32-bit Binary Integer Operations

Operation CPU Routine Min. Avg. Max.

Signed/unsigned multiplication 8051
80517

LMUL
LMUL517

106
62

106
62

106
62

Unsigned division 8051
80517

ULDIV
ULDIV517

227
36

497
52

650
101

Signed division 8051
80517

SLDIV
SLDIV517

267
49

564
75

709
141

Left shift 8051
80517

LSHL
LSHL517

5
5

237
28

470
29

Unsigned right shift 8051
80517

ULSHR
ULSHR517

5
5

237
29

470
30

Signed right shift 8051
80517

SLSHR
—

5
—

237
—

470
—

Times are shown in CPU cycles.

Keil Software — C51 Compiler User’s Guide 109

5

Floating-point Operations

Operation CPU Routine Min. Avg. Max.

Addition 8051
80517

FPADD
FPADD517

8
8

107
107

202
202

Subtraction 8051
80517

FPSUB
FPSUB517

11
11

113
113

214
214

Multiplication 8051
80517

FPMUL
FPMUL517

13
13

114
86

198
141

Division 8051
80517

FPDIV
FPDIV517

48
48

687
165

999
209

Comparison 8051
80517

FPCMP
FPCMP517

42
42

54
54

59
59

Square root 8051
80517

SQRT
SQRT517

12
12

1936
755

2360
882

Sine 8051
80517

SIN
SIN517

1565
1422

2928
2519

3476
3048

Cosine 8051
80517

COS
COS517

1601
1458

2921
2514

3665
3180

Tangent 8051
80517

TAN
TAN517

1982
1839

4966
3753

5699
4329

Arcsine 8051
80517

ASIN
ASIN517

912
912

6991
3984

8554
4717

Arccosine 8051
80517

ACOS
ACOS517

796
796

7578
4255

8579
4871

Arctangent 8051
80517

ATAN
ATAN517

1069
1037

3320
2444

3712
2737

Exponential 8051
80517

EXP
EXP517

233
176

3314
2879

5308
4724

Natural Logarithm 8051
80517

LOG
LOG517

32
32

3432
2405

4128
2926

Common Logarithm 8051
80517

LOG10
LOG10517

34
34

3607
2530

4328
3069

ASCII to float conversion 8051
80517

FPATOF
FPATOF517

960
722

3006
2202

5611
4144

Times are shown in CPU cycles.

110 Chapter 5. 8051 Derivatives

5

NOTES
The execution times specified in the preceding tables do not take access times for
variables or stack operations into consideration. Actual processing times may
consume up to 100 additional cycles depending on the stack load and address
space used.

When using the arithmetic features of the 80C517 and 80C537, note that
operations involving the arithmetic processor are exclusive and may not be
interrupted. Do not use the arithmetic extensions in both the main program and
an interrupt service routine.

Use the following suggestions to help guarantee that only one thread of
execution uses the arithmetic processor:

! Use the MOD517 directive to compile functions which are guaranteed to
execute only in the main program or functions used by one interrupt service
routine, but not both.

! Compile all remaining functions with the MOD517(NOAU) directive.

Library Routines

The extra features of the 80C517 and 80C537 are used in several library routines
to enhance performance. These routines are listed below and are described in
detail in “Chapter 8. Library Reference” on page 175.

acos517
asin517
atan517
atof517
cos517

exp517
log10517
log517
printf517
scanf517

sin517
sprintf517
sqrt517
sscanf517
tan517

Keil Software — C51 Compiler User’s Guide 111

5

Philips/Signetics 8xC750, 8xC751, and
8xC752

The Philips/Signetics 8xC750, 8xC751, and 8xC752 derivatives support a
maximum of 2 KBytes of internal program memory. The CPU cannot execute
LCALL and LJMP instructions. The following must be considered when using
these devices:

! A special library, 80C751.LIB, which does not use these instructions is
necessary for these devices.

! The C51 compiler must be set to avoid using LJMP and LCALL
instructions. This is accomplished using the ROM(SMALL) directive.

Note that the following restrictions apply when creating programs for the
8xC750, 8xC751, and 8xC752:

! Stream functions such as printf and putchar may not be used. These
functions are usually not necessary for this chip because it is only equipped
with a maximum of 2 KBytes and has no serial interface.

! Floating-point operations may not be used. Only operations using char,
unsigned char, int, unsigned int, long, unsigned long, and bit data types
are allowed.

! The C51 compiler must be invoked with the ROM(SMALL) control
directive. This control statement instructs the C51 compiler to use only
AJMP and ACALL instructions.

! The library file 80C751.LIB must be included in the input module list of the
linker. For example:

BL51 myprog.obj, startup751.obj, 80C751.LIB

! A special startup module, START751.A51, is required. This file contains
startup code that is comparable to that found in STARTUP.A51, but contains
no LJMP or LCALL instructions. Refer to “Customization Files” on page
113 for more information.

112 Chapter 5. 8051 Derivatives

5

Keil Software — C51 Compiler User’s Guide 113

6

Chapter 6. Advanced Programming
Techniques

This chapter describes advanced programming information that the experienced
software engineer will find invaluable. Knowledge of most of these topics is not
necessary to successfully create an embedded 8051 target program using the C51
compiler. However, the following sections provide insight into how many
non-standard procedures can be accomplished (for example, interfacing to
PL/M-51). This chapter discusses the following topics:

! Files you can alter to customize the startup procedures or run-time execution
of several library routines in your target program

! The conventions C51 uses to name code and data segments

! How to interface C51 functions to assembly and PL/M-51 routines

! Data storage formats for the different C51 data types

! Different optimizing features of the C51 optimizing compiler

Customization Files

The C51 compiler includes a number of source files you can modify to adapt
your target program to a specific hardware platform. These files contain: code
that is executed upon startup (STARTUP.A51), code that is used to initialize static
variables (INIT.A51), and code that is used to perform low-level stream I/O
(GETKEY.C and PUTCHAR.C). Source code for the memory allocation routines
is also included in the files CALLOC.C, FREE.C, INIT_MEM.C, MALLOC.C, and
REALLOC.C. All of these source files are described in detail in the sections that
follow.

The code contained in these files is already compiled or assembled and included
in the C library. When you link, the code from the library is automatically
included.

To include custom startup or initialization routines, you must include them in the
linker command line. The following example shows you how to include custom
replacement files for STARTUP.A51 and PUTCHAR.C.

BL51 MYMODUL1.OBJ, MYMODUL2.OBJ, STARTUP.OBJ, PUTCHAR.OBJ

114 Chapter 6. Advanced Programming Techniques

6

STARTUP.A51

The STARTUP.A51 file contains the startup code for a C51 target program. This
source file is located in the LIB directory. Include a copy of this file in each
8051 project that needs custom startup code.

This code is executed immediately upon reset of the target system and optionally
performs the following operations, in order:

! Clears internal data memory

! Clears external data memory

! Clears paged external data memory

! Initializes the small model reentrant stack and pointer

! Initializes the large model reentrant stack and pointer

! Initializes the compact model reentrant stack and pointer

! Initializes the 8051 hardware stack pointer

! Transfers control to the main C function

The STARTUP.A51 file provides you with assembly constants that you may
change to control the actions taken at startup. These are defined in the following
table.

Constant Name Description

IDATALEN Indicates the number of bytes of idata that are to be initialized to 0.
The default is 80h because most 8051 derivatives contain at least
128 bytes of internal data memory. Use a value of 100h for the
8052 and other derivatives that have 256 bytes of internal data
memory.

XDATASTART Specifies the xdata address to start initializing to 0.

XDATALEN Indicates the number of bytes of xdata to be initialized to 0. The
default is 0.

PDATASTART Specifies the pdata address to start initializing to 0.

PDATALEN Indicates the number of bytes of pdata to be initialized to 0. The
default is 0.

IBPSTACK Indicates whether or not the small model reentrant stack pointer
(?C_IBP) should be initialized. A value of 1 causes this pointer to
be initialized. A value of 0 prevents initialization of this pointer. The
default is 0.

Keil Software — C51 Compiler User’s Guide 115

6

Constant Name Description

IBPSTACKTOP Specifies the top start address of the small model reentrant stack
area. The default is 0xFF in idata memory.

C51 does not check to see if the stack area available satisfies the
requirements of the applications. It is your responsibility to perform
such a test.

XBPSTACK Indicates whether or not the large model reentrant stack pointer
(?C_XBP) should be initialized. A value of 1 causes this pointer to
be initialized. A value of 0 prevents initialization of this pointer. The
default is 0.

XBPSTACKTOP Specifies the top start address of the large model reentrant stack
area. The default is 0xFFFF in xdata memory.

C51 does not check to see if the available stack area satisfies the
requirements of the applications. It is your responsibility to perform
such a test.

PBPSTACK Indicates whether the compact model reentrant stack pointer
(?C_PBP) should be initialized. A value of 1 causes this pointer to
be initialized. A value of 0 prevents initialization of this pointer. The
default is 0.

PBPSTACKTOP Specifies the top start address of the compact model reentrant stack
area. The default is 0xFF in pdata memory.

C51 does not check to see if the available stack area satisfies the
requirements of the applications. It is your responsibility to perform
such a test.

PPAGEENABLE Enables (a value of 1) or disables (a value of 0) the initialization of
port 2 of the 8051 device. The default is 0. The addressing of port 2
allows the mapping of 256 byte variable memory in any arbitrary
xdata page.

PPAGE Specifies the value to write to Port 2 of the 8051 for pdata memory
access. This value represents the xdata memory page to use for
pdata. This is the upper 8 bits of the absolute address range to use
for pdata.

For example, if the pdata area begins at address 1000h (page 10h)
in the xdata memory, PPAGEENABLE should be set to 1, and
PPAGE should be set to 10h. The BL51 Linker/Locator must
contain a value between 1000h and 10FFh in the PDATA control
directive. For example:

BL51 <input modules> PDATA (1050H)

Neither BL51 nor C51 checks to see if the PDATA control directive
and the PPAGE assembler constant are correctly specified. You
must ensure that these parameters contain suitable values.

The following is a listing of STARTUP.A51.

;---
; This file is part of the C51 Compiler package
;---
; STARTUP.A51: This code is executed after processor reset.
;
; To translate this file use A51 with the following invocation:
;
; A51 STARTUP.A51

116 Chapter 6. Advanced Programming Techniques

6

;
; To link the modified STARTUP.OBJ file to your application use
; the following BL51 invocation:
;
; BL51 <your object file list>, STARTUP.OBJ <controls>
;
;---
; User-defined Power-On Initialization of Memory
;
; With the following EQU statements the initialization of memory
; at processor reset can be defined:
;
; the absolute start-address of IDATA memory is always 0
IDATALEN EQU 80H ; the length of IDATA memory in bytes.
;
XDATASTART EQU 0H ; the absolute start-address of XDATA memory
XDATALEN EQU 0H ; the length of XDATA memory in bytes.
;
PDATASTART EQU 0H ; the absolute start-address of PDATA memory
PDATALEN EQU 0H ; the length of PDATA memory in bytes.
;
; Notes: The IDATA space overlaps physically the DATA and BIT
; areas of the 8051 CPU. At minimum the memory space occupied from
; the C-51 run-time routines must be set to zero.
;---
; Reentrant Stack Initialization
;
; The following EQU statements define the stack pointer for
; reentrant functions and initialized it:
;
; Stack Space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.
IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the LARGE model.
XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
XBPSTACKTOP EQU 0FFFFH+1 ; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the COMPACT model.
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
PBPSTACKTOP EQU 0FFFFH+1 ; set top of stack to highest location+1.
;---
; Page Definition for Using the Compact Model with 64 KByte xdata
; RAM
;
; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used
; in the linker invocation.
;
PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.
PPAGE EQU 0 ; define PPAGE number.
;---
 NAME ?C_STARTUP

?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA

 RSEG ?STACK
 DS 1

 EXTRN CODE (?C_START)

Keil Software — C51 Compiler User’s Guide 117

6

 PUBLIC ?C_STARTUP

 CSEG AT 0
?C_STARTUP: LJMP STARTUP1

 RSEG ?C_C51STARTUP
STARTUP1:

IF IDATALEN <> 0
 MOV R0,#IDATALEN - 1
 CLR A
IDATALOOP: MOV @R0,A
 DJNZ R0,IDATALOOP
ENDIF

IF XDATALEN <> 0
 MOV DPTR,#XDATASTART
 MOV R7,#LOW (XDATALEN)
 IF (LOW (XDATALEN)) <> 0
 MOV R6,#(HIGH XDATALEN) +1
 ELSE
 MOV R6,#HIGH (XDATALEN)
 ENDIF
 CLR A
XDATALOOP: MOVX @DPTR,A
 INC DPTR
 DJNZ R7,XDATALOOP
 DJNZ R6,XDATALOOP
ENDIF

IF PPAGEENABLE <> 0
 MOV P2,#PPAGE
ENDIF

IF PDATALEN <> 0
 MOV R0,#PDATASTART
 MOV R7,LOW (PDATALEN)
 CLR A
PDATALOOP: MOVX @R0,A
 INC R0
 DJNZ R7,PDATALOOP
ENDIF

IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)

 MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF

IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)

 MOV ?C_XBP,#HIGH XBPSTACKTOP
 MOV ?C_XBP+1,#LOW XBPSTACKTOP
ENDIF

IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)
 MOV ?C_PBP,#LOW PBPSTACKTOP
ENDIF

118 Chapter 6. Advanced Programming Techniques

6

 MOV SP,#?STACK-1
 LJMP ?C_START

 END

START751.A51

The START751.A51 file contains the startup code for a C51 target program that is
to run on the Signetics 8xC751 CPU. This source file is located in the LIB

directory. To use this file, follow the instructions on how to use STARTUP.A51 in
the previous section. The only difference between the two files is that
START751.A51 is specifically used for the 8xC751 which cannot access more
than 2 KBytes of code space and can access no external data memory. For these
reasons, there are no assembler constants that can affect xdata and pdata
memory.

The following is a listing of START751.A51.

;---
; This file is part of the C51 Compiler package
;
;---
; START751.A51: This code is executed after processor reset.
;
; To translate this file use A51 with the following invocation:
;
; A51 START751.A51
;
; To link the modified START751.OBJ file to your application use the
; following BL51 invocation:
;
; BL51 <your object file list>, START751.OBJ <controls>
;
;---
;
; User-defined Power-On Initialization of Memory
;
; With the following EQU statements the initialization of memory
; at processor reset can be defined:
;
; the absolute start-address of IDATA memory is always 0
IDATALEN EQU 40H ; the length of IDATA memory in bytes.
;
; Notes: The IDATA space physically overlaps the DATA and BIT areas of
; the 80751 CPU. At minimum the memory space occupied by C51
; run-time routines must be set to zero.
;---
;
; Reentrant Stack Initialization
;
; The following EQU statements define the stack pointer for reentrant
; functions and initialized it:

Keil Software — C51 Compiler User’s Guide 119

6

;
; Stack Space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.
IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1.
;
;---

 NAME ?C_STARTUP

?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA

 RSEG ?STACK
 DS 1

 EXTRN CODE (?C_START)
 PUBLIC ?C_STARTUP

 CSEG AT 0
?C_STARTUP: AJMP STARTUP1

 RSEG ?C_C51STARTUP

STARTUP1:

IF IDATALEN <> 0
 MOV R0,#IDATALEN - 1
 CLR A
IDATALOOP: MOV @R0,A
 DJNZ R0,IDATALOOP
ENDIF

IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)

 MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF

 MOV SP,#?STACK-1
 AJMP ?C_START

 END

120 Chapter 6. Advanced Programming Techniques

6

INIT.A51

The INIT.A51 file contains the initialization routine for variables that were
explicitly initialized. If your system is equipped with a watchdog timer, you can
integrate a watchdog refresh into the initialization code using the watchdog
macro. This macro need be defined only if the initialization takes longer than
the watchdog cycle time. If you are using an 80515, the macro could be defined
as follows:

WATCHDOG MACRO
 SETB WDT
 SETB SWDT
 ENDM

The following is a partial listing of INIT.A51.

;---
; This file is part of the C51 Compiler package
;---
; INIT.A51: This code is executed, if the application program contains
; initialized variables at file level.
;
; To translate this file use A51 with the following invocation:
;
; A51 INIT.A51
;
; To link the modified INIT.OBJ file to your application use the following
; BL51 invocation:
;
; BL51 <your object file list>, INIT.OBJ <controls>
;
;---
; User-defined Watch-Dog Refresh.
;
; If the C application contains many initialized variables & uses a
; watchdog it might be possible that the user has to include a watchdog
; refresh into the initialization process. The watchdog refresh routine
; can be defined in the following MACRO and can alter all CPU registers
; except DPTR.

WATCHDOG MACRO
 ; Include any Watchdog refresh code here
 ENDM
;---
?C_START:
 MOV DPTR,#?C_INITSEG
LOOP:
 WATCHDOG
 CLR A
 MOV R6,#1
 MOVC A,@A+DPTR
 JZ INITEND
.
.
.

Keil Software — C51 Compiler User’s Guide 121

6

INIT751.A51

The INIT751.A51 file contains the initialization routine for variables that were
explicitly initialized. Use this initialization routine for the Signetics 8xC751.
The following is a listing of the INIT751.A51 file.

;---
; This file is part of the C51 Compiler package
;
;---
; INIT751.A51: This code is executed, if the application program
; contains initialized variables at file level.
;
; To translate this file use A51 with the following invocation:
;
; A51 INIT751.A51
;
; To link the modified INIT.OBJ file to your application use the
; following BL51 invocation:
;
; BL51 <your object file list>, INIT751.OBJ <controls>
;
;---

 NAME ?C_INIT

?C_C51STARTUP SEGMENT CODE
?C_INITSEG SEGMENT CODE ; Segment with Initializing Data

EXTRN CODE (?C_INITSEGSTART)

 EXTRN CODE (MAIN)
 PUBLIC ?C_START

 RSEG ?C_C51STARTUP
INITEND: AJMP MAIN

IorPData: ; If CY=1 PData Values
 CLR A
 MOVC A,@A+DPTR
 INC DPTR
 MOV R0,A ; Start Address
IorPLoop: CLR A
 MOVC A,@A+DPTR
 INC DPTR
 MOV @R0,A
Common: INC R0
 DJNZ R7,IorPLoop
 SJMP Loop

Bits: CLR A
 MOVC A,@A+DPTR
 INC DPTR
 MOV R0,A
 ANL A,#007H
 ADD A,#Table-LoadTab

122 Chapter 6. Advanced Programming Techniques

6

 XCH A,R0
 CLR C
 RLC A ; Bit Condition to Carry
 SWAP A
 ANL A,#00FH
 ORL A,#20H ; Bit Address
 XCH A,R0 ; convert to Byte Address
 MOVC A,@A+PC
LoadTab: JC SetIt
 CPL A
 ANL A,@R0
 SJMP BitReady
SetIt: ORL A,@R0
BitReady: MOV @R0,A
 DJNZ R7,Bits
 SJMP Loop

Table: DB 00000001B
 DB 00000010B
 DB 00000100B
 DB 00001000B
 DB 00010000B
 DB 00100000B
 DB 01000000B
 DB 10000000B

?C_START: MOV DPTR,#?C_INITSEGSTART
LOOP: CLR A
 MOV R6,#1
 MOVC A,@A+DPTR
 JZ INITEND
 INC DPTR
 MOV R7,A
 ANL A,#3FH
 JNB ACC.5,NOBIG
 ANL A,#01FH
 MOV R6,A
 CLR A
 MOVC A,@A+DPTR
 INC DPTR
 JZ NOBIG
 INC R6
NOBIG: XCH A,R7
 ANL A,#0C0H ; Typ is in Bit 6 and Bit 7
 ADD A,ACC
 JZ IorPDATA
 JC Bits
 SJMP $

 RSEG ?C_INITSEG
 DB 0

 END

Keil Software — C51 Compiler User’s Guide 123

6

PUTCHAR.C

This file contains the putchar function which is the low-level character output
routine for the stream I/O routines. All stream routines that output character data
do so through this routine. You may adapt this routine to your individual
hardware (for example, LCD or LED displays).

The default PUTCHAR.C file delivered with the C51 compiler outputs characters
via the serial interface. An XON/XOFF protocol is used for flow control.
Linefeed characters (‘\n’) are automatically converted into carriage
return/linefeed sequences (‘\r\n’).

GETKEY.C

This file contains the _getkey function which is the low-level character input
routine for the stream I/O routines. All stream routines that input character data
do so through this routine. You may adapt this routine to your individual
hardware (for example, for matrix keyboards). The default GETKEY.C file
delivered with the C51 compiler reads a character via the serial interface. No
data conversions are performed.

CALLOC.C

This file contains the source code for the calloc function. This routine allocates
memory for an array from the memory pool.

FREE.C

This file contains the source code for the free function. This routine returns a
previously allocated memory block to the memory pool.

INIT_MEM.C

This file contains the source code for the init_mempool function. This routine
allows you to specify the location and size of a memory pool from which
memory may be allocated using the malloc, calloc, and realloc functions.

124 Chapter 6. Advanced Programming Techniques

6

MALLOC.C

This file contains the source code for the malloc function. This routine allocates
memory from the memory pool.

REALLOC.C

This file contains the source code for the realloc function. This routine resizes a
previously allocated memory block.

Keil Software — C51 Compiler User’s Guide 125

6

Optimizer

The C51 compiler is an optimizing compiler. This means that the compiler takes
certain steps to ensure that the code that is generated and output to the object file
is the most efficient (smaller and/or faster) code possible. The compiler analyzes
the generated code to produce more efficient instruction sequences. This ensures
that your C51 program runs as quickly as possible.

The C51 compiler provides six different levels of optimizing. Each increasing
level includes the optimizations of the levels below it.

Level Description

0 Constant Folding: The compiler performs calculations that reduce expressions to
numeric constants, where possible. This includes calculations of run-time addresses.

Simple Access Optimizing: The compiler optimizes access of internal data and bit
addresses in the 8051 system.

Jump Optimizing: The compiler always extends jumps to the final target. Jumps to
jumps are deleted.

1 Dead Code Elimination: Unused code fragments and artifacts are eliminated.

Jump Negation: Conditional jumps are closely examined to see if they can be
streamlined or eliminated by the inversion of the test logic.

2 Data Overlaying: Data and bit segments suitable for static overlay are identified and
internally marked. The BL51 Linker/Locator has the capability, through global data
flow analysis, of selecting segments which can then be overlaid.

3 Peephole Optimizing: Redundant MOV instructions are removed. This includes
unnecessary loading of objects from the memory as well as load operations with
constants. Complex operations are replaced by simple operations when memory
space or execution time can be saved.

4 Register Variables: Automatic variables and function arguments are located in
registers when possible. Reservation of data memory for these variables is omitted.

Extended Access Optimizing: Variables from the IDATA, XDATA, PDATA and
CODE areas are directly included in operations. The use of intermediate registers is
not necessary most of the time.

Local Common Subexpression Elimination: If the same calculations are performed
repetitively in an expression, the result of the first calculation is saved and used further
whenever possible. Superfluous calculations are eliminated from the code.

Case/Switch Optimizing: Code involving switch and case statements is optimized as
jump tables or jump strings.

5 Global Common Subexpression Elimination: Identical sub expressions within a
function are calculated only once when possible. The intermediate result is stored in a
register and used instead of a new calculation.

Simple Loop Optimizing: Program loops that fill a memory range with a constant are
converted and optimized.

126 Chapter 6. Advanced Programming Techniques

6

Level Description

6 Loop Rotation: Program loops are rotated if the resulting program code is faster and
more efficient.

General Optimizations

Optimization Description

Constant Folding Several constant values occurring in an expression or
address calculation are combined as a constant.

Jump Optimizing Jumps are inverted or extended to the final target address
when the program efficiency is thereby increased.

Dead Code Elimination Code which cannot be reached (dead code) is removed from
the program.

Register Variables Automatic variables and function arguments are located in
registers when possible. Reservation of data memory for
these variables is omitted.

Parameter Passing Via Registers A maximum of three function arguments can be passed in
registers.

Global Common Subexpression
Elimination

Identical subexpressions or address calculations that occur
multiple times in a function are recognized and calculated
only once when possible.

8051-Specific Optimizations

Optimization Description

Peephole Optimization Complex operations are replaced by simplified operations when
memory space or execution time can be saved as a result.

Extended Access Optimizing Constants and variables are included directly in operations.

Data Overlaying Data and bit segments of functions are identified as
OVERLAYABLE and are overlaid with other data and bit
segments by the BL51 Linker/Locator.

Case/Switch Optimizing Any switch and case statements are optimized by using a jump
table or string of jumps.

Options for Code Generation

Optimization Description

OPTIMIZE(SIZE) Common C operations are replaced by subprograms. Program code
is thereby reduced.

NOAREGS C51 no longer uses absolute register access. Program code is
independent of the register bank.

Keil Software — C51 Compiler User’s Guide 127

6

Optimization Description

NOREGPARMS Parameter passing is always performed in local data segments. The
program code is compatible to earlier versions of C51.

128 Chapter 6. Advanced Programming Techniques

6

Segment Naming Conventions

Objects generated by the C51 compiler (program code, program data, and
constant data) are stored in segments which are units of code or data memory. A
segment may be relocatable or may be absolute. Each relocatable segment has a
type and a name. This section describes the conventions used by C51 for naming
these segments.

Segment names include a module_name. The module_name is the name of the
source file in which the object is declared and excludes the drive letter, path
specification, and file extension. In order to accommodate a wide variety of
existing software and hardware tools, all segment names are converted and
stored in uppercase.

Each segment name has a prefix that corresponds to the memory type used for
the segment. The prefix is enclosed in question marks (?). The following is a
list of the standard segment name prefixes:

Segment Prefix Data Type Description

?PR? code Executable program code

?CO? code Constant data in program memory

?XD? xdata External data memory

?DT? data Internal data memory

?ID? idata Indirectly-addressable internal data memory

?BI? bit Bit data in internal data memory

?BA? bdata Bit-addressable data in internal data memory

?PD? pdata Paged data in external data memory

Data Objects

Data objects are the variables and constants you declare in your C programs.
C51 generates a separate segment for each memory type for which a variable is
declared. The following table lists the segment names generated for different
variable data objects.

Segment Name Description

?CO?module_name Constants (strings and initialized variables)

?XD?module_name Objects declared in xdata

?DT?module_name Objects declared in data

?ID?module_name Objects declared in idata

Keil Software — C51 Compiler User’s Guide 129

6

Segment Name Description

?BI?module_name bit objects

?BA?module_name Bit-addressable data objects

?PD?module_name Objects declared in pdata

Program Objects

Program objects include the code generated for C program functions by the C51
compiler. Each function in a source module is assigned a separate code segment
using the ?PR?function_name?module_name naming convention. For example,
the function error_check in the file SAMPLE.C would result in a segment name
of ?PR?ERROR_CHECK?SAMPLE.

Segments are also created for local variables that are declared within the body of
a function. These segment names follow the above conventions and have a
different prefix depending upon the memory area in which the local variables are
stored.

Function arguments were historically passed using fixed memory locations. This
is still true for routines written in PL/M-51. However, C51 can pass up to 3
function arguments in registers. Other arguments are passed using the traditional
fixed memory areas. Memory space is reserved for all function arguments
regardless of whether or not some of these arguments may be passed in registers.
The parameter areas must be publicly known to any calling module. So, they are
publicly defined using the following segment names:

?function_name?BYTE
?function_name?BIT

For example, if func1 is a function that accepts both bit arguments as well as
arguments of other data types, the bit arguments are passed starting at
?FUNC1?BIT, and all other parameters are passed starting at ?FUNC1?BYTE.
Refer to “Interfacing C Programs to Assembler” on page 131 for examples of the
function argument segments.

Functions that have parameters, local variables, or bit variables contain all
additional segments for these variables. These segments can be overlaid by the
BL51 Linker/Locator.

130 Chapter 6. Advanced Programming Techniques

6

They are created as follows based on the memory model used.

Small model segment naming conventions

Information Segment Type Segment Name

Program code code ?PR?function_name?module_name

Local variables data ?DT?function_name?module_name

Local bit variables bit ?BI?function_name?module_name

Compact model segment naming conventions

Information Segment Type Segment Name

Program code code ?PR?function_name?module_name

Local variables pdata ?PD?function_name?module_name

Local bit variables bit ?BI?function_name?module_name

Large model segment naming conventions

Information Segment Type Segment Name

Program code code ?PR?function_name?module_name

Local variables xdata ?XD?function_name?module_name

Local bit variables bit ?BI?function_name?module_name

The names for functions with register parameters and reentrant attributes are
modified slightly to avoid run-time errors. The following table lists deviations
from the standard segment names.

Declaration Symbol Description

void func (void) … FUNC Names of functions that have no arguments or
whose arguments are not passed in registers are
transferred to the object file without any changes.
The function name is converted to uppercase.

void func1 (char) … _FUNC1 For functions with arguments passed in registers,
the underscore character (‘_’) is prefixed to the
function name. This identifies those functions that
transfer arguments in CPU registers.

void func2 (void) reentrant
…

?FUNC2 For functions that are reentrant, the string “?” is
prefixed to the function name. This is used to
identify reentrant functions.

Keil Software — C51 Compiler User’s Guide 131

6

Interfacing C Programs to Assembler

You can easily interface C51 to routines written in 8051 Assembler. The A51
Assembler is an 8051 macro assembler that emits object modules in OMF-51
format. By observing a few programming rules, you can call assembly routines
from C and vice versa. Public variables declared in the assembly module are
available to your C programs.

There are several reasons why you might want to call an assembly routine from
your C program. You may have assembly code already written that you wish to
use, you may need to improve the speed of a particular function, or you may
want to manipulate SFRs or memory-mapped I/O devices directly from
assembly. This section describes how to write assembly routines that can be
directly interfaced to C programs.

For an assembly routine to be called from C, it must be aware of the parameter
passing and return value conventions used in C functions. For all practical
purposes, it must appear to be a C function.

Function Parameters

By default, C functions pass up to three parameters in registers. The remaining
parameters are passed in fixed memory locations. You may use the directive
NOREGPARMS to disable parameter passing in registers. Parameters are
passed in fixed memory locations if parameter passing in registers is disabled or
if there are too many parameters to fit in registers. Functions that pass
parameters in registers are flagged by C51 with an underscore character (‘_’)
prefixed to the function name at code generation time. Functions that pass
parameters only in fixed memory locations are not prefixed with an underscore.
Refer to “Using the SRC Directive” on page 134 for an example.

132 Chapter 6. Advanced Programming Techniques

6

Parameter Passing in Registers

C functions may pass parameters in registers and fixed memory locations. A
maximum of 3 parameters may be passed in registers. All other parameters are
passed using fixed memory locations. The following tables define what registers
are used for passing parameters.

Arg Number char, 1-byte ptr int, 2-byte ptr long, float generic ptr

1 R7 R6 & R7
(MSB in R6,
LSB in R7)

R4—R7 R1—R3
(Mem type in R3,

MSB in R2,
LSB in R1)

2 R5 R4 & R5
(MSB in R4,
LSB in R5)

R4—R7 R1—R3
(Mem type in R3,

MSB in R2,
LSB in R1)

3 R3 R2 & R3
(MSB in R2,
LSB in R3)

R1—R3
(Mem type in R3,

MSB in R2,
LSB in R1)

The following examples clarify how registers are selected for parameter passing.

Declaration Description

func1 (
 int a)

The first and only argument, a, is passed in registers R6 and R7.

func2 (
 int b,
 int c,
 int *d)

The first argument, b, is passed in registers R6 and R7. The second
argument, c, is passed in registers R4 and R5. The third argument, d, is
passed in registers R1, R2, and R3.

func3 (
 long e,
 long f)

The first argument, e, is passed in registers R4, R5, R6, and R7. The
second argument, f, cannot be located in registers since those available for
a second parameter with a type of long are already used by the first argument.
This parameter is passed using fixed memory locations.

func4 (
 float g,
 char h)

The first argument, g, passed in registers R4, R5, R6, and R7. The second
parameter, h, cannot be passed in registers and is passed in fixed memory
locations.

Keil Software — C51 Compiler User’s Guide 133

6

Parameter Passing in Fixed Memory Locations

Parameters passed to assembly routines in fixed memory locations use segments
named ?function_name?BYTE and ?function_name?BIT to hold the parameter
values passed to the function function_name. Bit parameters are copied into the
?function_name?BIT segment prior to calling the function. All other parameters
are copied into the ?function_name?BYTE segment. All parameters are assigned
space in these segments even if they are passed using registers. Parameters are
stored in the order in which they are declared in each respective segment.

The fixed memory locations used for parameter passing may be in internal data
memory or external data memory depending upon the memory model used. The
small memory model is the most efficient and uses internal data memory for
parameter segments. The compact and large models use external data memory
for the parameter passing segments.

Function Return Values

Function return values are always passed using CPU registers. The following
table lists the possible return types and the registers used for each.

Return Type Register Description

bit Carry Flag Single bit returned in the carry flag

char / unsigned char,
1-byte pointer

R7 Single byte typed returned in R7

int / unsigned int,
2-byte ptr

R6 & R7 MSB in R6, LSB in R7

long / unsigned long R4-R7 MSB in R4, LSB in R7

float R4-R7 32-Bit IEEE format

generic pointer R1-R3 Memory type in R3, MSB R2, LSB R1

134 Chapter 6. Advanced Programming Techniques

6

Using the SRC Directive

You may use the C51 compiler to generate the shell for an assembly routine you
want to write or to help determine the passing conventions your assembly routine
should use. The SRC command-line directive specifies that C51 generate an
assembly file instead of an object file. For example, the following C source file:

#pragma SRC
#pragma SMALL

unsigned int asmfunc1 (
 unsigned int arg)
{
return (1 + arg);
}

generates the following assembly output file when compiled using the SRC
directive.

; ASM1.SRC generated from: ASM1.C

NAME ASM1

?PR?_asmfunc1?ASM1 SEGMENT CODE
PUBLIC _asmfunc1
; #pragma SRC
; #pragma SMALL
;
; unsigned int asmfunc1 (

 RSEG ?PR?_asmfunc1?ASM1
 USING 0
_asmfunc1:
;---- Variable 'arg?00' assigned to Register 'R6/R7' ----
 ; SOURCE LINE # 4
 ; SOURCE LINE # 6
; return (1 + arg);
 ; SOURCE LINE # 7
 MOV A,R7
 ADD A,#01H
 MOV R7,A
 CLR A
 ADDC A,R6
 MOV R6,A
; }
 ; SOURCE LINE # 8
?C0001:
 RET
; END OF _asmfunc1

 END

In this example, note that the function name, asmfunc1, is prefixed with an
underscore character signifying that arguments are passed in registers. The arg
parameter is passed using R6 and R7.

Keil Software — C51 Compiler User’s Guide 135

6

The following example shows the assembly source generated for the same
function; however, register parameter passing has been disabled using the
NOREGPARMS directive.

; ASM2.SRC generated from: ASM2.C

NAME ASM2

?PR?asmfunc1?ASM2 SEGMENT CODE
?DT?asmfunc1?ASM2 SEGMENT DATA
PUBLIC ?asmfunc1?BYTE
PUBLIC asmfunc1

 RSEG ?DT?asmfunc1?ASM2
?asmfunc1?BYTE:
arg?00: DS 2
; #pragma SRC
; #pragma SMALL
; #pragma NOREGPARMS
;
; unsigned int asmfunc1 (

 RSEG ?PR?asmfunc1?ASM2
 USING 0
asmfunc1:
 ; SOURCE LINE # 5
 ; SOURCE LINE # 7
; return (1 + arg);
 ; SOURCE LINE # 8
 MOV A,arg?00+01H
 ADD A,#01H
 MOV R7,A
 CLR A
 ADDC A,arg?00
 MOV R6,A
; }
 ; SOURCE LINE # 9
?C0001:
 RET
; END OF asmfunc1

 END

Note in this example that the function name, asmfunc1, is not prefixed with an
underscore character and that the arg parameter is passed in the
?asmfunc1?BYTE segment.

136 Chapter 6. Advanced Programming Techniques

6

Register Usage

Assembler functions can change all register contents in the current selected
register bank as well as the contents of the registers ACC, B, DPTR, and PSW.
When invoking a C function from assembly, assume that these registers may be
destroyed by the C function that is called.

Overlaying Segments

If the overlay process is executed during program linking and locating, it is
important that each assembler subroutine have a unique program segment. This
is necessary so that during the overlay process, the references between the
functions are calculated using the references of the individual segments. The
data areas of the assembler subprograms may be included in the overlay analysis
when the following points are observed:

! All segment names must be created using the C51 segment naming
conventions.

! Each assembler function with local variables must be assigned its own data
segment. This data segment may be accessed by other functions only for
passing parameters. Parameters must be passed in order.

Example Routines

The following program examples show you how to pass parameters to and from
assembly routines. The following C functions are used in all of these examples:

int function (
 int v_a, /* passed in R6 & R7 */
 char v_b, /* passed in R5 */
 bit v_c, /* passed in fixed memory location */
 long v_d, /* passed in fixed memory location */
 bit v_e); /* passed in fixed memory location */

Keil Software — C51 Compiler User’s Guide 137

6

Small Model Example

In the small model, parameters passed in fixed memory locations are stored in
internal data memory. The parameter passing segment for variables is located in
the data area.

The following are two assembly code examples. The first shows how the
example function is invoked from assembly. The second example displays the
assembly code for the example function.

Function invocation from assembly.
.
.
.
EXTRN CODE (_function) ; Ext declarations for function names
EXTRN DATA (?_function?BYTE) ; Seg for local variables
EXTRN BIT (?_function?BIT) ; Seg for local bit variables
.
.
.
 MOV R6,#HIGH intval ; int a
 MOV R7,#LOW intval ; int a
 MOV R7,#charconst ; char b
 SETB ?_function?BIT+0 ; bit c
 MOV ?_function?BYTE+3,longval+0 ; long d
 MOV ?_function?BYTE+4,longval+1 ; long d
 MOV ?_function?BYTE+5,longval+2 ; long d
 MOV ?_function?BYTE+6,longval+3 ; long d
 MOV C,bitvalue
 MOV ?_function?BIT+1,C ; bit e
 LCALL _function
 MOV intresult+0,R6 ; store int
 MOV intresult+1,R7 ; retval
.
.
.

138 Chapter 6. Advanced Programming Techniques

6

Function implementation in assembly.
NAME MODULE ; Names of the program module
?PR?FUNCTION?MODULE SEGMENT CODE ; Seg for prg code in 'function'
?DT?FUNCTION?MODULE SEGMENT DATA OVERLAYABLE
 ; Seg for local vars in 'function'
?BI?FUNCTION?MODULE SEGMENT BIT OVERLAYABLE
 ; Seg for local bit vars in 'function'

PUBLIC _function, ?_function?BYTE, ?_function?BIT
 ; Public symbols for 'C' function call

RSEG ?PD?FUNCTION?MODULE ; Segment for local variables
?_function?BYTE: ; Start of parameter passing segment
v_a: DS 2 ; int variable: v_a
v_b: DS 1 ; char variable: v_b
v_d: DS 4 ; long variable: v_d
.
. ; Additional local variables
.

RSEG ?BI?FUNCTION?MODULE ; Segment for local bit variables
?_function?BIT: ; Start of parameter passing segment
v_c: DBIT 1 ; bit variable: v_c
v_e: DBIT 1 ; bit variable: v_e
.
. ; Additional local bit variables
.

RSEG ?PR?FUNCTION?MODULE ; Program segment
_function: MOV v_a,R6 ; A function prolog and epilog is
 MOV v_a+1,R7 ; not necessary. All variables can
 MOV v_b,R5 ; immediately be accessed.
.
.
.
 MOV R6,#HIGH retval ; Return value
 MOV R7,#LOW retval ; int constant
 RET ; Return

Keil Software — C51 Compiler User’s Guide 139

6

Compact Model Example

In the compact model, parameters passed in fixed memory locations are stored in
external data memory. The parameter passing segment for variables is located in
the pdata area.

The following are two assembly code examples. The first shows you how the
example function is invoked from assembly. The second example displays the
assembly code for the example function.

Function invocation from assembly.
EXTRN CODE (_function) ; Ext declarations for function names
EXTRN XDATA (?_function?BYTE) ; Seg for local variables
EXTRN BIT (?_function?BIT) ; Seg for local bit variables
.
.
.
 MOV R6,#HIGH intval ; int a
 MOV R7,#LOW intval ; int a
 MOV R5,#charconst ; char b
 SETB ?_function?BIT+0 ; bit c
 MOV R0,#?_function?BYTE+3 ; Addr of 'v_d' in the passing area
 MOV A,longval+0 ; long d
 MOVX @R0,A ; Store parameter byte
 INC R0 ; Inc parameter passing address
 MOV A,longval+1 ; long d
 MOVX @R0,A ; Store parameter byte
 INC R0 ; Inc parameter passing address
 MOV A,longval+2 ; long d
 MOVX @R0,A ; Store parameter byte
 INC R0 ; Inc parameter passing address
 MOV A,longval+3 ; long d
 MOVX @R0,A ; Store parameter byte
 MOV C,bitvalue
 MOV ?_function?BIT+1,C ; bit e
 LCALL _function
 MOV intresult+0,R6 ; Store int
 MOV intresult+1,R7 ; Retval
.
.
.

140 Chapter 6. Advanced Programming Techniques

6

Function implementation in assembly.
NAME MODULE ; Name of the program module
?PR?FUNCTION?MODULE SEGMENT CODE ; Seg for program code in 'function';
?PD?FUNCTION?MODULE SEGMENT XDATA OVERLAYABLE IPAGE
 ; Seg for local vars in 'function'
?BI?FUNCTION?MODULE SEGMENT BIT OVERLAYABLE
 ; Seg for local bit vars in
'function'

PUBLIC _function, ?_function?BYTE, ?_function?BIT
 ; Public symbols for C function call

RSEG ?PD?FUNCTION?MODULE ; Segment for local variables
?_function?BYTE: ; Start of the parameter passing seg
v_a: DS 2 ; int variable: v_a
v_b: DS 1 ; char variable: v_b
v_d: DS 4 ; long variable: v_d
.
. ; Additional local variables
.

RSEG ?BI?FUNCTION?MODULE ; Segment for local bit variables
?_function?BIT: ; Start of the parameter passing seg
v_c: DBIT 1 ; bit variable: v_c
v_e: DBIT 1 ; bit variable: v_e
.
. ; Additional local bit variables
.

RSEG ?PR?FUNCTION?MODULE ; Program segment
_function: MOV R0,#?_function?BYTE+0 ; Special function prolog
 MOV A,R6 ; and epilog is not
 MOVX @R0,A ; necessary. All
 INC R0 ; vars can immediately
 MOV A,R7 ; be accessed
 MOVX @R0,A
 INC R0
 MOV A,R5
 MOVX @R0,A
.
.
.
 MOV R6,#HIGH retval ; Return value
 MOV R7,#LOW retval ; int constant
 RET ; Return

Keil Software — C51 Compiler User’s Guide 141

6

Large Model Example

In the large model, parameters passed in fixed memory locations are stored in
external data memory. The parameter passing segment for variables is located in
the xdata area.

The following are two assembly code examples. The first shows you how the
example function is invoked from assembly. The second example displays the
assembly code for the example function.

Function invocation from assembly
EXTRN CODE (_function) ; Ext declarations for function names
EXTRN XDATA (?_function?BYTE) ; Start of transfer for local vars
EXTRN BIT (?_function?BIT) ; Start of transfer for local bit vars
.
.
.
 MOV R6,#HIGH intval ; int a
 MOV R7,#LOW intval ; int a
 MOV R5,#charconst ; char b
 SETB ?_function?BIT+0 ; bit c
 MOV R0,#?_function?BYTE+3 ; Address of 'v_d' in the passing area
 MOV A,longval+0 ; long d
 MOVX @DPTR,A ; Store parameter byte
 INC DPTR ; Increment parameter passing address
 MOV A,longval+1 ; long d
 MOVX @DPTR,A ; Store parameter byte
 INC DPTR ; Increment parameter passing address
 MOV A,longval+2 ; long d
 MOVX @DPTR,A ; Store parameter byte
 INC DPTR ; Increment parameter passing address
 MOV A,longval+3 ; long d
 MOVX @DPTR,A ; Store parameter byte
 MOV C,bitvalue
 MOV ?_function?BIT+1,C ; bit e
 LCALL _function
 MOV intresult+0,R6 ; Store int
 MOV intresult+1,R7 ; Retval
.
.
.

142 Chapter 6. Advanced Programming Techniques

6

Function implementation in assembly
NAME MODULE ; Name of the program module
?PR?FUNCTION?MODULE SEGMENT CODE ; Seg for program code in 'functions'
?XD?FUNCTION?MODULE SEGMENT XDATA OVERLAYABLE
 ; Seg for local vars in 'function'
?BI?FUNCTION?MODULE SEGMENT BIT OVERLAYABLE
 ; Seg for local bit vars in 'function'

PUBLIC _function, ?_function?BYTE, ?_function?BIT
 ; Public symbols for C function call

RSEG ?XD?FUNCTION?MODULE ; Segment for local variables
?_function?BYTE: ; Start of the parameter passing seg
v_a: DS 2 ; int variable: v_a
v_b: DS 1 ; char variable: v_b
v_d: DS 4 ; long variable: v_l
.
.; Additional local variables from 'function'
.

RSEG ?BI?FUNCTION?MODULE ; Segment for local bit variables
?_function?BIT: ; Start of the parameter passing seg
v_c: DBIT 1 ; bit variable: v_c
v_e: DBIT 1 ; bit variable: v_e
.
. ; Additional local bit variables
.

RSEG ?PR?FUNCTION?MODULE ; Program segment
_function: MOV DPTR,#?_function?BYTE+0 ; Special function prolog
 MOV A,R6 ; and epilog is not
 MOVX @DPTR,A ; necessary. All vars
 INC R0 ; can immediately be
 MOV A,R7 ; accessed.
 MOVX @DPTR,A
 INC R0
 MOV A,R5
 MOVX @DPTR,A
.
.
.
 MOV R6,#HIGH retval ; Return value
 MOV R7,#LOW retval ; int constant
 RET ; Return

Keil Software — C51 Compiler User’s Guide 143

6

Interfacing C Programs to PL/M-51

You can easily interface C51 to routines written in PL/M-51. Intel’s PL/M-51 is
a popular programming language that is similar to C in many ways. The
PL/M-51 compiler generates object files in the OMF-51 format. You can access
PL/M-51 functions from C by declaring them with the alien function type
specifier. Public variables declared in the PL/M-51 module are available to your
C programs.

C51 can optionally operate with PL/M-51 parameter passing conventions. The
alien function type specifier is used to declare public or external functions that
are compatible with PL/M-51 in any memory model. For example:

extern alien char plm_func (int, char);

alien unsigned int c_func (unsigned char x, unsigned char y) {
 return (x * y);
}

Parameters and return values of PL/M-51 functions may be any of the following
types: bit, char, unsigned char, int, and unsigned int. Other types, including
long, float, and all types of pointers, can be declared in C functions with the
alien type specifier. However, use these types with care because PL/M-51 does
not directly support 32-bit binary integers or floating-point numbers.

PL/M-51 does not support variable-length argument lists. Therefore, functions
declared using the alien type specifier must have a fixed number of arguments.
The ellipsis notation used for variable-length argument lists is not allowed for
alien functions and causes C51 to generate an error message. For example:

extern alien unsigned int plm_i (char, int, ...);

*** ERROR IN LINE 1 OF A.C: 'plm_i': Var_parms on alien function

144 Chapter 6. Advanced Programming Techniques

6

Data Storage Formats

This section describes the storage formats of the data types available in C51.
C51 provides you with a number of basic data types to use in your C programs.
The following table lists these data types along with their size requirements and
value ranges.

Data Type Bits Bytes Value Range

bit 1 — 0 to 1

signed char 8 1 -128 to +127

unsigned char 8 1 0 to 255

enum 16 2 -32768 to +32767

signed short 16 2 -32768 to +32767

unsigned short 16 2 0 to 65535

signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to 2147483647

unsigned long 32 4 0 to 4294967295

float 32 4 ±1.175494E-38 to ±3.402823E+38

data *, idata *, pdata * 8 1 0x00 to 0xFF

code*, xdata * 16 2 0x0000 to 0xFFFF

generic pointer 24 3 Memory type (1 byte); Offset (2 bytes) 0 to 0xFFFF

Other data types, like structures and unions, may contain scalars from this table.
All elements of these data types are allocated sequentially and are byte-aligned
due to the 8-bit architecture of the 8051 family.

Bit Variables

Scalars of type bit are stored using a single bit. Pointers to and arrays of bit are
not allowed. Bit objects are always located in the bit-addressable internal
memory space of the 8051 CPU. The BL51 Linker/Locator overlays bit objects
if possible.

Keil Software — C51 Compiler User’s Guide 145

6

Signed and Unsigned Characters,
Pointers to data, idata, and pdata

Scalars of type char are stored in a single byte (8 bits). Memory-specific
pointers that reference data, idata, and pdata are also stored using a single byte
(8 bits).

Signed and Unsigned Integers,
Enumerations, Pointers to xdata and code

Scalars of type int, scalars of type short, enum types, and memory-specific
pointers that reference xdata or code are all stored using 2 bytes (16 bits). The
high-order byte is stored first, followed by the low-order byte. For example, an
integer value of 0x1234 is stored in memory as follows:

Address +0 +1

Contents 0x12 0x34

Signed and Unsigned Long Integers

Scalars of type long are stored using 4 bytes (32 bits). The bytes are stored in
high to low order. For example, the long value 0x12345678 is stored in memory
as follows:

Address +0 +1 +2 +3

Contents 0x12 0x34 0x56 0x78

146 Chapter 6. Advanced Programming Techniques

6

Generic Pointers

Generic pointers have no declared explicit memory type. They may point to any
memory area on the 8051. These pointers are stored using 3 bytes (24 bits). The
first byte contains a value that indicates the memory area or memory type. The
remaining two bytes contain the address offset with the high-order byte first.
The following memory format is used:

Address +0 +1 +2

Contents Memory Type Offset; High-Order Byte Offset; Low-Order Byte

The memory type byte may have one of the following values:

Memory Type idata / data / bdata xdata pdata code

Value 0x00 0x01 0xFE 0xFF

Use of any other memory type values may lead to unpredictable program
behavior.

The following example shows the memory storage of a generic pointer that
references address 0x1234 in the xdata memory area.

Address +0 +1 +2

Contents 0x01 0x12 0x34

Keil Software — C51 Compiler User’s Guide 147

6

Floating-point Numbers

Scalars of type float are stored using 4 bytes (32 bits). The format used
corresponds to that of the IEEE-754 standard.

There are two components of a floating-point number: the mantissa and the
exponent. The mantissa stores the actual digits of the number. The exponent
stores the power to which the mantissa must be raised. The exponent is an 8-bit
value in the 0 to 255 range and is stored relative to 127. The actual value of the
exponent is calculated by subtracting 127 from the stored value (0 to 255). The
value of the exponent can be anywhere from +128 to -127. The mantissa is a
24-bit value whose most significant bit (MSB) is always 1 and is, therefore, not
stored. There is also a sign bit which indicates if the floating-point number is
positive or negative.

Floating-point numbers are stored in 8051 memory using the following format:

Address +0 +1 +2 +3

Contents SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM

where:

S represents the sign bit where 1 is negative and 0 is positive.

E is the two’s complement exponent with an offset of 127.

M is the 23-bit normal mantissa. The highest bit is always 1
and, therefore, is not stored

Using the above format, the floating-point number -12.5 would be stored as a
hexadecimal value of 0xC1480000. In memory, this appears as follows:

Address +0 +1 +2 +3

Contents 0xC1 0x48 0x00 0x00

It is fairly simple to convert floating-point numbers to and from their
hexadecimal storage equivalents. The following example demonstrates how this
is done for the value -12.5 shown above.

148 Chapter 6. Advanced Programming Techniques

6

The floating-point storage representation is not an intuitive format. To convert
this to a floating-point number, the bits must be separated as specified in the
storage format table above. For example:

Address +0 +1 +2 +3

Format SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM

Binary 11000001 01001000 00000000 00000000

Hex C1 48 00 00

From this illustration, you can determine the following information:

! The sign bit is 1, indicating a negative number.

! The exponent value is 10000010 binary or 130 decimal. Subtracting 127
from 130 leaves 3 which is the actual exponent.

! The mantissa appears as the following binary number:

10010000000000000000000

There is an understood decimal point at the left of the mantissa that is always
preceded by a 1. This digit is not stored in the hexadecimal representation of
the floating-point number. Adding 1 and the decimal point to the beginning of
the mantissa gives the following:

1.10010000000000000000000

Now, adjust the mantissa for the exponent. A negative exponent moves the
decimal point to the left. A positive exponent moves the decimal point to the
right. Because the exponent is 3, the mantissa is adjusted as follows:

1100.10000000000000000000

The result is now a binary floating-point number. Binary digits left of the
decimal point represent the power of two corresponding to the position: 1100
represents (1 × 23) + (1 × 22) + (0 × 21) + (0 × 20) which equals 12.

Binary digits that are right of the decimal point also represent the power of two
corresponding to their position. However, the powers are negative: .100…
represents (1 × 2-1) + (0 × 2-2) + (0 × 2-3) + … which equals .5.

Adding these values together gives 12.5 which must be negated since the sign
bit is set. So, the floating-point hexadecimal value 0xC1480000 is -12.5.

Keil Software — C51 Compiler User’s Guide 149

6

Floating-point Errors

The 8051 does not contain an interrupt vector to trap floating-point errors;
therefore, your software must appropriately respond to these error conditions. In
addition to the normal floating-point values, a floating-point number may contain
a binary error value. These values are defined as a part of the IEEE standard and
are used whenever an error occurs during normal processing of floating-point
operations. Your code should check for possible arithmetic errors at the end of
each floating-point operation.

Name Value Meaning

NaN 0xFFFFFFF Not a number

+INF 0x7F80000 Positive infinity (positive overflow)

-INF 0xFF80000 Negative infinity (negative overflow)

NOTE
The C51 library function _chkfloat_ lets you quickly check floating-point status.

You can use the following union to store floating-point values.

union f {
 float f; /* Floating-point value */
 unsigned long ul; /* Unsigned long value */
};

This union contains a float and an unsigned long in order to perform floating-
point math operations and to respond to the IEEE error states. For example:

#define NaN 0xFFFFFFFF /* Not a number (error) */
#define plusINF 0x7F800000 /* Positive overflow */
#define minusINF 0xFF800000 /* Negative overflow */

union f {
 float f; /* Floating-point value */
 unsigned long ul; /* Unsigned long value */
};

void main (void) {
 float a, b;
 union f x;

 x.f = a * b;
 if (x.ul == NaN || x.ul == plusINF || x.ul == minusINF) {
 /* handle the error */
 }
 else {
 /* result is correct */
 }
}

150 Chapter 6. Advanced Programming Techniques

6

Accessing Absolute Memory Locations

The C programming language does not support a method of explicitly specifying
the memory location of a static or global variable. There are three ways to
reference explicit memory location. You can use the:

! Absolute memory access macros

! Linker location controls

! The _at_ keyword

Each of these three methods is described below.

Absolute Memory Access Macros

First, you may use the absolute memory access macros provided as part of the
C51 library. Use the following macros to directly access the memory areas of
the 8051.

CBYTE
DBYTE
PBYTE

XBYTE
CWORD
DWORD

PWORD
XWORD

Refer to “Absolute Memory Access Macros” on page 178 for definitions of these
macros.

Keil Software — C51 Compiler User’s Guide 151

6

Linker Location Controls

The second method of referencing explicit memory location is to declare the
variables in a stand-alone C module, and use the location control directives of
the BL51 Linker/Locator to specify an absolute memory address.

In the following example, assume that we have a structure called
alarm_control that we want to reside at address 2000h in xdata. We start by
entering a source file named ALMCTRL.C that contains only the declaration for
this structure.

.

.

.
struct alarm_st {
 unsigned int alarm_number;
 unsigned char enable flag;
 unsigned int time_delay;
 unsigned char status;
 };

xdata struct alarm_st alarm_control;
.
.
.

The C51 compiler generates an object file for ALMCTRL.C and includes a
segment for variables in the xdata memory area. Because it is the only variable
declared in this module, alarm_control is the only variable in that segment.
The name of the segment is ?XD?ALMCTRL.

The BL51 Linker/Locator allows you to specify the base address of any segment
by using the location control directives. Because the alarm_control variable
was declared to reside in xdata, the XDATA BL51 directive must be used as
follows:

BL51 … almctrl.obj XDATA(?XD?ALMCTRL(2000h)) …

This instructs the linker to locate the segment named ?XD?ALMCTRL at
address 2000h in the xdata memory area.

There are linker directives for locating segments in the code, xdata, pdata,
idata, and data memory areas. Refer to the 8051 Utilities User’s Guide for
more information about the Linker/Locator.

152 Chapter 6. Advanced Programming Techniques

6

The _at_ Keyword

The third method of accessing absolute memory locations is to use the _at_
keyword when you declare variables in your C source files. The following
example demonstrates how to locate several different variable types using the
at keyword.

struct link {
 struct link idata *next;
 char code *test;
};

idata struct link list _at_ 0x40; /* list at idata 0x40 */
xdata char text[256] _at_ 0xE000; /* array at xdata 0xE000 */
xdata int i1 _at_ 0x8000; /* int at xdata 0x8000 */

void main (void) {
 link.next = (void *) 0;
 i1 = 0x1234;
 text [0] = 'a';
}

Refer to “Absolute Variable Location” on page 71 for more information about
the _at_ keyword.

Keil Software — C51 Compiler User’s Guide 153

6

Debugging

C51 uses the Intel Object Format (OMF-51) for object files and generates
complete symbol information. All Intel compatible emulators may be used for
program debugging. The DEBUG control directive embeds debugging
information in the object file. In addition, the OBJECTEXTEND control
directive embeds additional variable type information in the object file which
allows type-specific display of variables and structures when using certain
emulators.

Keil Software — C51 Compiler User’s Guide 155

7

Chapter 7. Error Messages
This chapter lists Fatal Error, Syntax Error, and Warning messages that you may
encounter as you develop a program. Each section includes a brief description of
the message as well as corrective actions you can take to eliminate the error or
warning condition.

Fatal Errors

Fatal errors cause immediate termination of the compilation. These errors
normally occur as the result of invalid options specified on the command line.
Fatal errors are also generated when the compiler cannot access a specified
source include file.

Fatal error messages conform to one of the following formats:

C51 FATAL-ERROR -

ACTION: <current action>
LINE: <line in which the error is detected>
ERROR: <corresponding error message>

C51 TERMINATED.

C51 FATAL-ERROR -

ACTION: <current action>
FILE: <file in which the error is detected>
ERROR: <corresponding error message>

C51 TERMINATED.

The following are descriptions of the possible text for the Action and Error
fields in the above messages.

156 Chapter 7. Error Messages

7

Actions

ALLOCATING MEMORY

The compiler could not allocate enough memory to compile the specified
source file.

CREATING LIST-FILE / OBJECT-FILE / WORKFILE

The compiler could not create the list file, object file, or work file. This error
may occur if the disk is full or write-protected, or if the file already exists and
is read only.

GENERATING INTERMEDIATE CODE

The source file contains a function that is too large to be translated into
pseudo-code by the compiler. Try breaking the function into smaller
functions and re-compiling.

OPENING INPUT-FILE

The compiler failed to find or open the selected source or include file.

PARSING INVOKE-/#PRAGMA-LINE

An error was detected while evaluating arguments on the command line or
while evaluating parameters in a #pragma statement.

PARSING SOURCE-FILE / ANALYZING DECLARATIONS

The source file contains too many external references. Reduce the number of
external variables and functions accessed by the source file.

WRITING TO FILE

An error was encountered while writing to the list file, object file, or work
file.

Keil Software — C51 Compiler User’s Guide 157

7

Errors

'(' AFTER CONTROL EXPECTED

Some control parameters need an argument enclosed in parentheses. This
message is displayed when the left parenthesis is missing.

')' AFTER PARAMETER EXPECTED

This message indicates that the right parenthesis of the enclosed argument is
missing.

BAD DIGIT IN NUMBER

The numerical argument of a control parameter contains invalid characters.
Only decimal digits are acceptable.

CAN'T CREATE FILE

The filename defined on the FILE line cannot be created.

CAN'T HAVE GENERAL CONTROL IN INVOCATION LINE

General controls (for example, EJECT) cannot be included on the command
line. Place these controls in the source file using the #pragma statement.

FILE DOES NOT EXIST

The filename defined on the FILE line, cannot be found.

FILE WRITE-ERROR

An error occurred while writing to the list, preprint, work, or object file
because of insufficient disk space.

IDENTIFIER EXPECTED

This message is generated when the DEFINE control has no arguments.
DEFINE requires an identifier as its argument. This is the same convention
as in the C language.

MEMORY SPACE EXHAUSTED

The compiler could not allocate enough memory to compile the specified
source file. If you receive this message consistently, you should break the
source file into two or more smaller files and re-compile. Alternatively, you
can add more memory to your PC because the C51 compiler uses a DOS
extender to utilize all extended memory available.

MORE THAN 100 ERRORS IN SOURCE-FILE

During the compilation more than 100 errors were detected. This causes the
termination of the compiler.

MORE THAN 256 SEGMENTS/EXTERNALS

More than 256 total references were encountered in a source file. A single
source file cannot contain more than 256 functions or external references.
This is a historical restriction mandated by the Intel Object Module Format

158 Chapter 7. Error Messages

7

(OMF-51). Functions which contain scalar and/or bit declarations produce
two and sometimes three segment definitions in the object file.

NON-NULL ARGUMENT EXPECTED

The selected control parameter needs an argument (for example, a filename
or a number) enclosed in parentheses.

OUT OF RANGE NUMBER

The numerical argument of a control parameter is out of range. For instance,
the OPTIMIZE control allows only the numbers 0 through 6. A value of 7
would generate this error message.

PARSE STACK OVERFLOW

The parse stack has overflowed. This can occur if the source program
contains extremely complex expressions or if blocks are nested more than 31
levels deep.

PREPROCESSOR: LINE TOO LONG (32K)

An intermediate expansion exceeded 32K characters in length.

PREPROCESSOR: MACROS TOO NESTED

During macro expansion the stack consumption of the preprocessor grew too
large to continue. This message usually indicates a recursive macro
definition, but can also indicate a macro with too many levels of nesting.

RESPECIFIED OR CONFLICTING CONTROL

A command-line parameter was specified twice or conflicting command-line
parameters were specified.

SOURCE MUST COME FROM A DISK-FILE

The source and include files must exist on either a hard disk or diskette. The
console CON:, :CI:, or similar devices are not allowed as input files.

UNKNOWN CONTROL

The selected control parameter is unrecognized by the compiler.

Keil Software — C51 Compiler User’s Guide 159

7

Syntax and Semantic Errors

Syntax and semantic errors typically occur in the source program. They identify
actual programming errors. When one of these errors is encountered, the
compiler attempts to recover from the error and continue processing the source
file. As more errors are encountered, the compiler outputs additional error
messages. However, no object file is produced.

Syntax and semantic errors produce a message in the list file. These error
messages are in the following format:

*** ERROR number IN LINE line OF file: error message

where:

number is the error number.

line corresponds to the line number in the source file or include
file.

file is the name of the source or include file in which the error
was detected.

error message is descriptive text and is dependent upon the type of error
encountered.

The following table lists syntax and semantic errors by error number. The error
message displayed is listed along with a brief description and possible cause and
correction.

Number Error Message and Description

100 Unprintable character 0x?? skipped
An illegal character was found in the source file. (Note that characters inside a
comment are not checked.)

101 Unclosed string
A string is not terminated with a quote (").

102 String too long
A string may not contain more than 4096 characters. Use the concatenation
symbol (‘\’) to logically continue strings longer than 4096 characters. Lines
terminated in this fashion are concatenated during lexical analysis.

103 Invalid character constant
A character constant has an invalid format. The notation ‘\c’ is valid only when c
is any printable ASCII character.

125 Declarator too complex (20)
The declaration of an object may contain a maximum of 20 type modifiers (‘[‘, ‘]’,
‘*’, ‘(‘, ‘)’). This error is almost always followed by error 126.

160 Chapter 7. Error Messages

7

Number Error Message and Description

126 Type-stack underflow
The type declaration stack has underflowed. This error is usually a side-effect of
error 125.

127 Invalid storage class
An object was declared with an invalid memory space specification. This occurs if
an object is declared with storage class of auto or register outside of a function.

129 Missing ‘;’ before ‘token’
This error usually indicates that a semicolon is missing from the previous line.
When this error occurs, the compiler may generate an excess of error messages.

130 Value out of range
The numerical argument after a using or interrupt specifier is invalid. The using
specifier requires a register bank number between 0 and 3. The interrupt
specifier requires an interrupt vector number between 0 and 31.

131 Duplicate function-parameter
A formal parameter name exists more than once within a function. The formal
parameter names must be unique in function declarations.

132 Not in formal parameter list
The parameter declarations inside a function use a name not present in the
parameter name list. For example:

char function (v0, v1, v2)
char *v0, *v1, *v5;
/* 'v5' is unknown in the formal list */
{
 /* ... */
}

134 xdata/idata/pdata/data on function not permitted
Functions always reside in code memory and cannot be executed out of other
memory areas. Functions are implicitly defined as memory type code.

135 Bad storage class for bit
Declarations of bit scalars may include one of the static or extern storage
classes. The register or alien classes are invalid.

136 ‘void’ on variable
The type void is allowed only as a non-existent return value or an empty argument
list for functions (void func (void)), or in combination with a pointer (void *).

138 Interrupt() may not receive or return value(s)
An interrupt function was defined with one or more formal parameters or with a
return value. Interrupt functions may not contain invocation parameters or return
values.

140 Bit in illegal memory-space
Definitions of bit scalars may contain the optional memory type data. If the
memory type is missing then the type data is assumed, because bits always
reside in the internal data memory. This error can occur when an attempt is made
to use another data type with a bit scalar definition.

141 Syntax error near token: expected other_token, …………
The token seen by the compiler is wrong. Depending upon the context the
expected token is displayed.

142 Invalid base address
The base-address of an sfr or sbit declaration is in error. Valid bases are values
in the 0x80 to 0xFF range. If the declaration uses the notation base^pos, then the
base address must also be a multiple of eight.

Keil Software — C51 Compiler User’s Guide 161

7

Number Error Message and Description

143 Invalid absolute bit address
The absolute address in sbit declarations must be in the 0x80 to 0xFF range.

144 Base^pos: invalid bit position
The definition of the bit position within an sbit declaration must be in the 0 to 7
range.

145
146

Undeclared sfr
Invalid sfr
The declaration of an absolute bit (base^pos) contains an invalid
base-specification. The base must be the name of a previously declared sfr. Any
other names are invalid.

147 Object too large
The size of a single object may not exceed the absolute limit of 65535 (64 Kbytes -
1).

149 Function member in struct/union
A struct or union may not contain a function-type member. However, pointers to
functions are perfectly valid.

150 Bit member in struct/union
A union-aggregate may not contain members of type bit. This restriction is
imposed due to the architecture of the 8051.

151 Self relative struct/union
A structure cannot contain an instance of itself.

152 Bit-field type too small for number of bits
The number of bits specified in the bit-field declaration exceeds the number of bits
in the given base type.

153 Named bit-field cannot have zero width
The named field had a zero width. Only unnamed bit-fields are allowed to have
zero width.

154 Ptr to field
Pointers to bit-fields are not valid types.

155 char/int required for fields
The base type for bit-fields requires one of the types char or int. unsigned char
and unsigned int types are also valid.

156
157

Alien permitted on functions only
Var_parms on alien function
The storage class alien is allowed only for external PL/M-51 functions. The formal
notation (char *, …) is not legal on alien functions. PL/M-51 functions always
require a fixed number of parameters.

158 Function contains unnamed parameter
The parameter list of a function definition contains an unnamed abstract type
definition. This notation is permitted only in function prototypes.

159 Type follows void
Prototype declarations of functions may contain an empty parameter list (for
example, int func (void)). This notation may not contain further type definitions
after void.

160 void invalid
The void type is legal only in combination with pointers or as the non-existent
return value of a function.

161 Formal parameter ignored
A declaration of an external function inside a function used a parameter name list
without any type specification (for example, extern yylex(a,b,c);).

162 Chapter 7. Error Messages

7

Number Error Message and Description

162 Duplicate function-parameter
The name of a defined object inside a function duplicates the name of a
parameter.

163 Unknown array size
In general, a formal size specifier is not required for external, single, or
multi-dimensional arrays. Typically, the compiler calculates the size at initialization
time. For external arrays, the size is of no great interest. This error is the result of
attempting to use the sizeof operator on an undimensioned array or on a
multi-dimensional array with undefined element sizes.

164 Ptr to nul
This error is usually the result of a previous error for a pointer declaration.

165 Ptr to bit
The type combination pointer to bit is not a legal type.

166 Array of functions
Arrays cannot contain functions; however, they may contain pointers to functions.

167 Array of fields
Bit-fields may not be arranged as arrays.

168 Array of bit
An array may not have type bit as its basic type. This limitation is imposed by the
architecture of the 8051.

169 Function returns function
A function cannot return a function; however, a function may return a pointer to a
function.

170 Function returns array
A function cannot return an array; however, a pointer to an array is valid.

171 Missing enclosing loop
A break or continue statement may occur only within a for, while, do, or switch
statement.

172 Missing enclosing switch
A case statement may occur only within a switch statement.

173 Missing return-expression
A function which returns a value of any type but int, must contain a return
statement including an expression. Because of compatibility to older programs, no
check is done on functions which return an int value.

174 Return-expression on void-function
A void function cannot return a value and thus may not contain a return
statement.

175 Duplicate case value
Each case statement must contain a constant expression as its argument. The
value must not occur more than once in the given level of the switch statement.

176 More than one ‘default’
A switch statement may not contain more than one default statement.

177 Different struct/union
Different types of structures are used in an assignment or as an argument to a
function.

178 Struct/union comparison illegal
The comparison of two structures or unions is not allowed according to ANSI.

179 Illegal type conversation from/to ‘void’
Type casts to or from void are invalid.

Keil Software — C51 Compiler User’s Guide 163

7

Number Error Message and Description

180 Can’t cast to ‘function’
Type casts to function types are invalid. Try casting to a pointer to a function.

181 Incompatible operand
At least one operand type is not valid with the given operator (for example,
~float_type).

183 Unmodifiable lvalue
The object to be changed resides in code memory or has const attribute and
therefore cannot be modified.

184 Sizeof: illegal operand
The sizeof operator cannot determine the size of a function or bit-field.

185 Different memory space
The memory space of an object declaration differs from the memory space of a
prior declaration for the same object.

186 Invalid dereference
This error message may be caused by an internal compiler problem. Please
contact technical support if this error is repeated.

187 Not an lvalue
The needed argument must be the address of an object that can be modified.

188 Unknown object size
The size of an object cannot be computed because of a missing dimension size
on an array or indirection via a void pointer.

189 ‘&’ on bit/sfr illegal
The address-of operator (‘&’) is not allowed on bit objects or special function
registers (sfr).

190 ‘&’: not an lvalue
An attempt was made to construct a pointer to an anonymous object.

193
193
193
193

Illegal op-type(s)
Illegal add/sub on ptr
Illegal operation on bit(s)
Bad operand type
This error results when an expression uses illegal operand-types with the given
operator. Examples of invalid expressions are bit * bit, ptr + ptr, or ptr * anything.
The error message includes the operator which caused the error.

The following operations may be executed with bit-type operands:

! Assignment (=)

! OR / Compound OR (|, |=)

! AND / Compound AND (&, &=)

! XOR / Compound XOR (^, ^=)

! Compare bit with bit or constant (==, !=)

! Negation (~)

bit operands may be used in expressions with other data types. In this case a
type cast is automatically performed.

194 ‘*’ indirection to object of unknown size
The indirection operator * may not be used with void pointers because the object
size, which the pointer refers to, is unknown.

195 ‘*’ illegal indirection
The * operator may not be applied on non-pointer arguments.

164 Chapter 7. Error Messages

7

Number Error Message and Description

196 Mspace probably invalid
The conversion of a constant to a pointer constant yields an invalid memory space,
for example char *p = 0x91234.

198 Sizeof returns zero
The sizeof operator returns a zero value.

199 Left side of ‘->’ requires struct/union pointer
The argument on the left side of the -> operator must be a struct pointer or a
union pointer.

200 Left side of ‘.’ requires struct/union
The argument on the left side of the . operator must have type struct or union.

201 Undefined struct/union tag
The given struct or union tag name is unknown.

202 Undefined identifier
The given identifier is undefined.

203 Bad storage class (nameref)
This error indicates a problem within the compiler. Please contact technical
support if this error is repeated.

204 Undefined member
The given member name in a struct or union reference is undefined.

205 Can’t call an interrupt function
An interrupt function should not be called like a normal function. The entry and
exit code for these functions is specially coded for interrupts.

207 Declared with ‘void’ parameter list
A function declared with a void parameter list cannot receive parameters from the
caller.

208 Too many actual parameters
The function call includes more parameters than previously declared.

209 Too few actual parameters
Too few actual parameters were included in a function call.

210 Too many nested calls
Function calls can be nested at most 10 levels deep.

211 Call not to a function
The term of a function call does not evaluate to a function or pointer to function.

212 Indirect call: parameters do not fit within registers
An indirect function call through a pointer cannot contain actual parameters. An
exception to this rule is when all parameters can be passed in registers. This is
due to the method of parameter passing employed by C51. The name of the
called function must be known because parameters are written into the data
segment of the called function. For indirect calls, however, the name of the called
function is not known.

213 Left side of asn-op not an lvalue
The address of a changeable object is required at the right side of the assignment
operator.

214 Illegal pointer conversion
Objects of type bit, float or aggregates cannot be converted to pointers.

215 Illegal type conversion
Struct/union/void cannot be converted to any other types.

Keil Software — C51 Compiler User’s Guide 165

7

Number Error Message and Description

216 Subscript on non-array or too many dimensions
An array reference contained either too many dimension specifiers or the object
was not an array.

217 Non-integral index
The dimension expression of an array must be of the type char, unsigned char,
int, or unsigned int. All other types are illegal.

218 Void-type in controlling expression
The limit expression in a while, for, or do statement cannot be of type void.

219 Long constant truncated to int
The value of a constant expression must be capable of being represented by an
int type.

220 Illegal constant expression
A constant expression is expected. Object names, variables or functions, are not
allowed in constant expressions.

221 Non-constant case/dim expression
A case value or a dimension specification ([]) must be a constant expression.

222
223

Div by zero
Mod by zero
The compiler detected a division or a modulo by zero.

225 Expression too complex, simplify
An expression is too complex and must be broken into two or more sub
expressions.

226 Duplicate struct/union/enum tag
The name for a struct, union, or enum is already defined within current scope.

227 Not a union tag
The name for a union is already defined as a different type.

228 Not a struct tag
The name for a struct is already defined as a different type.

229 Not an enum tag
The name for an enum is already defined as a different type.

230 Unknown struct/union/enum tag
The specified struct, union, or enum name is undefined.

231 Redefinition
The specified name is already defined and cannot be redefined.

232 Duplicate label
The specified label is already defined.

233 Undefined label
This message indicates a label that was accessed but was not defined.
Sometimes this message appears several lines after the actual label reference.
This is caused by the method used to search for undefined labels.

234 ‘{‘, scope stack overflow(31)
The maximum of 31 nested blocks has been exceeded. Additional levels of
nested blocks are ignored.

235 Parameter <number>: different types
Parameter types in the function declaration are different from those in the function
prototype.

166 Chapter 7. Error Messages

7

Number Error Message and Description

236 Different length of parameter lists
The number of parameters in the function declaration is different from the number
of parameters in the function prototype.

237 Function already has a body
An attempt was made to declare a body for a function twice.

238
239

Duplicate member
Duplicate parameter
An attempt was made to define an already defined struct member or function
parameter.

240 More than 128 local bit’s
No more than 128 bit-scalars may be defined inside a function.

241 Auto segment too large
The required space for local objects exceeds the model-dependent maximum. The
maximum segment sizes are defined as follows:

SMALL 128 bytes
COMPACT 256 bytes
LARGE 65535 bytes

242 Too many initializers
The number of initializers exceeded the number of objects to be initialized.

243 String out of bounds
The number of characters in the string exceeds the number of characters required
to initialize the array of characters.

244 Can’t initialize, bad type or class
An attempt was made to initialize a bit or an sfr.

245 Unknown pragma, line ignored
The #pragma statement is unknown so, the entire line is ignored.

246 Floating-point error
This error occurs when a floating-point argument lies outside of the valid range for
32-bit floating values. The numeric range of the 32-bit IEEE values is:
±1.175494E-38 to ±3.402823E+38.

247 Non-address/constant initializer
A valid initializer expression must evaluate to a constant value or the name of an
object plus or minus a constant.

248 Aggregate initialization needs curly braces
The braces ({ }) around the given struct or union initializer were missing.

249 Segment <name>: Segment too large
The compiler detected a data segment that was too large. The maximum size of a
data segment depends on memory space.

250 ‘\esc’; value exceeds 255
An escape sequence in a string constant exceeds the valid value range. The
maximum value is 255.

251 Illegal octal digit
The specified character is not a valid octal digit.

252 Misplaced primary control, line ignored
Primary controls must be specified at the start of the C module before any
#include directives or declarations.

Keil Software — C51 Compiler User’s Guide 167

7

Number Error Message and Description

253 Internal error (ASMGEN\CLASS)
This error can occur under the following circumstances:

! An intrinsic function (for example, _testbit_) was activated incorrectly. This is
the case when no prototype of the function exists and the number of actual
parameters or their type is incorrect. For this reason, the appropriate
declaration files must always be used (INTRINS.H, STRING.H). See Chapter 8
for more information on intrinsic functions.

! C51 recognized an internal consistency problem. Please contact technical
support if this error occurs.

255 Switch expression has illegal type
The expression in a switch statement has not a legal data type.

256 Conflicting memory model
A function which contains the alien attribute may contain only the model
specification small. The parameters of the function must lie in internal data
memory. This applies to all external alien declarations and alien functions. For
example:

alien plm_func (char c) large { ... }

generates error 256.

257 Alien function cannot be reentrant
A function that contains the alien attribute cannot simultaneously contain the
attribute reentrant. The parameters of the function cannot be passed via the
virtual stack. This applies to all external alien declarations and alien functions.

258 Mspace illegal on struct/union member
Mspace on parameter ignored
A member of a structure or a parameter may not contain the specification of a
memory type. The object to which the pointer refers may, however, contain a
memory type. For example:

struct vp { char code c; int xdata i; };

generates error 258.

struct v1 { char c; int xdata *i; };

is the correct declaration for the struct.

259 Pointer: different mspace
A spaced pointer has been assigned another spaced pointer with a different
memory space. For example:

char xdata *p1;
char idata *p2;
p1 = p2; /* different memory spaces */

260 Pointer truncation
A spaced pointer has been assigned some constant value which exceeds the
range covered by the pointers memory space. For example:

char idata *p1 = 0x1234; /* result is 0x34 */

168 Chapter 7. Error Messages

7

Number Error Message and Description

261 Bit(s) in reentrant ()
A function with the attribute reentrant cannot have bit objects declared inside the
function. For example:

|int func1 (int i1) reentrant {
 bit b1, b2; /* not allowed ! */
 return (i1 - 1);
}

262 ‘using/disable’: can’t return bit value
Functions declared with the using attribute and functions which rely on disabled
interrupts (#pragma disable) cannot return a bit value to the caller. For example:

bit test (void) using 3
{
 bit b0;
 return (b0);
}

produces error 262.

263 Save/restore: save-stack overflow/underflow
The maximum nesting depth #pragma save comprises eight levels. The pragmas
save and restore work with a stack according to the LIFO (last in, first out)
principal.

264 Intrinsic ‘<intrinsic_name>’: declaration/activation error
This error indicates that an intrinsic function was defined incorrectly (parameter
number or ellipsis notation). This error should not occur if you are using the
standard .H files. Make sure that you are using the .H files that were included with
C51. Do not try to define your own prototypes for intrinsic library functions.

265 Recursive call to non-reentrant function
Non reentrant functions cannot be called recursively since such calls would
overwrite the parameters and local data of the function. If you need recursive
calls, you should declare the function with the reentrant attribute.

267 Funcdef requires ANSI-style prototype
A function was invoked with parameters but the declaration specifies an empty
parameter list. The prototype should be completed with the parameter types in
order to give the compiler the opportunity to pass parameters in registers and have
the calling mechanism consistent over the application.

268 Bad taskdef (taskid/priority/using)
The task declaration is incorrect.

271 Misplaced ‘asm/endasm’ control
The asm and endasm statements may not be nested. Endasm requires that an
asm block be opened by a previous asm statement. For example:

#pragma asm
.
.
.
assembler instruction(s)
.
.
.
#pragma endasm

Keil Software — C51 Compiler User’s Guide 169

7

Number Error Message and Description

272 ‘asm’ requires SRC control to be active
The use of asm and endasm in a source file requires that the file be compiled
using the SRC directive. The compiler then generates an assembly source file
which may then be assembled with A51.

273 ‘asm/endasm’ not allowed in include file
The use of asm and endasm is not permitted within include files. For debug
reasons executable code should be avoided in include files anyway.

274 Absolute specifier illegal
The absolute address specification is not allowed on bit objects, functions, and
function locals. The address must conform to the memory space of the object.
For example, the following declaration is invalid because the range of the indirectly
addressable data space is 0x00 to 0xFF.

idata int _at_ 0x1000;

278 Constant too big
This error occurs when a floating-point argument lies outside of the valid range for
32-bit floating values. The numeric range of the 32-bit IEEE values is:
±1.175494E-38 to ±3.402823E+38.

279 Multiple initialization
An attempt has been made to initialize some object more than once.

300 Unterminated comment
This message occurs when a comment does not have a closing delimiter (*/).

301 Identifier expected
The syntax of a preprocessor directive expects an identifier.

302 Misused # operator
This message occurs if the stringize operator ‘#’ is not followed by an identifier.

303 Formal argument expected
This message occurs if the stringize operator ‘#’ is not followed by an identifier
representing a formal parameter name of the macro currently being defined.

304 Bad macro parameter list
The macro parameter list does not represent a brace enclosed, comma separated
list of identifiers.

305 Unterminated string/char constant
A string or character constant is invalid. Typically, this error is encountered if the
closing quote is missing.

306 Unterminated macro call
The end of the input file was reached while the preprocessor was collecting and
expanding actual parameters of a macro call.

307 Macro ‘name’: parameter count mismatch
The number of actual parameters in a macro call does not match the number of
parameters of the macro definition. This error indicates that too few parameters
were specified.

308 Invalid integer constant expression
The numerical expression of an if/elif directive contains a syntax error.

309 Bad or missing file name
The filename argument in an include directive is invalid or missing.

310 Conditionals too nested(20)
The source file contains too many nested directives for conditional compilation.
The maximum nesting level allowed is 20.

170 Chapter 7. Error Messages

7

Number Error Message and Description

311
312

Misplaced elif/else control
Misplaced endif control
The directives elif, else, and endif are legal only within an if, ifdef, or ifndef
directive.

313 Can’t remove predefined macro ‘name’
An attempt was made to remove a predefined macro. Existing macros may be
deleted using the #undef directive. Predefined macros cannot be removed. The
compiler recognizes the following predefined macros:

_ _C51_ _ _ _DATE_ _ _ _FILE_ _ _ _MODEL_ _
_ _LINE_ _ _ _STDC_ _ _ _TIME_ _

314 Bad # directive syntax
In a preprocessor directive, the character ‘#’ must be followed by either a newline
character or the name of a preprocessor command (for example, if/define/ifdef,
…).

315 Unknown # directive ‘name’
The name of the preprocessor directive is not known to the compiler.

316 Unterminated conditionals
The number of endifs does not match the number of if or ifdefs after the end of the
input file.

318 Can’t open file ‘filename’
The given file could not be opened.

319 ‘File’ is not a disk file
The given file is not a disk file. Files other than disk files are not legal for
compilation.

320 User_error_text
This error number is reserved for errors introduced with the #error directive of the
preprocessor. The #error directive causes the user error text to come up with error
320 which counts like some other error and prevents the compiler from generating
code.

321 Missing <character>
In the filename argument of an include directive, the closing character is missing.
For example: #include <stdio.h

325 Duplicate formal parameter ‘name’
A formal parameter of a macro may be define only once.

326 Macro body cannot start or end with ‘##’
The concat operator (‘##’) cannot be the first or last token of a macro body.

327 Macro ‘macroname’: more than 50 parameters
The number of parameters per macro is limited to 50.

Keil Software — C51 Compiler User’s Guide 171

7

Warnings

Warnings produce information about potential problems which may occur during
the execution of the resulting program. Warnings do not hinder compilation of
the source file.

Warnings produce a message in the list file. These warning messages are in the
following format:

*** WARNING number IN LINE line OF file: warning message

where:

number is the error number.

line corresponds to the line number in the source file or include
file.

file is the name of the source or include file in which the error
was detected.

warning message is descriptive text that is dependent upon the type of warning
encountered.

The following table lists warnings by number. The warning message displayed
is listed along with a brief description and possible cause and correction.

Number Warning Message and Description

173 Missing return-expression
A function which returns a value of any type but int, must contain a return
statement including an expression. Because of compatibility to older programs, no
check is done on functions which return an int value.

182 Pointer to different objects
A pointer was assigned the address of a different type.

185 Different memory space
The memory space of an object declaration differs from the memory space of a
prior declaration for the same object.

196 Mspace probably invalid
This warning is caused by the assignment of an invalid constant value to a pointer.
Valid pointer constants are long or unsigned long. The compiler uses 24 bits
(3 bytes) for pointer objects. The low-order 16 bits represent the offset. The
high-order 8 bits represent the memory space selector.

198 Sizeof returns zero
The calculation of the size of an object yields zero. This value may be wrong if the
object is external or if not all dimension sizes of an array are known.

172 Chapter 7. Error Messages

7

Number Warning Message and Description

206 Missing function prototype
The called function is unknown because no prototype declaration exists. Calls to
unknown functions are always at risk that the number of parameters does not
correspond to the actual requirements. If this is the case, the function is called
incorrectly.

The compiler has no way to check for missing or excessive parameters and their
types. Include prototypes of the functions used in your program. Prototypes must
be specified before the functions are actually called. The definition of a function
automatically produces a prototype.

209 Too few actual parameters
Too few actual parameters were included in a function call.

219 Long constant truncated to int
The value of a constant expression must be capable of being represented by an int
type.

245 Unknown pragma, line ignored
The #pragma statement is unknown, so the entire pragma line is ignored.

258 Mspace illegal on struct/union member
Mspace on parameter ignored
A member of a structure or a parameter may not contain the specification of a
memory type. The object to which the pointer refers may, however, contain a
memory type. For example:

struct vp { char code c; int xdata i; };

generates error 258.

struct v1 { char c; int xdata *i; };

is the correct declaration for the struct.

259 Pointer: different mspace
This warning is generated when two pointers that do not refer to the same memory
type of object are compared.

260 Pointer truncation
This error or warning occurs when converting a pointer to a pointer with a smaller
offset area. The conversion takes place, but the offset of the larger pointer is
truncated to fit into the smaller pointer.

261 Bit in reentrant function
A reentrant function cannot contain bits because bit scalars cannot be stored on
the virtual stack.

265 ‘name’: recursive call to non-reentrant function
A direct recursion to a non-reentrant function was discovered. This can be
intentional but should be functionally checked (through the generated code) for
each individual case. Indirect recursions are discovered by the linker/locator.

Keil Software — C51 Compiler User’s Guide 173

7

Number Warning Message and Description

271 Misplaced ‘asm/endasm’ control
The asm and endasm statements may not be nested. Endasm requires that an
asm block be opened by a previous asm statement. For example:

#pragma asm
.
.
.
assembler instruction(s)
.
.
.
#pragma endasm

275 Expression with possibly no effect
The compiler detected an expression which does not generate code. For example:

void test (void) {
 int i1, i2, i3;
 i1, i2, i3; /* dead expression */
 i1 << 3; /* result is not used */
}

276 Constant in condition expression
The compiler detected a conditional expression with a constant value. In most
cases this is a typing mistake. For example:

void test (void) {
 int i1, i2, i3;
 if (i1 = 1) i2 = 3; /* const assigned with = */
 while (i3 = 2); /* const assigned with = */
}

277 Different mspaces to pointer
A typedef declaration has a conflict of the memory spaces. For example:

typedef char xdata XCC; /* mspace xdata */
typedef XCC idata PICC; /* mspace collision */

280 Unreferenced symbol/label
This message identifies a symbol or label which has been defined but not used.

307 Macro ‘name’: parameter count mismatch
The number of actual parameters in a macro call does not match the number of
parameters of the macro definition. This warning indicates that too many
parameters were used. Excess parameters are ignored.

317 Macro ‘name’: invalid redefinition
A predefined macro cannot be redefined or removed. The compiler recognizes the
following predefined macros:

_ _C51_ _ _ _DATE_ _ _ _FILE_ _ _ _MODEL_ _
_ _LINE_ _ _ _STDC_ _ _ _TIME_ _

322 Unknown identifier
The identifier in an #if directive line is undefined (evaluates to FALSE).

323 Newline expected, extra characters found
A #directive line is correct but contains extra non commented characters. For
example:

#include <stdio.h> foo

174 Chapter 7. Error Messages

7

Number Warning Message and Description

324 Preprocessor token expected
A preprocessor token was expected but a newline character was found in input.
For example: #line where the arguments to the #line directive are missing.

Keil Software — C51 Compiler User’s Guide 175

8

Chapter 8. Library Reference
The C51 run-time library provides you with more than 100 predefined functions
and macros to use in your 8051 C programs. This library makes embedded
software development easier by providing you with routines that perform
common programming tasks such as string and buffer manipulation, data
conversion, and floating-point math operations.

Typically, the routines in this library conform to the ANSI C Standard.
However, some functions differ slightly in order to take advantage of the
features found in the 8051 architecture. For example, the function isdigit returns
a bit value as opposed to an int. Where possible, function return types and
argument types are adjusted to use the smallest possible data type. In addition,
unsigned data types are favored over signed types. These alterations to the
standard library provide a maximum of performance while also reducing
program size.

All routines in this library are implemented to be independent of and to function
using any register bank.

Intrinsic Routines

The C51 compiler supports a number of intrinsic library functions. Non-intrinsic
functions generate ACALL or LCALL instructions to perform the library
routine. Intrinsic functions generate in-line code to perform the library routine.
The generated in-line code is much faster and more efficient than a called routine
would be. The following functions are available in intrinsic form:

crol
cror
irol

iror
lrol
lror

nop
testbit

These routines are described in detail in the following sections.

176 Chapter 8. Library Reference

8

Library Files

The C51 library includes six different compile-time libraries which are
optimized for various functional requirements. These libraries support most of
the ANSI C function calls.

Library File Description

C51S.LIB Small model library without floating-point arithmetic

C51FPS.LIB Small model floating-point arithmetic library

C51C.LIB Compact model library without floating-point arithmetic

C51FPC.LIB Compact model floating-point arithmetic library

C51L.LIB Large model library without floating-point arithmetic

C51FPL.LIB Large model floating-point arithmetic library

80C751.LIB Library for use with the Signetics 8xC751 and derivatives.

Several library modules are provided in source code form. These routines are
used to perform low-level hardware-related I/O for the stream I/O functions.
You can find the source for these routines in the LIB directory. You may
modify these source files and substitute them for the library routines. By using
these routines, you can quickly adapt the library to perform (using any hardware
I/O device available in your target) stream I/O. Refer to “Stream Input and
Output” on page 187 for more information.

Keil Software — C51 Compiler User’s Guide 177

8

Standard Types

The C51 standard library contains definitions for a number of standard types
which may be used by the library routines. These standard types are declared in
include files which you may access from your C programs.

jmp_buf

The jmp_buf type is defined in SETJMP.H and specifies the buffer used by the
setjmp and longjmp routines to save and restore the program environment. The
jmp_buf type is defined as follows:

#define _JBLEN 7
typedef char jmp_buf[_JBLEN];

va_list

The va_list array type is defined in STDARG.H. This type holds data required by
the va_arg and va_end routines. The va_list type is defined as follows:

typedef char *va_list;

178 Chapter 8. Library Reference

8

Absolute Memory Access Macros

The C51 standard library contains definitions for a number of macros that allow
you to access explicit memory addresses. These macros are defined in
ABSACC.H. Each of these macros is defined to be used like an array.

CBYTE

The CBYTE macro allows you to access individual bytes in the program
memory of the 8051 and is defined as follows:

#define CBYTE ((unsigned char volatile code *)0)

You may use this macro in your programs as follows:

rval = CBYTE [0x0002];

to read the contents of the byte in program memory at address 0002h.

CWORD

The CWORD macro allows you to access individual words in the program
memory of the 8051 and is defined as follows:

#define CWORD ((unsigned int volatile code *) 0)

You may use this macro in your programs as follows:

rval = CWORD [0x0002];

to read the contents of the word in program memory at address 0004h
(2 × sizeof (unsigned int) = 4).

NOTE
The index used with this macro does not represent the memory address of the
integer value. To obtain the memory address, you must multiply the index by the
sizeof an integer (2 bytes).

Keil Software — C51 Compiler User’s Guide 179

8

DBYTE

The DBYTE macro allows you to access individual bytes in the internal data
memory of the 8051 and is defined as follows:

#define DBYTE ((unsigned char volatile idata *) 0)

You may use this macro in your programs as follows:

rval = DBYTE [0x0002];
DBYTE [0x0002] = 5;

to read or write the contents of the byte in internal data memory at address
0002h.

DWORD

The DWORD macro allows you to access individual words in the internal data
memory of the 8051 and is defined as follows:

#define DWORD ((unsigned int volatile idata *) 0)

You may use this macro in your programs as follows:

rval = DWORD [0x0002];
DWORD [0x0002] = 57;

to read or write the contents of the word in internal data memory at address
0004h (2 × sizeof (unsigned int) = 4).

NOTE
The index used with this macro does not represent the memory address of the
integer value. To obtain the memory address, you must multiply the index by the
sizeof an integer (2 bytes).

180 Chapter 8. Library Reference

8

PBYTE

The PBYTE macro allows you to access individual bytes in one page of the
external data memory of the 8051 and is defined as follows:

#define PBYTE ((unsigned char volatile pdata *) 0)

You may use this macro in your programs as follows:

rval = PBYTE [0x0002];
PBYTE [0x0002] = 38;

to read or write the contents of the byte in pdata memory at address 0002h.

PWORD

The PWORD macro allows you to access individual words in one page of the
external data memory of the 8051 and is defined as follows:

#define PWORD ((unsigned int volatile pdata*) 0)

You may use this macro in your programs as follows:

rval = PWORD [0x0002];
PWORD [0x0002] = 57;

to read or write the contents of the word in pdata memory at address 0004h
(2 × sizeof (unsigned int) = 4).

NOTE
The index used with this macro does not represent the memory address of the
integer value. To obtain the memory address, you must multiply the index by the
sizeof an integer (2 bytes).

Keil Software — C51 Compiler User’s Guide 181

8

XBYTE

The XBYTE macro allows you to access individual bytes in the external data
memory of the 8051 and is defined as follows:

#define XBYTE ((unsigned char volatile xdata*) 0)

You may use this macro in your programs as follows:

rval = XBYTE [0x0002];
XBYTE [0x0002] = 57;

to read or write the contents of the byte in external data memory at address
0002h.

XWORD

The XWORD macro allows you to access individual words in the external data
memory of the 8051 and is defined as follows:

#define XWORD ((unsigned int volatile xdata*) 0)

You may use this macro in your programs as follows:

rval = XWORD [2];
XWORD [2] = 57;

to read or write the contents of the word in external data memory at address
0004h (2 × sizeof (unsigned int) = 4).

NOTE
The index used with this macro does not represent the memory address of the
integer value. To obtain the memory address, you must multiply the index by the
sizeof an integer (2 bytes).

182 Chapter 8. Library Reference

8

Routines by Category

This sections gives a brief overview of the major categories of routines available
in the C51 standard library. Refer to “Reference” on page 195 for a complete
description of routine syntax and usage.

NOTE
Many of the routines in the C51 standard library are reentrant, intrinsic, or
both. These specifications are listed under attributes in the following tables.
Unless otherwise noted, routines are non-reentrant and non-intrinsic.

Buffer Manipulation

Routine Attributes Description

memccpy Copies data bytes from one buffer to another until a
specified character or specified number of characters has
been copied.

memchr reentrant Returns a pointer to the first occurrence of a specified
character in a buffer.

memcmp reentrant Compares a given number of characters from two different
buffers.

memcpy reentrant Copies a specified number of data bytes from one buffer
to another.

memmove reentrant Copies a specified number of data bytes from one buffer
to another.

memset reentrant Initializes a specified number of data bytes in a buffer to a
specified character value.

The buffer manipulation routines are used to work on memory buffers on a
character-by-character basis. A buffer is an array of characters like a string,
however, a buffer is usually not terminated with a null character (‘\0’). For this
reason, these routines require a buffer length or count argument.

All of these routines are implemented as functions. Function prototypes are
included in the STRING.H include file.

Keil Software — C51 Compiler User’s Guide 183

8

Character Conversion and Classification

Routine Attributes Description

isalnum reentrant Tests for an alphanumeric character.

isalpha reentrant Tests for an alphabetic character.

iscntrl reentrant Tests for a Control character.

isdigit reentrant Tests for a decimal digit.

isgraph reentrant Tests for a printable character with the exception of space.

islower reentrant Tests for a lowercase alphabetic character.

isprint reentrant Tests for a printable character.

ispunct reentrant Tests for a punctuation character.

isspace reentrant Tests for a whitespace character.

isupper reentrant Tests for an uppercase alphabetic character.

isxdigit reentrant Tests for a hexadecimal digit.

toascii reentrant Converts a character to an ASCII code.

toint reentrant Converts a hexadecimal digit to a decimal value.

tolower reentrant Tests a character and converts it to lowercase if it is
uppercase.

_tolower reentrant Unconditionally converts a character to lowercase.

toupper reentrant Tests a character and converts it to uppercase if it is
lowercase.

_toupper reentrant Unconditionally converts a character to uppercase.

The character conversion and classification routines allow you to test individual
characters for a variety of attributes and convert characters to different formats.

The _tolower, _toupper, and toascii routines are implemented as macros. All
other routines are implemented as functions. All macro definitions and function
prototypes are found in the CTYPE.H include file.

184 Chapter 8. Library Reference

8

Data Conversion

Routine Attributes Description

abs reentrant Generates the absolute value of an integer type.

atof / atof517 Converts a string to a float.

atoi Converts a string to an int.

atol Converts a string to a long.

cabs reentrant Generates the absolute value of a character type.

labs reentrant Generates the absolute value of a long type.

The data conversion routines convert strings of ASCII characters to numbers.
All of these routines are implemented as functions and most are prototyped in
the include file STDLIB.H. The abs, cabs, and labs functions are prototyped in
the MATH.H include file. The atof517 function is prototyped in the include file
80C517.H.

Math

Routine Attributes Description

acos / acos517 Calculates the arc cosine of a specified number.

asin / asin517 Calculates the arc sine of a specified number.

atan / atan517 Calculates the arc tangent of a specified number.

atan2 Calculates the arc tangent of a fraction.

ceil Finds the integer ceiling of a specified number.

cos / cos517 Calculates the cosine of a specified number.

cosh Calculates the hyperbolic cosine of a specified number.

exp / exp517 Calculates the exponential function of a specified number.

fabs reentrant Finds the absolute value of a specified number.

floor Finds the largest integer less than or equal to a specified
number.

log / log517 Calculates the natural logarithm of a specified number.

log10 / log10517 Calculates the common logarithm of a specified number.

modf Generates integer and fractional components of a
specified number.

pow Calculates a value raised to a power.

rand reentrant Generates a pseudo random number.

sin / sin517 Calculates the sine of a specified number.

sinh Calculates the hyperbolic sine of a specified number.

srand Initializes the pseudo random number generator.

Keil Software — C51 Compiler User’s Guide 185

8

Routine Attributes Description

sqrt / sqrt517 Calculates the square root of a specified number.

tan / tan517 Calculates the tangent of a specified number.

tanh Calculates the hyperbolic tangent of a specified number.

chkfloat intrinsic,
reentrant

Checks the status of float numbers.

crol intrinsic,
reentrant

Rotates an unsigned char left a specified number of bits.

cror intrinsic,
reentrant

Rotates an unsigned char right a specified number of bits.

irol intrinsic,
reentrant

Rotates an unsigned int left a specified number of bits.

iror intrinsic,
reentrant

Rotates an unsigned int right a specified number of bits.

lrol intrinsic,
reentrant

Rotates an unsigned long left a specified number of bits.

lror intrinsic,
reentrant

Rotates an unsigned long right a specified number of bits.

The math routines perform common mathematical calculations. Most of these
routines work with floating-point values and therefore include the floating-point
libraries and support routines.

All of these routines are implemented as functions. Most are prototyped in the
include file MATH.H. Functions which end in 517 (acos517, asin517, atan517,
cos517, exp517, log517, log10517, sin517, sqrt517, and tan517) are prototyped
in the 80C517.H include file. The rand and srand functions are prototyped in the
STDLIB.H include file.

The _chkfloat_, _crol_, _cror_, _irol_, _iror_, _lrol_, and _lror_ functions are
prototyped in the INTRINS.H include file.

186 Chapter 8. Library Reference

8

Memory Allocation

Routine Attributes Description

calloc Allocates storage for an array from the memory pool.

free Frees a memory block that was allocated using calloc,
malloc, or realloc.

init_mempool Initializes the memory location and size of the memory
pool.

malloc Allocates a block from the memory pool.

realloc Reallocates a block from the memory pool.

The memory allocation functions provide you with a means to specify, allocate,
and free blocks of memory from a memory pool. All memory allocation
functions are implemented as functions and are prototyped in the STDLIB.H

include file.

Before using any of these functions to allocate memory, you must first specify,
using the init_mempool routine, the location and size of a memory pool from
which subsequent memory requests are satisfied.

The calloc and malloc routines allocate blocks of memory from the pool. The
calloc routine allocates an array with a specified number of elements of a given
size and initializes the array to 0. The malloc routine allocates a specified
number of bytes.

The realloc routine changes the size of an allocated block, while the free routine
returns a previously allocated memory block to the memory pool.

Keil Software — C51 Compiler User’s Guide 187

8

Stream Input and Output

Routine Attributes Description

getchar reentrant Reads and echoes a character using the _getkey and
putchar routines.

_getkey Reads a character using the 8051 serial interface.

gets Reads and echoes a character string using the getchar
routine.

printf / printf517 Writes formatted data using the putchar routine.

putchar Writes a character using the 8051 serial interface.

puts reentrant Writes a character string and newline (‘\n’) character
using the putchar routine.

scanf / scanf517 Reads formatted data using the getchar routine.

sprintf / sprintf517 Writes formatted data to a string.

sscanf / sscanf517 Reads formatted data from a string.

ungetchar Places a character back into the getchar input buffer.

vprintf Writes formatted data using the putchar function.

vsprintf Writes formatted data to a string.

The stream input and output routines allow you to read and write data to and
from the 8051 serial interface or a user-defined I/O interface. The default
_getkey and putchar functions found in the C51 library read and write
characters using the 8051 serial interface. You can find the source for these
functions in the LIB directory. You may modify these source files and
substitute them for the library routines. When this is done, other stream
functions then perform input and output using the new _getkey and putchar
routines.

If you want to use the existing _getkey and putchar functions, you must first
initialize the 8051 serial port. If the serial port is not properly initialized, the
default stream functions do not function. Initializing the serial port requires
manipulating special function registers SFRs of the 8051. The include file
REG51.H contains definitions for the required SFRs.

188 Chapter 8. Library Reference

8

The following example code must be executed immediately after reset, before
any stream functions are invoked.

.

.

.
#include <reg51.h>
.
.
.
SCON = 0x50; /* Setup serial port control register */
 /* Mode 1: 8-bit uart var. baud rate */
 /* REN: enable receiver */

PCON &= 0x7F; /* Clear SMOD bit in power ctrl reg */
 /* This bit doubles the baud rate */

TMOD &= 0xCF /* Setup timer/counter mode register */
 /* Clear M1 and M0 for timer 1 */
TMOD |= 0x20; /* Set M1 for 8-bit autoreload timer */

TH1 = 0xFD; /* Set autoreload value for timer 1 */
 /* 9600 baud with 11.0592 MHz xtal */

TR1 = 1; /* Start timer 1 */

TI = 1; /* Set TI to indicate ready to xmit */
.
.
.

The stream routines treat input and output as streams of individual characters.
There are routines that process characters as well as functions that process
strings. Choose the routines that best suit your requirements.

All of these routines are implemented as functions. Most are prototyped in the
STDIO.H include file. The printf517, scanf517, sprintf517, and sscanf517
functions are prototyped in the 80C517.H include file.

Keil Software — C51 Compiler User’s Guide 189

8

String Manipulation

Routine Attributes Description

strcat Concatenates two strings.

strchr reentrant Returns a pointer to the first occurrence of a specified
character in a string.

strcmp reentrant Compares two strings.

strcpy reentrant Copies one string to another.

strcspn Returns the index of the first character in a string that
matches any character in a second string.

strlen reentrant Returns the length of a string.

strncat Concatenates up to a specified number of characters from
one string to another.

strncmp Compares two strings up to a specified number of
characters.

strncpy Copies up to a specified number of characters from one
string to another.

strpbrk Returns a pointer to the first character in a string that
matches any character in a second string.

strpos reentrant Returns the index of the first occurrence of a specified
character in a string.

strrchr reentrant Returns a pointer to the last occurrence of a specified
character in a string.

strrpbrk Returns a pointer to the last character in a string that
matches any character in a second string.

strrpos reentrant Returns the index of the last occurrence of a specified
character in a string.

strspn Returns the index of the first character in a string that
does not match any character in a second string.

The string routines are implemented as functions and are prototyped in the
STRING.H include file. They perform the following operations:

! Copying strings

! Appending one string to the end of another

! Comparing two strings

! Locating one or more characters from a specified set in a string

All string functions operate on null-terminated character strings. To work on
non-terminated strings, use the buffer manipulation routines described earlier in
this section.

190 Chapter 8. Library Reference

8

Variable-length Argument Lists

Routine Attributes Description

va_arg reentrant Retrieves an argument from an argument list.

va_end reentrant Resets an argument pointer.

va_start reentrant Sets a pointer to the beginning of an argument list.

The variable-length argument list routines are implemented as macros and are
defined in the STDARG.H include file. These routines provide you with a
portable method of accessing arguments in a function that takes a variable
number of arguments. These macros conform to the ANSI C Standard for
variable-length argument lists.

Miscellaneous

Routine Attributes Description

setjmp reentrant Saves the current stack condition and program address.

longjmp reentrant Restores the stack condition and program address.

nop intrinsic,
reentrant

Inserts an 8051 NOP instruction.

testbit intrinsic,
reentrant

Tests the value of a bit and clears it to 0.

Routines found in the miscellaneous category do not fit easily into any other
library routine category. The setjmp and longjmp routines are implemented as
functions and are prototyped in the STDJMP.H include file.

The _nop_ and _testbit_ routines are used to direct the compiler to generate a
NOP instruction and a JBC instruction respectively. These routines are
prototyped in the INTRINS.H include file.

Keil Software — C51 Compiler User’s Guide 191

8

Include Files

The include files that are provided with the C51 standard library are found in the
INC subdirectory. These files contain constant and macro definitions, type
definitions, and function prototypes. The following sections describe the use
and contents of each include file. Macros and functions included in the file are
listed as well.

8051 Special Function Register Include Files

The C51 library provides you with a number of include files that define manifest
constants for the special function registers found on many 8051 derivatives.
These files are listed below:

REG151S.H
REG152.H
REG320.H
REG410.H
REG451.H
REG452.H
REG509.H

REG51.H
REG515.H
REG515A.H
REG515C.H
REG517.H
REG517A.H
REG51F.H

REG51G.H
REG51GB.H
REG52.H
REG552.H
REG592.H
REG781.H

80C517.H

The 80C517.H include file contains routines that use the enhanced operational
features of the 80C517 CPU and its derivatives. These routines are:

acos517
asin517
atan517
atof517
cos517

exp517
log10517
log517
printf517
scanf517

sin517
sprintf517
sqrt517
sscanf517
tan517

ABSACC.H

The ABSACC.H include file contains definitions for macros that allow you to
directly access the different memory areas of the 8051.

CBYTE
CWORD
DBYTE

DWORD
PBYTE
PWORD

XBYTE
XWORD

192 Chapter 8. Library Reference

8

ASSERT.H

The ASSERT.H include file defines the assert macro you can use to create test
conditions in your programs.

CTYPE.H

The CTYPE.H include file contains definitions and prototypes for routines
which classify ASCII characters and routines which perform character
conversions. The following is a list of these routines:

isalnum
isalpha
iscntrl
isdigit
isgraph
islower

isprint
ispunct
isspace
isupper
isxdigit
toascii

toint
tolower
_tolower
toupper
_toupper

INTRINS.H

The INTRINS.H include file contains prototypes for routines that instruct the
compiler to generate in-line intrinsic code.

chkfloat
crol
cror

irol
iror
lrol

lror
nop
testbit

MATH.H

The MATH.H include file contains prototypes and definitions for all routines
that perform floating-point math calculations. Other math functions are also
included in this file. All of the math function routines are listed below:

abs
acos
asin
atan
atan2
cabs
ceil
cos

cosh
exp
fabs
floor
fprestore
fpsave
labs
log

log10
modf
pow
sin
sinh
sqrt
tan
tanh

Keil Software — C51 Compiler User’s Guide 193

8

SETJMP.H

The SETJMP.H include file defines the jmp_buf type and prototypes the setjmp
and longjmp routines which use it.

STDARG.H

The STDARG.H include file defines macros that allow you to access arguments in
functions with variable-length argument lists. The macros include:

va_arg va_end va_start

In addition, the va_list type is defined in this file.

STDDEF.H

The STDDEF.H include file defines the offsetof macro you can use to determine
the offset of members of a structure.

STDIO.H

The STDIO.H include file contains prototypes and definitions for stream I/O
routines. They are:

getchar
_getkey
gets
printf

putchar
puts
scanf
sprintf

sscanf
ungetchar
vprintf
vsprintf

The STDIO.H include file also defines the EOF manifest constant.

194 Chapter 8. Library Reference

8

STDLIB.H

The STDLIB.H include file contains prototypes and definitions for the type
conversion and memory allocation routines listed below:

atof
atoi
atol
calloc

free
init_mempool
malloc
rand

realloc
srand

The STDLIB.H include file also defines the NULL manifest constant.

STRING.H

The STRING.H include file contains prototypes for the following string and
buffer manipulation routines:

memccpy
memchr
memcmp
memcpy
memmove
memset
strcat

strchr
strcmp
strcpy
strcspn
strlen
strncat
strncmp

strncpy
strpbrk
strpos
strrchr
strrpbrk
strrpos
strspn

The STRING.H include file also defines the NULL manifest constant.

Keil Software — C51 Compiler User’s Guide 195

8

Reference

The following pages constitute the C51 standard library reference. The routines
included in the standard library are described here in alphabetical order and each
is divided into several sections:

Summary: Briefly describes the routine’s effect, lists include file(s)
containing its declaration and prototype, illustrates the
syntax, and describes any arguments.

Description: Provides you with a detailed description of the routine and
how it is used.

Return Value: Describes the value returned by the routine.

See Also: Names related routines.

Example: Gives a function or program fragment demonstrating proper
use of the function.

196 Chapter 8. Library Reference

8

abs

Summary: #include <math.h>
int abs (

int val); /* number to take absolute value
of */

Description: The abs function determines the absolute value of the
integer argument val.

Return Value: The abs function returns the absolute value of val.

See Also: cabs, fabs, labs

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_abs (void) {
 int x;
 int y;

 x = -42;

 y = abs (x);

 printf ("ABS(%d) = %d\n", x, y);
}

Keil Software — C51 Compiler User’s Guide 197

8

acos / acos517

Summary: #include <math.h>
float acos (

float x); /* number to calculate arc
cosine of */

Description: The acos function calculates the arc cosine of the
floating-point number x. The value of x must be between -
1 and 1. The floating-point value returned by acos is a
number in the 0 to π range.

The acos517 function is identical to acos, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. For using this function include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

Return Value: The acos function returns the arc cosine of x.

See Also: asin, atan, atan2

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_acos (void) {
 float x;
 float y;

 for (x = -1.0; x <= 1.0; x += 0.1) {
 y = acos (x);

 printf ("ACOS(%f) = %f\n", x, y);
 }
}

198 Chapter 8. Library Reference

8

asin / asin517

Summary: #include <math.h>
float asin (

float x); /* number to calculate arc sine
of */

Description: The asin function calculates the arc sine of the
floating-point number x. The value of x must be in the
range -1 to 1. The floating-point value returned by asin is a
number in the -π/2 to π/2 range.

The asin517 function is identical to asin, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. For using this function include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

Return Value: The asin function returns the arc sine of x.

See Also: acos, atan, atan2

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_asin (void) {
 float x;
 float y;

 for (x = -1.0; x <= 1.0; x += 0.1) {
 y = asin (x);

 printf ("ASIN(%f) = %f\n", x, y);
 }
}

Keil Software — C51 Compiler User’s Guide 199

8

assert

Summary: #include <assert.h>
void assert (

expression);

Description: The assert macro tests expression and prints a diagnostic
message using the printf library routine if it is false.

Return Value: None.

Example: #include <assert.h>
#include <stdio.h>

void check_parms (
 char *string)
{
 assert (string != NULL); /* check for NULL ptr */
 printf ("String %s is OK\n", string);
}

200 Chapter 8. Library Reference

8

atan / atan517

Summary: #include <math.h>
float atan (

float x); /* number to calculate arc
tangent of */

Description: The atan function calculates the arc tangent of the
floating-point number x. The floating-point value returned
by atan is a number in the -π/2 to π/2 range.

The atan517 function is identical to atan, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. For using this function include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

Return Value: The atan function returns the arc tangent of x.

See Also: acos, asin, atan2

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_atan (void) {
 float x;
 float y;

 for (x = -10.0; x <= 10.0; x += 0.1) {
 y = atan (x);

 printf ("ATAN(%f) = %f\n", x, y);
 }
}

Keil Software — C51 Compiler User’s Guide 201

8

atan2

Summary: #include <math.h>
float atan2 (

float y, /* denominator for arc tangent */
float x); /* numerator for arc tangent */

Description: The atan2 function calculates the arc tangent of the
floating-point ratio y / x. This function uses the signs of
both x and y to determine the quadrant of the return value.
The floating-point value returned by atan2 ia a number in
the -π to π range.

Return Value: The atan2 function returns the arc tangent of y / x.

See Also: acos, asin, atan

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_atan2 () {
 float x;
 float y;
 float z;

 x = -1.0;

 for (y = -10.0; y < 10.0; y += 0.1) {
 z = atan2 (y,x);

 printf ("ATAN2(%f/%f) = %f\n", y, x, z);
 }

 /* z approaches -pi as y goes from -10 to 0 */
 /* z approaches +pi as y goes from +10 to 0 */

}

202 Chapter 8. Library Reference

8

atof / atof517

Summary: #include <stdlib.h>
float atof (

void *string); /* string to convert */

Description: The atof function converts string into a floating-point
value. The input string is a sequence of characters that can
be interpreted as a floating-point number. This function
stops processing characters from string at the first one it
cannot recognize as part of the number.

The atof517 function is identical to atof, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. For using this function include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

The atof function requires string to have the following
format:

!{+ | -}" digits !. digits" !{e | E} !{+ | -}" digits"
where:

digits may be one or more decimal digits.

Return Value: The atof function returns the floating-point value that is
produced by interpreting the characters in string as a
number.

See Also: atoi, atol

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_atof (void) {
 float f;
 char s [] = "1.23";

 f = atof (s);
 printf ("ATOF(%s) = %f\n", s, f);
}

Keil Software — C51 Compiler User’s Guide 203

8

atoi

Summary: #include <stdlib.h>
int atoi (

void *string); /* string to convert */

Description: The atoi function converts string into an integer value.
The input string is a sequence of characters that can be
interpreted as an integer. This function stops processing
characters from string at the first one it cannot recognize as
part of the number.

The atoi function requires string to have the following
format:

!whitespace" !{+ | -}" digits

where:

digits may be one or more decimal digits.

Return Value: The atoi function returns the integer value that is produced
by interpreting the characters in string as a number.

See Also: atof, atol

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_atoi (void) {
 int i;
 char s [] = "12345";

 i = atoi (s);
 printf ("ATOI(%s) = %d\n", s, i);
}

204 Chapter 8. Library Reference

8

atol

Summary: #include <stdlib.h>
long atol (

void *string); /* string to convert */

Description: The atol function converts string into a long integer value.
The input string is a sequence of characters that can be
interpreted as a long. This function stops processing
characters from string at the first one it cannot recognize as
part of the number.

The atol function requires string to have the following
format:

!whitespace" !{+ | -}" digits

where:

digits may be one or more decimal digits.

Return Value: The atol function returns the long integer value that is
produced by interpreting the characters in string as a
number.

See Also: atof, atoi

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_atol (void) {
 long l;
 char s [] = "8003488051";

 l = atol (s);
 printf ("ATOL(%s) = %ld\n", s, l);

}

Keil Software — C51 Compiler User’s Guide 205

8

cabs

Summary: #include <math.h>
char cabs (

char val); /* character to take absolute value of */

Description: The cabs function determines the absolute value of the
character argument val.

Return Value: The cabs function returns the absolute value of val.

See Also: abs, fabs, labs

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_cabs (void) {
 char x;
 char y;

 x = -23;

 y = cabs (x);

 printf ("CABS(%bd) = %bd\n", x, y);
}

206 Chapter 8. Library Reference

8

calloc

Summary: #include <stdlib.h>
void *calloc (

unsigned int num, /* number of items */
unsigned int len); /* length of each item */

Description: The calloc function allocates memory for an array of num
elements. Each element in the array occupies len bytes and
is initialized to 0. The total number of bytes of memory
allocated is num × len.

NOTE
Source code is provided for this routine in the LIB

directory. You can modify the source to customize this
function for your hardware environment. Refer to
“Chapter 6. Advanced Programming Techniques” on page
113 for more information.

Return Value: The calloc function returns a pointer to the allocated
memory or a null pointer if the memory allocation request
cannot be satisfied.

See Also: free, init_mempool, malloc, realloc

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_calloc (void) {
 int xdata *p; /* ptr to array of 100 ints */

 p = calloc (100, sizeof (int));

 if (p == NULL)
 printf ("Error allocating array\n");
 else
 printf ("Array address is %p\n", (void *) p);

}

Keil Software — C51 Compiler User’s Guide 207

8

ceil

Summary: #include <math.h>
float ceil (

float val); /* number to calculate ceiling for */

Description: The ceil function calculates the smallest integer value that is
greater than or equal to val.

Return Value: The ceil function returns a float that contains the smallest
integer value that is not less than val.

See Also: floor

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_ceil (void) {
 float x;
 float y;

 x = 45.998;
 y = ceil (x);

 printf ("CEIL(%f) = %f\n", x, y);

 /* output is "CEIL(45.998) = 46" */

}

208 Chapter 8. Library Reference

8

chkfloat

Summary: #include <intrins.h>
unsigned char _chkfloat_ (

float val); /* number for error checking */

Description: The _chkfloat_ function checks the status of a floating-point
number.

Return Value: The _chkfloat_ function returns an unsigned char that
contains the following status information:

Return Value Meaning

0 Standard floating-point numbers

1 Floating-point value 0

2 +INF (positive overflow)

3 -INF (negative overflow)

4 NaN (Not a Number) error status

Example: #include <intrins.h>
#include <stdio.h> /* for printf */

char _chkfloat_ (float);

float f1, f2, f3;

void tst_chkfloat (void) {
 f1 = f2 * f3;

 switch (_chkfloat_ (f1)) {
 case 0:
 printf ("result is a number\n"); break;
 case 1:
 printf ("result is zero\n"); break;
 case 2:
 printf ("result is +INF\n"); break;
 case 3:
 printf ("result is -INF\n"); break;
 case 4:
 printf ("result is NaN\n"); break;
 }
}

Keil Software — C51 Compiler User’s Guide 209

8

cos / cos517

Summary: #include <math.h>
float cos (

float x); /* number to calculate cosine
for */

Description: The cos function calculates the cosine of the floating-point
value x. The value of x must be between -65535 and
65535. Values outside this range result in an NaN error.

The cos517 function is identical to cos, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. For using this function include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

Return Value: The cos function returns the cosine for the value x.

See Also: sin, tan

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_cos (void) {
 float x;
 float y;

 for (x = 0; x < (2 * 3.1415); x += 0.1) {
 y = cos (x);

 printf ("COS(%f) = %f\n", x, y);
 }
}

210 Chapter 8. Library Reference

8

cosh

Summary: #include <math.h>
float cosh (

float x); /* value for hyperbolic cos
function */

Description: The cosh function calculates the hyperbolic cosine of the
floating-point value x.

Return Value: The cosh function returns the hyperbolic cosine for the
value x.

See Also: sinh, tanh

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_cosh (void) {
 float x;
 float y;

 for (x = 0; x < (2 * 3.1415); x += 0.1) {
 y = cosh (x);

 printf ("COSH(%f) = %f\n", x, y);
 }
}

Keil Software — C51 Compiler User’s Guide 211

8

crol

Summary: #include <intrins.h>
unsigned char _crol_ (

unsigned char c, /* character to rotate left */
unsigned char b); /* bit positions to rotate */

Description: The _crol_ routine rotates the bit pattern for the character c
left b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _crol_ routine returns the rotated value of c.

See Also: _cror_, _irol_, _iror_, _lrol_, _lror_

Example: #include <intrins.h>

void tst_crol (void) {
 char a;
 char b;

 a = 0xA5;

 b = _crol_(a,3); /* b now is 0x2D */

}

212 Chapter 8. Library Reference

8

cror

Summary: #include <intrins.h>
unsigned char _cror_ (

unsigned char c, /* character to rotate right */
unsigned char b); /* bit positions to rotate */

Description: The _cror_ routine rotates the bit pattern for the character c
right b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _cror_ routine returns the rotated value of c.

See Also: _crol_, _irol_, _iror_, _lrol_, _lror_

Example: #include <intrins.h>

void tst_cror (void) {
 char a;
 char b;

 a = 0xA5;

 b = _crol_(a,1); /* b now is 0xD2 */

}

Keil Software — C51 Compiler User’s Guide 213

8

exp / exp517

Summary: #include <math.h>
float exp (

float x); /* power to use for ex function
*/

Description: The exp function calculates the exponential function for the
floating-point value x.

The exp517 function is identical to exp, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. For using this function include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

Return Value: The exp function returns the floating-point value ex.

See Also: log, log10

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_exp (void) {
 float x;
 float y;

 x = 4.605170186;

 y = exp (x); /* y = 100 */

 printf ("EXP(%f) = %f\n", x, y);

}

214 Chapter 8. Library Reference

8

fabs

Summary: #include <math.h>
float fabs (

float val); /* number to calc absolute value for */

Description: The fabs function determines the absolute value of the
floating-point number val.

Return Value: The fabs function returns the absolute value of val.

See Also: abs, cabs, labs

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_fabs (void) {
 float x;
 float y;

 x = 10.2;
 y = fabs (x);
 printf ("FABS(%f) = %f\n", x, y);

 x = -3.6;
 y = fabs (x);
 printf ("FABS(%f) = %f\n", x, y);

}

Keil Software — C51 Compiler User’s Guide 215

8

floor

Summary: #include <math.h>
float floor (

float val); /* value for floor function */

Description: The floor function calculates the largest integer value that is
less than or equal to val.

Return Value: The floor function returns a float that contains the largest
integer value that is not greater than val.

See Also: ceil

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_floor (void) {
 float x;
 float y;

 x = 45.998;

 y = floor (x);

 printf ("FLOOR(%f) = %f\n", x, y); /* prints 45 */
}

216 Chapter 8. Library Reference

8

free

Summary: #include <stdlib.h>
void free (

void xdata *p); /* block to free */

Description: The free function returns a memory block to the memory
pool. The p argument points to a memory block allocated
with the calloc, malloc, or realloc functions. Once it has
been returned to the memory pool by the free function, the
block is available for subsequent allocation.

If p is a null pointer, it is ignored.

NOTE
Source code for this routine is located in the \C51\LIB

directory. You may modify the source to customize this
function for your particular hardware environment. Refer
to “Chapter 6. Advanced Programming Techniques” on
page 113 for more information.

Return Value: None.

See Also: calloc, init_mempool, malloc, realloc

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_free (void) {
 void *mbuf;

 printf ("Allocating memory\n");
 mbuf = malloc (1000);

 if (mbuf == NULL) {
 printf ("Unable to allocate memory\n");
 }
 else {
 free (mbuf);
 printf ("Memory free\n");
 }

}

Keil Software — C51 Compiler User’s Guide 217

8

getchar

Summary: #include <stdio.h>
char getchar (void);

Description: The getchar function reads a single character from the input
stream using the _getkey function. The character read is
then passed to the putchar function to be echoed.

NOTE
This function is implementation-specific and is based on the
operation of the _getkey and/or putchar functions. These
functions, as provided in the standard library, read and
write characters using the serial port of the 8051. Custom
functions may use other I/O devices.

Return Value: The getchar function returns the character read.

See Also: _getkey, putchar, ungetchar

Example: #include <stdio.h>

void tst_getchar (void) {
 char c;

 while ((c = getchar ()) != 0x1B) {
 printf ("character = %c %bu %bx\n", c, c, c);
 }

}

218 Chapter 8. Library Reference

8

_getkey

Summary: #include <stdio.h>
char _getkey (void);

Description: The _getkey function waits for a character to be received
from the serial port.

NOTE
This routine is implementation-specific, and its function may
deviate from that described above. Source is included for
the _getkey and putchar functions which may be modified to
provide character level I/O for any hardware device. Refer
to “Customization Files” on page 113 for more information.

Return Value: The _getkey routine returns the received character.

See Also: getchar, putchar, ungetchar

Example: #include <stdio.h>

void tst_getkey (void) {
 char c;

 while ((c = _getkey ()) != 0x1B) {
 printf ("key = %c %bu %bx\n", c, c, c);
 }

}

Keil Software — C51 Compiler User’s Guide 219

8

gets

Summary: #include <stdio.h>
char *gets (

char *string, /* string to read */
int len); /* maximum characters to read

*/

Description: The gets function calls the getchar function to read a line of
characters into string. The line consists of all characters up
to and including the first newline character (‘\n’). The
newline character is replaced by a null character (‘\0’) in
string.

The len argument specifies the maximum number of
characters that may be read. If len characters are read
before a newline is encountered, the gets function terminates
string with a null character and returns.

NOTE
This function is implementation-specific and is based on the
operation of the _getkey and/or putchar functions. These
functions, as provided in the standard library, read and
write characters using the serial port of the 8051. Custom
functions may use other I/O devices.

Return Value: The gets function returns string.

See Also: printf, puts, scanf

Example: #include <stdio.h>

void tst_gets (void) {
 xdata char buf [100];

 do {
 gets (buf, sizeof (buf));
 printf ("Input string \"%s\"", buf);
 } while (buf [0] != '\0');
}

220 Chapter 8. Library Reference

8

init_mempool

Summary: #include <stdlib.h>
void init_mempool (

void xdata *p, /* start of memory pool */
unsigned int size); /* length of memory pool */

Description: The init_mempool function initializes the memory
management routines and provides the starting address and
size of the memory pool. The p argument points to a
memory area in xdata which is managed using the calloc,
free, malloc, and realloc library functions. The size
argument specifies the number of bytes to use for the
memory pool.

NOTE
This function must be used to setup the memory pool before
any other memory management functions (calloc, free,
malloc, realloc) can be called. Call the init_mempool
function only once at the beginning of your program.

Source code is provided for this routine in the \LIB

directory. You can modify the source to customize this
function for your hardware environment. Refer to
“Chapter 6. Advanced Programming Techniques” on page
113 for more information.

Return Value: None.

See Also: calloc, free, malloc, realloc

Example: #include <stdlib.h>

void tst_init_mempool (void) {
 xdata void *p;
 int i;

 init_mempool (&XBYTE [0x2000], 0x1000);
/* initialize memory pool at xdata 0x2000
 for 4096 bytes */

 p = malloc (100);
 for (i = 0; i < 100; i++) ((char *) p)[i] = i;
 free (p);

}

Keil Software — C51 Compiler User’s Guide 221

8

irol

Summary: #include <intrins.h>
unsigned int _irol_ (

unsigned int i, /* integer to rotate left */
unsigned char b); /* bit positions to rotate */

Description: The _irol_ routine rotates the bit pattern for the integer i
left b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _irol_ routine returns the rotated value of i.

See Also: _cror_, _crol_, _iror_, _lrol_, _lror_

Example: #include <intrins.h>

void tst_irol (void) {
 int a;
 int b;

 a = 0xA5A5;

 b = _irol_(a,3); /* b now is 0x2D2D */

}

222 Chapter 8. Library Reference

8

iror

Summary: #include <intrins.h>
unsigned int _iror_ (

unsigned int i, /* integer to rotate right */
unsigned char b); /* bit positions to rotate */

Description: The _iror_ routine rotates the bit pattern for the integer i
right b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _iror_ routine returns the rotated value of i.

See Also: _cror_, _crol_, _irol_, _lrol_, _lror_

Example: #include <intrins.h>

void tst_iror (void) {
 int a;
 int b;

 a = 0xA5A5;

 b = _irol_(a,1); /* b now is 0xD2D2 */

}

Keil Software — C51 Compiler User’s Guide 223

8

isalnum

Summary: #include <ctype.h>
bit isalnum (

char c); /* character to test */

Description: The isalnum function tests c to determine if it is an
alphanumeric character (‘A’-‘Z’, ‘a’-‘z’, ‘0’-‘9’).

Return Value: The isalnum function returns a value of 1 if c is an
alphanumeric character or a value of 0 if it is not.

See Also: isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isalnum (void) {
 unsigned char i;
 char *p;

 for (i = 0; i < 128; i++) {
 p = (isalnum (i) ? "YES" : "NO");

 printf ("isalnum (%c) %s\n", i, p);
 }

}

224 Chapter 8. Library Reference

8

isalpha

Summary: #include <ctype.h>
bit isalpha (

char c); /* character to test */

Description: The isalpha function tests c to determine if it is an
alphabetic character (‘A’-‘Z’ or ‘a’-‘z’).

Return Value: The isalpha function returns a value of 1 if c is an
alphabetic character and a value of 0 if it is not.

See Also: isalnum, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isalpha (void) {
 unsigned char i;
 char *p;

 for (i = 0; i < 128; i++) {
 p = (isalpha (i) ? "YES" : "NO");

 printf ("isalpha (%c) %s\n", i, p);
 }

}

Keil Software — C51 Compiler User’s Guide 225

8

iscntrl

Summary: #include <ctype.h>
bit iscntrl (

char c); /* character to test */

Description: The iscntrl function tests c to determine if it is a control
character (0x00-0x1F or 0x7F).

Return Value: The iscntrl function returns a value of 1 if c is a control
character and a value of 0 if it is not.

See Also: isalnum, isalpha, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_iscntrl (void) {
 unsigned char i;
 char *p;

 for (i = 0; i < 128; i++) {
 p = (iscntrl (i) ? "YES" : "NO");

 printf ("iscntrl (%c) %s\n", i, p);
 }

}

226 Chapter 8. Library Reference

8

isdigit

Summary: #include <ctype.h>
bit isdigit (

char c); /* character to test */

Description: The isdigit function tests c to determine if it is a decimal
digit (‘0’-‘9’).

Return Value: The isdigit function returns a value of 1 if c is a decimal
digit and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isdigit (void) {
 unsigned char i;
 char *p;

 for (i = 0; i < 128; i++) {
 p = (isdigit (i) ? "YES" : "NO");

 printf ("isdigit (%c) %s\n", i, p);
 }

}

Keil Software — C51 Compiler User’s Guide 227

8

isgraph

Summary: #include <ctype.h>
bit isgraph (

char c); /* character to test */

Description: The isgraph function tests c to determine if it is a printable
character (not including space). The character values tested
for are 0x21-0x7E.

Return Value: The isgraph function returns a value of 1 if c is a printable
character and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, islower, isprint, ispunct,
isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isgraph (void) {
 unsigned char i;
 char *p;

 for (i = 0; i < 128; i++) {
 p = (isgraph (i) ? "YES" : "NO");

 printf ("isgraph (%c) %s\n", i, p);
 }

}

228 Chapter 8. Library Reference

8

islower

Summary: #include <ctype.h>
bit islower (

char c); /* character to test */

Description: The islower function tests c to determine if it is a
lowercase alphabetic character (‘a’-‘z’).

Return Value: The islower function returns a value of 1 if c is a lowercase
letter and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, isprint, ispunct,
isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_islower (void) {
 unsigned char i;
 char *p;

 for (i = 0; i < 128; i++) {
 p = (islower (i) ? "YES" : "NO");

 printf ("islower (%c) %s\n", i, p);
 }

}

Keil Software — C51 Compiler User’s Guide 229

8

isprint

Summary: #include <ctype.h>
bit isprint (

char c); /* character to test */

Description: The isprint function tests c to determine if it is a printable
character (0x20-0x7E).

Return Value: The isprint function returns a value of 1 if c is a printable
character and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, islower,
ispunct, isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isprint (void) {
 unsigned char i;
 char *p;

 for (i = 0; i < 128; i++) {
 p = (isprint (i) ? "YES" : "NO");

 printf ("isprint (%c) %s\n", i, p);
 }

}

230 Chapter 8. Library Reference

8

ispunct

Summary: #include <ctype.h>
bit ispunct (

char c); /* character to test */

Description: The ispunct function tests c to determine if it is a
punctuation character. The following symbols are
punctuation characters:

! " # $ % & ' (
) * + , - . / :
; < = > ? @ [\
] ^ _ ` { | } ~

Return Value: The ispunct function returns a value of 1 if c is a
punctuation character and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_ispunct (void) {
 unsigned char i;
 char *p;

 for (i = 0; i < 128; i++) {
 p = (ispunct (i) ? "YES" : "NO");

 printf ("ispunct (%c) %s\n", i, p);
 }

}

Keil Software — C51 Compiler User’s Guide 231

8

isspace

Summary: #include <ctype.h>
bit isspace (

char c); /* character to test */

Description: The isspace function tests c to determine if it is a
whitespace character (0x09-0x0D or 0x20).

Return Value: The isspace function returns a value of 1 if c is a
whitespace character and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isspace (void) {
 unsigned char i;
 char *p;

 for (i = 0; i < 128; i++) {
 p = (isspace (i) ? "YES" : "NO");

 printf ("isspace (%c) %s\n", i, p);
 }

}

232 Chapter 8. Library Reference

8

isupper

Summary: #include <ctype.h>
bit isupper (

char c); /* character to test */

Description: The isupper function tests c to determine if it is an
uppercase alphabetic character (‘A’-‘Z’).

Return Value: The isupper function returns a value of 1 if c is an
uppercase character and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isupper (void) {
 unsigned char i;
 char *p;

 for (i = 0; i < 128; i++) {
 p = (isupper (i) ? "YES" : "NO");

 printf ("isupper (%c) %s\n", i, p);
 }

}

Keil Software — C51 Compiler User’s Guide 233

8

isxdigit

Summary: #include <ctype.h>
bit isxdigit (

char c); /* character to test */

Description: The isxdigit function tests c to determine if it is a
hexadecimal digit (‘A’-‘Z’, ‘a’-‘z’, ‘0’-‘9’).

Return Value: The isxdigit function returns a value of 1 if c is a
hexadecimal digit and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isxdigit (void) {
 unsigned char i;
 char *p;

 for (i = 0; i < 128; i++) {
 p = (isxdigit (i) ? "YES" : "NO");

 printf ("isxdigit (%c) %s\n", i, p);
 }

}

234 Chapter 8. Library Reference

8

labs

Summary: #include <math.h>
long labs (

long val); /* value to calc. abs. value for */

Description: The labs function determines the absolute value of the long
integer val.

Return Value: The labs function returns the absolute value of val.

See Also: abs, cabs, fabs

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_labs (void) {
 long x;
 long y;

 x = -12345L;

 y = labs (x);

 printf ("LABS(%ld) = %ld\n", x, y);

}

Keil Software — C51 Compiler User’s Guide 235

8

log / log517

Summary: #include <math.h>
float log (

float val); /* value to take natural logarithm of */

Description: The log function calculates the natural logarithm for the
floating-point number val. The natural logarithm uses the
base e or 2.718282…

The log517 function is identical to log, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. When using this function, include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

Return Value: The log function returns the floating-point natural logarithm
of val.

See Also: exp, log10

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_log (void) {
 float x;
 float y;

 x = 2.71838;
 x *= x;

 y = log (x); /* y = 2 */

 printf ("LOG(%f) = %f\n", x, y);

}

236 Chapter 8. Library Reference

8

log10 / log10517

Summary: #include <math.h>
float log10 (

float val); /* value to take common logarithm of */

Description: The log10 function calculates the common logarithm for the
floating-point number val. The common logarithm uses
base 10.

The log10517 function is identical to log10, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. When using this function, include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

Return Value: The log10 function returns the floating-point common
logarithm of val.

See Also: exp, log

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_log10 (void) {
 float x;
 float y;

 x = 1000;

 y = log10 (x); /* y = 3 */

 printf ("LOG10(%f) = %f\n", x, y);

}

Keil Software — C51 Compiler User’s Guide 237

8

longjmp

Summary: #include <setjmp.h>
void longjmp (

jmp_buf env, /* environment to restore */
int retval); /* return value */

Description: The longjmp function restores the state which was
previously stored in env by the setjmp function. The
retval argument specifies the value to return from the
setjmp function call.

The longjmp and setjmp functions can be used to execute a
non-local goto and are usually utilized to pass control to an
error recovery routine.

Local variables and function arguments are restored only if
declared with the volatile attribute.

Return Value: None.

See Also: setjmp

238 Chapter 8. Library Reference

8

Example: #include <setjmp.h>
#include <stdio.h> /* for printf */

jmp_buf env; /* jump environment (must be global) */
bit error_flag;

void trigger (void) {
 .
 .
 .
 /* put processing code here */
 .
 .
 .
 if (error_flag != 0) {
 longjmp (env, 1); /* return 1 to setjmp */
 }
 .
 .
 .
}

void recover (void) {
 /* put recovery code here */
}

void tst_longjmp (void) {
 .
 .
 .
 if (setjmp (env) != 0) { /* setjmp returns a 0 */
 printf ("LONGJMP called\n");
 recover ();
 }
 else {
 printf ("SETJMP called\n");

 error_flag = 1; /* force an error */

 trigger ();
 }
}

Keil Software — C51 Compiler User’s Guide 239

8

lrol

Summary: #include <intrins.h>
unsigned long _lrol_ (

unsigned long l, /* 32-bit integer to rotate left */
unsigned char b); /* bit positions to rotate */

Description: The _lrol_ routine rotates the bit pattern for the long integer
l left b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _lrol_ routine returns the rotated value of l.

See Also: _cror_, _crol_, _irol_, _iror_, _lror_

Example: #include <intrins.h>

void tst_lrol (void) {
 long a;
 long b;

 a = 0xA5A5A5A5;

 b = _lrol_(a,3); /* b now is 0x2D2D2D2D */

}

240 Chapter 8. Library Reference

8

lror

Summary: #include <intrins.h>
unsigned long _lror_ (

unsigned long l, /* 32-bit int to rotate right */
unsigned char b); /* bit positions to rotate */

Description: The _lror_ routine rotates the bit pattern for the long integer
l right b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _lror_ routine returns the rotated value of l.

See Also: _cror_, _crol_, _irol_, _iror_, _lrol_

Example: #include <intrins.h>

void tst_lror (void) {
 long a;
 long b;

 a = 0xA5A5A5A5;

 b = _lrol_(a,1); /* b now is 0xD2D2D2D2 */

}

Keil Software — C51 Compiler User’s Guide 241

8

malloc

Summary: #include <stdlib.h>
void *malloc (

unsigned int size); /* block size to allocate */

Description: The malloc function allocates a memory block from the
memory pool of size bytes in length.

NOTE
Source code is provided for this routine in the LIB

directory. You may modify the source to customize this
function for your hardware environment. Refer to
“Chapter 6. Advanced Programming Techniques” on page
113 for more information.

Return Value: The malloc function returns a pointer to the allocated block
or a null pointer if there was not enough memory to satisfy
the allocation request.

See Also: calloc, free, init_mempool, realloc

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_malloc (void) {
 unsigned char xdata *p;

 p = malloc (1000); /* allocate 1000 bytes */

 if (p == NULL)
 printf ("Not enough memory space\n");
 else
 printf ("Memory allocated\n");

}

242 Chapter 8. Library Reference

8

memccpy

Summary: #include <string.h>
void *memccpy (

void *dest, /* destination buffer */
void *src, /* source buffer */
char c, /* character which ends copy */
int len); /* maximum bytes to copy */

Description: The memccpy function copies 0 or more characters from
src to dest. Characters are copied until the character c is
copied or until len bytes have been copied, whichever
comes first.

Return Value: The memccpy function returns a pointer to the byte in dest
that follows the last character copied or a null pointer if the
last character copied was c.

See Also: memchr, memcmp, memcpy, memmove, memset

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memccpy (void) {
 static char src1 [100] = "Copy this string
 to dst1";
 static char dst1 [100];

void *c;

 c = memccpy (dst1, src1, 'g', sizeof (dst1));

 if (c == NULL)
 printf ("'g' was not found in the src
 buffer\n");
 else
 printf ("characters copied up to 'g'\n");

}

Keil Software — C51 Compiler User’s Guide 243

8

memchr

Summary: #include <string.h>
void *memchr (

void *buf, /* buffer to search */
char c, /* byte to find */
int len); /* maximum buffer length */

Description: The memchr function scans buf for the character c in the
first len bytes of the buffer.

Return Value: The memchr function returns a pointer to the character c
in buf or a null pointer if the character was not found.

See Also: memccpy, memcmp, memcpy, memmove, memset

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memchr (void) {
 static char src1 [100] =
 "Search this string from the start";

 void *c;

 c = memchr (src1, 'g', sizeof (src1));

 if (c == NULL)
 printf ("'g' was not found in the buffer\n");
 else
 printf ("found 'g' in the buffer\n");

}

244 Chapter 8. Library Reference

8

memcmp

Summary: #include <string.h>
char memcmp (

void *buf1, /* first buffer */
void *buf2, /* second buffer */
int len); /* maximum bytes to compare

*/

Description: The memcmp function compares two buffers buf1 and
buf2 for len bytes and returns a value indicating their
relationship as follows:

Value Meaning

< 0 buf1 less than buf2

= 0 but1 equal to buf2

> 0 buf1 greater than buf2

Return Value: The memcmp function returns a positive, negative, or zero
value indicating the relationship of buf1 and buf2.

See Also: memccpy, memchr, memcpy, memmove, memset

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memcmp (void) {
 static char hexchars [] = "0123456789ABCDEF";
 static char hexchars2 [] = "0123456789abcdef";

 char i;

 i = memcmp (hexchars, hexchars2, 16);

 if (i < 0)
 printf ("hexchars < hexchars2\n");

 else if (i > 0)
 printf ("hexchars > hexchars2\n");

 else
 printf ("hexchars == hexchars2\n");

}

Keil Software — C51 Compiler User’s Guide 245

8

memcpy

Summary: #include <string.h>
void *memcpy (

void *dest, /* destination buffer */
void *src, /* source buffer */
int len); /* maximum bytes to copy */

Description: The memcpy function copies len bytes from src to dest.
If these memory buffers overlap, the memcpy function
cannot guarantee that bytes in src are copied to dest
before being overwritten. If these buffers do overlap, use
the memmove function.

Return Value: The memcpy function returns dest.

See Also: memccpy, memchr, memcmp, memmove, memset

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memcpy (void) {
 static char src1 [100] =
 "Copy this string to dst1";

 static char dst1 [100];

 char *p;

 p = memcpy (dst1, src1, sizeof (dst1));

 printf ("dst = \"%s\"\n", p);

}

246 Chapter 8. Library Reference

8

memmove

Summary: #include <string.h>
void *memmove (

void *dest, /* destination buffer */
void *src, /* source buffer */
int len); /* maximum bytes to move */

Description: The memmove function copies len bytes from src to
dest. If these memory buffers overlap, the memmove
function ensures that bytes in src are copied to dest before
being overwritten.

Return Value: The memmove function returns dest.

See Also: memccpy, memchr, memcmp, memcpy, memset

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memmove (void) {
 static char buf [] = "This is line 1 "
 "This is line 2 "
 "This is line 3 ";

 printf ("buf before = %s\n", buf);

 memmove (&buf [0], &buf [16], 32);

 printf ("buf after = %s\n", buf);

}

Keil Software — C51 Compiler User’s Guide 247

8

memset

Summary: #include <string.h>
void *memset (

void *buf, /* buffer to initialize */
char c, /* byte value to set */
int len); /* buffer length */

Description: The memset function sets the first len bytes in buf to c.

Return Value: The memset function returns dest.

See Also: memccpy, memchr, memcmp, memcpy, memmove

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memset (void) {
 char buf [10];

 memset (buf, '\0', sizeof (buf));
 /* fill buffer with null characters */

}

248 Chapter 8. Library Reference

8

modf

Summary: #include <math.h>
float modf (

float val, /* value to calculate modulo for */
float *ip); /* integer portion of modulo */

Description: The modf function splits the floating-point number val into
integer and fractional components. The fractional part of
val is returned as a signed floating-point number. The
integer part is stored as a floating-point number at ip.

Return Value: The modf function returns the signed fractional part of val.

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_modf (void) {
 float x;
 float int_part, frc_part;

 x = 123.456;

 frc_part = modf (x, &int_part);

 printf ("%f = %f + %f\n", x, int_part,frc_part);

}

Keil Software — C51 Compiler User’s Guide 249

8

nop

Summary: #include <intrins.h>
void _nop_ (void);

Description: The _nop_ routine inserts an 8051 NOP instruction into the
program. This routine can be used to pause for 1 CPU
cycle. This routine is implemented as an intrinsic function.
The code required is included in-line rather than being
called.

Return Value: None.

Example: #include <intrins.h>
#include <stdio.h> /* for printf */

void tst_nop (void) {

 P1 = 0xFF;

 nop (); /* delay for hardware */
 nop ();
 nop ();

 P1 = 0x00;

}

250 Chapter 8. Library Reference

8

offsetof

Summary: #include <stddef.h>
int offsetof (

structure, /* structure to use */
member); /* member to get offset for */

Description: The offsetof macro calculates the offset of the member
structure element from the beginning of the structure. The
structure argument must specify the name of a structure.
The member argument must specify the name of a member
of the structure.

Return Value: The offsetof macro returns the offset, in bytes, of the
member element from the beginning of struct structure.

Example: #include <stddef.h>

struct index_st
 {
 unsigned char type;
 unsigned long num;
 unsigned ing len;
 };

typedef struct index_st index_t;

void main (void)
{
int x, y;

x = offsetof (struct index_st, len); /* x = 5 */
y = offsetof (index_t, num); /* x = 1 */
}

Keil Software — C51 Compiler User’s Guide 251

8

pow

Summary: #include <math.h>
float pow (

float x, /* value to use for base */
float y); /* value to use for exponent */

Description: The pow function calculates x raised to the yth power.

Return Value: The pow function returns the value xy. If x ≠ 0 and y = 0,
pow returns a value of 1. If x = 0 and y ≤ 0, pow returns
NaN. If x < 0 and y is not an integer, pow returns NaN.

See Also: sqrt

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_pow (void) {
 float base;
 float power;
 float y;

 base = 2.0;
 power = 8.0;

 y = pow (base, power); /* y = 256 */

 printf ("%f ^ %f = %f\n", base, power, y);

}

252 Chapter 8. Library Reference

8

printf / printf517

Summary: #include <stdio.h>
int printf (

const char *fmtstr /* format string */

!, arguments"…); /* additional arguments */

Description: The printf function formats a series of strings and numeric
values and builds a string to write to the output stream using
the putchar function. The fmtstr argument is a format
string and may be composed of characters, escape
sequences, and format specifications.

Ordinary characters and escape sequences are copied to the
stream in the order in which they are interpreted. Format
specifications always begin with a percent sign (‘%’) and
require additional arguments to be included in the function
call.

The format string is read from left to right. The first format
specification encountered references the first argument after
fmtstr and converts and outputs it using the format
specification. The second format specification accesses the
second argument after fmtstr, and so on. If there are more
arguments than format specifications, the extra arguments
are ignored. Results are unpredictable if there are not
enough arguments for the format specifications.

Format specifications have the following format:

% !flags" !width" !. precision" !{b | B | l | L}" type

Each field in the format specification can be a single
character or a number which specifies a particular format
option.

Keil Software — C51 Compiler User’s Guide 253

8

The type field is a single character that specifies whether
the argument is interpreted as a character, string, number, or
pointer, as shown in the following table.

Character Argument Type Output Format

d int Signed decimal number

u unsigned int Unsigned decimal number

o unsigned int Unsigned octal number

x unsigned int Unsigned hexadecimal number
using “0123456789abcdef”

X unsigned int Unsigned hexadecimal number
using “0123456789ABCEDF”

f float Floating-point number using the
format [-]dddd.dddd

e float Floating-point number using the
format [-]d.dddde[-]dd

E float Floating-point number using the
format [-]d.ddddE[-]dd

g float Floating-point number using either e
or f format, whichever is more
compact for the specified value and
precision

G float Identical to the g format except that
(where applicable) E precedes the
exponent instead of e

c char Single character

s generic * String with a terminating null
character

p generic * Pointer using the format t:aaaa
where t is the memory type the
pointer references (c: code,
i: data/idata, x: xdata, p: pdata) and
aaaa is the hexadecimal address

The optional characters b or B and l or L may immediately
precede the type character to respectively specify char or
long versions of the integer types d, i, u, o, x, and X.

254 Chapter 8. Library Reference

8

The flags field is a single character used to justify the
output and to print +/- signs and blanks, decimal points, and
octal and hexadecimal prefixes, as shown in the following
table.

Flag Meaning

- Left justify the output in the specified field width.

+ Prefix the output value with a + or - sign if the output is a
signed type.

blank (‘ ’) Prefix the output value with a blank if it is a signed positive
value. Otherwise, no blank is prefixed.

Prefixes a non-zero output value with 0, 0x, or 0X when
used with o, x, and X field types, respectively.

When used with the e, E, f, g, and G field types, the # flag
forces the output value to include a decimal point.

The # flag is ignored in all other cases.

* Ignore format specifier.

The width field is a non-negative number that specifies the
minimum number of characters printed. If the number of
characters in the output value is less than width, blanks are
added on the left or right (when the - flag is specified) to pad
to the minimum width. If width is prefixed with a ‘0’,
zeros are padded instead of blanks. The width field never
truncates a field. If the length of the output value exceeds
the specified width, all characters are output.

The width field may be an asterisk (‘*’), in which case an
int argument from the argument list provides the width
value. Specifying a ‘b’ in front of the asterisk specifies that
the argument used is an unsigned char.

Keil Software — C51 Compiler User’s Guide 255

8

The precision field is a non-negative number that specifies
the number of characters to print, the number of significant
digits, or the number of decimal places. The precision
field can cause truncation or rounding of the output value in
the case of a floating-point number as specified in the
following table.

Type Meaning of Precision Field

d, u, o, x, X The precision field is where you specify the minimum
number of digits that are included in the output value.
Digits are not truncated if the number of digits in the
argument exceeds that defined in the precision field. If
the number of digits in the argument is less than the
precision field, the output value is padded on the left with
zeros.

f The precision field is where you specify the number of
digits to the right of the decimal point. The last digit is
rounded.

e, E The precision field is where you specify the number of
digits to the right of the decimal point. The last digit is
rounded.

g, G The precision field is where you specify the maximum
number of significant digits in the output value.

c, p The precision field has no effect on these field types.

s The precision field is where you specify the maximum
number of characters in the output value. Excess
characters are not output.

The precision field may be an asterisk (‘*’), in which case
an int argument from the argument list provides the value
for the precision. Specifying a ‘b’ in front of the asterisk
specifies that the argument used is an unsigned char.

The printf517 function is identical to printf, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. When using this function, include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

256 Chapter 8. Library Reference

8

NOTE
This function is implementation-specific and is based on the
operation of the putchar function. This function, as
provided in the standard library, writes characters using the
serial port of the 8051. Custom functions may use other I/O
devices.

You must ensure that the argument type matches that of the
format specification. You can use type casts to ensure that
the proper type is passed to printf.

The total number of bytes that may be passed to printf is
limited due to the memory restrictions imposed by the 8051.
A maximum of 15 bytes may be passed in small model or
compact model. A maximum of 40 bytes may be passed in
large model.

Return Value: The printf function returns the number of characters
actually written to the output stream.

See Also: gets, puts, scanf, sprintf, sscanf, vprintf, vsprintf

Keil Software — C51 Compiler User’s Guide 257

8

Example: #include <stdio.h>

void tst_printf (void) {
 char a;
 int b;
 long c;
 unsigned char x;
 unsigned int y;
 unsigned long z;
 float f,g;
 char buf [] = "Test String";
 char *p = buf;

 a = 1;
 b = 12365;
 c = 0x7FFFFFFF;
 x = 'A';
 y = 54321;
 z = 0x4A6F6E00;
 f = 10.0;
 g = 22.95;

 printf ("char %bd int %d long %ld\n",a,b,c);
 printf ("Uchar %bu Uint %u Ulong %lu\n",x,y,z);
 printf ("xchar %bx xint %x xlong %lx\n",x,y,z);
 printf ("String %s is at address %p\n",buf,p);
 printf ("%f != %g\n", f, g);
 printf ("%*f != %*g\n", 8, f, 8, g);
}

258 Chapter 8. Library Reference

8

putchar

Summary: #include <stdio.h>
char putchar (

char c); /* character to output */

Description: The putchar function transmits the character c using the
8051 serial port.

NOTE
This routine is implementation-specific and its function may
deviate from that described above. Source is included for
the _getkey and putchar functions which may be modified to
provide character level I/O for any hardware device. Refer
to “Customization Files” on page 113 for more information.

Return Value: The putchar routine returns the character output, c.

See Also: getchar, _getkey, ungetchar

Example: #include <stdio.h>

void tst_putchar (void) {
 unsigned char i;

 for (i = 0x20; i < 0x7F; i++)
 putchar (i);
}

Keil Software — C51 Compiler User’s Guide 259

8

puts

Summary: #include <stdio.h>
int puts (

const char *string); /* string to output */

Description: The puts function writes string followed by a newline
character (‘\n’) to the output stream using the putchar
function.

NOTE
This function is implementation-specific and is based on the
operation of the putchar function. This function, as
provided in the standard library, writes characters using the
serial port of the 8051. Custom functions may use other I/O
devices.

Return Value: The puts function returns EOF if an error occurred and a
value of 0 if no errors were encountered.

See Also: gets, printf, scanf

Example: #include <stdio.h>

void tst_puts (void) {

 puts ("Line #1");
 puts ("Line #2");
 puts ("Line #3");

}

260 Chapter 8. Library Reference

8

rand

Summary: #include <stdlib.h>
int rand (void);

Description: The rand function generates a pseudo-random number
between 0 and 32767.

Return Value: The rand function returns a pseudo-random number.

See Also: srand

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_rand (void) {
 int i;
 int r;

 for (i = 0; i < 10; i++) {
 printf ("I = %d, RAND = %d\n", i, rand ());
 }

}

Keil Software — C51 Compiler User’s Guide 261

8

realloc

Summary: #include <stdlib.h>
void *realloc (

void xdata *p, /* previously allocated block */
unsigned int size); /* new size for block */

Description: The realloc function changes the size of a previously
allocated memory block. The p argument points to the
allocated block and the size argument specifies the new
size for the block. The contents of the existing block are
copied to the new block. Any additional area in the new
block, due to a larger block size, is not initialized.

NOTE
Source code is provided for this routine in the \C51\LIB

directory. You can modify the source to customize this
function for your hardware environment. Refer to
“Chapter 6. Advanced Programming Techniques” on page
113 for more information.

Return Value: The realloc function returns a pointer to the new block. If
there is not enough memory in the memory pool to satisfy
the memory request, a null pointer is returned and the
original memory block is not affected.

See Also: calloc, free, init_mempool, malloc

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_realloc (void) {
 void xdata *p;
 void xdata *new_p;

 p = malloc (100);
 if (p != NULL) {
 new_p = realloc (p, 200);

 if (new_p != NULL) p = new_p;
 else printf ("Reallocation failed\n");
 }
}

262 Chapter 8. Library Reference

8

scanf

Summary: #include <stdio.h>
int scanf (

const char *fmtstr /* format string */

!, argument"…); /* additional arguments */

Description: The scanf function reads data using the getchar routine.
Data input are stored in the locations specified by argument
according to the format string fmtstr. Each argument must
be a pointer to a variable that corresponds to the type
defined in fmtstr which controls the interpretation of the
input data. The fmtstr argument is composed of one or
more whitespace characters, non-whitespace characters, and
format specifications as defined below.

The scanf517 function is identical to scanf, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. When using this function include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

! Whitespace characters, blank (‘ ’), tab (‘\t’), or newline
(‘\n’), causes scanf to skip whitespace characters in the
input stream. A single whitespace character in the format
string matches 0 or more whitespace characters in the
input stream.

! Non-whitespace characters, with the exception of the
percent sign (‘%’), cause scanf to read but not store a
matching character from the input stream. The scanf
function terminates if the next character in the input
stream does not match the specified non-whitespace
character.

! Format specifications begin with a percent sign (‘%’)
and cause scanf to read and convert characters from the
input stream to the specified type values. The converted
value is stored to an argument in the parameter list.
Characters following a percent sign that are not
recognized as a format specification are treated as an
ordinary character. For example, %% matches a single
percent sign in the input stream.

Keil Software — C51 Compiler User’s Guide 263

8

The format string is read from left to right. Characters that
are not part of the format specifications must match
characters in the input stream. These characters are read
from the input stream but are discarded and not stored. If a
character in the input stream conflicts with the format string,
scanf terminates. Any conflicting characters remain in the
input stream.

The first format specification encountered in the format
string references the first argument after fmtstr and
converts input characters and stores the value using the
format specification. The second format specification
accesses the second argument after fmtstr, and so on. If
there are more arguments than format specifications, the
extra arguments are ignored. Results are unpredictable if
there are not enough arguments for the format specifications.

Values in the input stream are called input fields and are
delimited by whitespace characters. When converting input
fields, scanf ends a conversion for an argument when a
whitespace character is encountered. Additionally, any
unrecognized character for the current format specification
ends a field conversion.

Format specifications have the following format:

% !*" !width" !{b | h | l}" type

Each field in the format specification can be a single
character or a number which specifies a particular format
option.

The type field is where a single character specifies whether
input characters are interpreted as a character, string, or
number. This field can be any one of the characters in the
following table.

Character Argument Type Input Format

d int * Signed decimal number

i int * Signed decimal, hexadecimal, or
octal integer

u unsigned int * Unsigned decimal number

264 Chapter 8. Library Reference

8

Character Argument Type Input Format

o unsigned int * Unsigned octal number

x unsigned int * Unsigned hex number

e float * Floating-point number

f float * Floating-point number

g float * Floating-point number

c char * A single character

s char * A string of characters terminated by
whitespace

An asterisk (*) as the first character of a format specification
causes the input field to be scanned but not stored. The
asterisk suppresses assignment of the format specification.

The width field is a non-negative number that specifies the
maximum number of characters read from the input stream.
No more than width characters are read from the input
stream and converted for the corresponding argument.
However, fewer than width characters may be read if a
whitespace character or an unrecognized character is
encountered first.

The optional characters b, h, and l may immediately precede
the type character to respectively specify char, short, or
long versions of the integer types d, i, u, o, and x.

NOTE
This function is implementation-specific and is based on the
operation of the _getkey and/or putchar functions. These
functions, as provided in the standard library, read and
write characters using the serial port of the 8051. Custom
functions may use other I/O devices.

The total number of bytes that may be passed to scanf is
limited due to the memory restrictions imposed by the 8051.
A maximum of 15 bytes may be passed in small model or
compact model. A maximum of 40 bytes may be passed in
large model.

Keil Software — C51 Compiler User’s Guide 265

8

Return Value: The scanf function returns the number of input fields that
were successfully converted. An EOF is returned if an error
is encountered.

See Also: gets, printf, puts, sprintf, sscanf, vprintf, vsprintf

Example: #include <stdio.h>

void tst_scanf (void) {
 char a;
 int b;
 long c;

 unsigned char x;
 unsigned int y;
 unsigned long z;

 float f,g;

 char d, buf [10];

 int argsread;

 printf ("Enter a signed byte, int, and long\n");
 argsread = scanf ("%bd %d %ld", &a, &b, &c);
 printf ("%d arguments read\n", argsread);

 printf ("Enter an unsigned byte, int, and long\n");
 argsread = scanf ("%bu %u %lu", &x, &y, &z);
 printf ("%d arguments read\n", argsread);

 printf ("Enter a character and a string\n");
 argsread = scanf ("%c %9s", &d, buf);
 printf ("%d arguments read\n", argsread);

 printf ("Enter two floating-point numbers\n");
 argsread = scanf ("%f %f", &f, &g);
 printf ("%d arguments read\n", argsread);

}

266 Chapter 8. Library Reference

8

setjmp

Summary: #include <setjmp.h>
int setjmp (

jmp_buf env); /* current environment */

Description: The setjmp function saves the current state of the CPU in
env. The state can be restored by a subsequent call to the
longjmp function. When used together, the setjmp and
longjmp functions provide you with a way to execute a
non-local goto.

A call to the setjmp function saves the current instruction
address as well as other CPU registers. A subsequent call to
the longjmp function restores the instruction pointer and
registers, and execution resumes at the point just after the
setjmp call.

Local variables and function arguments are restored only if
declared with the volatile attribute.

Return Value: The setjmp function returns a value of 0 when the current
state of the CPU has been copied to env. A non-zero value
indicates that the longjmp function was executed to return
to the setjmp function call. In such a case, the return value
is the value passed to the longjmp function.

See Also: longjmp

Example: See longjmp

Keil Software — C51 Compiler User’s Guide 267

8

sin / sin517

Summary: #include <math.h>
float sin (

float x); /* value to calculate
sine for */

Description: The sin function calculates the sine of the floating-point
value x. The value of x must be in the -65535 to +65535
range or an NaN error value is generated.

The sin517 function is identical to sin, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. When using this function include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

Return Value: The sin function returns the sine of x.

See Also: cos, tan

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_sin (void) {
 float x;
 float y;

 for (x = 0; x < (2 * 3.1415); x += 0.1) {
 y = sin (x);

 printf ("SIN(%f) = %f\n", x, y);
 }

}

268 Chapter 8. Library Reference

8

sinh

Summary: #include <math.h>
float sinh (

float val); /* value to calc hyperbolic sine for */

Description: The sinh function calculates the hyperbolic sine of the
floating-point value x. The value of x must be in the
-65535 to +65535 range or an NaN error value is generated.

Return Value: The sinh function returns the hyperbolic sine of x.

See Also: cosh, tanh

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_sinh (void) {
 float x;
 float y;

 for (x = 0; x < (2 * 3.1415); x += 0.1) {
 y = sinh (x);
 printf ("SINH(%f) = %f\n", x, y);
 }

}

Keil Software — C51 Compiler User’s Guide 269

8

sprintf / sprintf517

Summary: #include <stdio.h>
int sprintf (

char *buffer, /* storage buffer */
const char *fmtstr /* format string */

!, argument"…); /* additional arguments */

Description: The sprintf function formats a series of strings and numeric
values and stores the resulting string in buffer. The fmtstr
argument is a format string and has the same requirements as
specified for the printf function. Refer to “printf /
printf517” on page 252 for a description of the format string
and additional arguments.

The sprintf517 function is identical to sprintf, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. When using this function include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

NOTE
The total number of bytes that may be passed to sprintf is
limited due to the memory restrictions imposed by the 8051.
A maximum of 15 bytes may be passed in small model or
compact model. A maximum of 40 bytes may be passed in
large model.

Return Value: The sprintf function returns the number of characters
actually written to buffer.

See Also: gets, printf, puts, scanf, sscanf, vprintf, vsprintf

270 Chapter 8. Library Reference

8

Example: #include <stdio.h>

void tst_sprintf (void) {
 char buf [100];
 int n;

 int a,b;
 float pi;

 a = 123;
 b = 456;
 pi = 3.14159;

 n = sprintf (buf, "%f\n", 1.1);
 n += sprintf (buf+n, "%d\n", a);
 n += sprintf (buf+n, "%d %s %g", b, "---", pi);
 printf (buf);
}

Keil Software — C51 Compiler User’s Guide 271

8

sqrt / sqrt517

Summary: #include <math.h>
float sqrt (

float x); /* value to calculate square root
of */

Description: The sqrt function calculates the square root of x.

The sqrt517 function is identical to sqrt, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. When using this function include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

Return Value: The sqrt function returns the positive square root of x.

See Also: exp, log, pow

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_sqrt (void) {
 float x;
 float y;

 x = 25.0;

 y = sqrt (x); /* y = 5 */

 printf ("SQRT(%f) = %f\n", x, y);

}

272 Chapter 8. Library Reference

8

srand

Summary: #include <stdlib.h>
void srand (

int seed); /* random number generator seed */

Description: The srand function sets the starting value seed used by the
pseudo-random number generator in the rand function. The
random number generator produces the same sequence of
pseudo-random numbers for any given value of seed.

Return Value: None.

See Also: rand

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_srand (void) {
 int i;
 int r;

 srand (56);

 for (i = 0; i < 10; i++) {
 printf ("I = %d, RAND = %d\n", i, rand ());
 }

}

Keil Software — C51 Compiler User’s Guide 273

8

sscanf / sscanf517

Summary: #include <stdio.h>
int sscanf (

char *buffer, /* scanf input buffer */
const char *fmtstr /* format string */

!, argument"…); /* additional arguments */

Description: The sscanf function reads data from the string buffer. Data
input are stored in the locations specified by argument
according to the format string fmtstr. Each argument must
be a pointer to a variable that corresponds to the type
defined in fmtstr which controls the interpretation of the
input data. The fmtstr argument is composed of one or
more whitespace characters, non-whitespace characters, and
format specifications, as defined in the scanf function
description. Refer to “scanf” on page 262 for a complete
description of the formation string and additional arguments.

The sscanf517 function is identical to sscanf, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. When using this function include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

NOTE
The total number of bytes that may be passed to sscanf is
limited due to the memory restrictions imposed by the 8051.
A maximum of 15 bytes may be passed in small model or
compact model. A maximum of 40 bytes may be passed in
large model.

Return Value: The sscanf function returns the number of input fields that
were successfully converted. An EOF is returned if an error
is encountered.

See Also: gets, printf, puts, scanf, sprintf, vprintf, vsprintf

274 Chapter 8. Library Reference

8

Example: #include <stdio.h>

void tst_sscanf (void) {
 char a;
 int b;
 long c;

 unsigned char x;
 unsigned int y;
 unsigned long z;

 float f,g;

 char d, buf [10];

 int argsread;

 printf ("Reading a signed byte, int,and long\n");
 argsread = sscanf ("1 -234 567890",
 "%bd %d %ld", &a, &b, &c);
 printf ("%d arguments read\n", argsread);

 printf ("Reading an unsigned byte, int, and long\n");
 argsread = sscanf ("2 44 98765432",
 "%bu %u %lu", &x, &y, &z);
 printf ("%d arguments read\n", argsread);

 printf ("Reading a character and a string\n");
 argsread = sscanf ("a abcdefg", "%c %9s", &d, buf);
 printf ("%d arguments read\n", argsread);

 printf ("Reading two floating-point numbers\n");
 argsread = sscanf ("12.5 25.0", "%f %f", &f, &g);
 printf ("%d arguments read\n", argsread);

}

Keil Software — C51 Compiler User’s Guide 275

8

strcat

Summary: #include <string.h>
char *strcat (

char *dest, /* destination string */
char *src); /* source string */

Description: The strcat function concatenates or appends src to dest
and terminates dest with a null character.

Return Value: The strcat function returns dest.

See Also: strcpy, strlen, strncat, strncpy

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strcat (void) {
 char buf [21];
 char s [] = "Test String";

 strcpy (buf, s);
 strcat (buf, " #2");

 printf ("new string is %s\n", buf);

}

276 Chapter 8. Library Reference

8

strchr

Summary: #include <string.h>
char *strchr (

const char *string, /* string to search */
char c); /* character to find */

Description: The strchr function searches string for the first occurrence
of c. The null character terminating string is included in
the search.

Return Value: The strchr function returns a pointer to the character c
found in string or a null pointer if no matching character
was found.

See Also: strcspn, strpbrk, strpos, strrchr, strrpbrk, strrpos,
strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strchr (void) {
 char *s;
 char buf [] = "This is a test";

 s = strchr (buf, 't');

 if (s != NULL)
 printf ("found a 't' at %s\n", s);
}

Keil Software — C51 Compiler User’s Guide 277

8

strcmp

Summary: #include <string.h>
char strcmp (

char *string1, /* first string */
char *string2); /* second string */

Description: The strcmp function compares the contents of string1 and
string2 and returns a value indicating their relationship.

Return Value: The strcmp function returns the following values to indicate
the relationship of string1 to string2:

Value Meaning

< 0 string1 less than string2

= 0 string1 equal to string2

> 0 string1 greater than string2

See Also: memcmp, strncmp

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strcmp (void) {
 char buf1 [] = "Bill Smith";
 char buf2 [] = "Bill Smithy";
 char i;

 i = strcmp (buf1, buf2);

 if (i < 0)
 printf ("buf1 < buf2\n");

 else if (i > 0)
 printf ("buf1 > buf2\n");

 else
 printf ("buf1 == buf2\n");
}

278 Chapter 8. Library Reference

8

strcpy

Summary: #include <string.h>
char *strcpy (

char *dest, /* destination string */
char *src); /* source string */

Description: The strcpy function copies src to dest and appends a null
character to the end of dest.

Return Value: The strcpy function returns dest.

See Also: strcat, strlen, strncat, strncpy

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strcpy (void) {
 char buf [21];
 char s [] = "Test String";

 strcpy (buf, s);
 strcat (buf, " #2");

 printf ("new string is %s\n", buf);
}

Keil Software — C51 Compiler User’s Guide 279

8

strcspn

Summary: #include <string.h>
int strcspn (

char *src, /* source string */
char *set); /* characters to find */

Description: The strcspn function searches the src string for any of the
characters in the set string.

Return Value: The strcspn function returns the index of the first character
located in src that matches a character in set. If the first
character in src matches a character in set, a value of 0 is
returned. If there are no matching characters in src, the
length of the string is returned.

See Also: strchr, strpbrk, strpos, strrchr, strrpbrk, strrpos, strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strcspn (void) {
 char buf [] = "13254.7980";
 int i;

 i = strcspn (buf, ".,");

 if (buf [i] != '\0')
 printf ("%c was found in %s\n", (char)
 buf [i], buf);
}

280 Chapter 8. Library Reference

8

strlen

Summary: #include <string.h>
int strlen (

char *src); /* source string */

Description: The strlen function calculates the length, in bytes, of src.
This calculation does not include the null terminating
character.

Return Value: The strlen function returns the length of src.

See Also: strcat, strcpy, strncat, strncpy

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strlen (void) {
 char buf [] = "Find the length of this string";
 int len;

 len = strlen (buf);

 printf ("string length is %d\n", len);

}

Keil Software — C51 Compiler User’s Guide 281

8

strncat

Summary: #include <string.h>
char *strncat (

char *dest, /* destination string */
char *src, /* source string */
int len); /* max. chars to concatenate */

Description: The strncat function appends at most len characters from
src to dest and terminates dest with a null character. If
src is shorter than len characters, src is copied up to and
including the null terminating character.

Return Value: The strncat function returns dest.

See Also: strcat, strcpy, strlen, strncpy

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strncat (void) {
 char buf [21];

 strcpy (buf, "test #");
 strncat (buf, "three", sizeof (buf) - strlen
 (buf));
}

282 Chapter 8. Library Reference

8

strncmp

Summary: #include <string.h>
char strncmp (

char *string1, /* first string */
char *string2, /* second string */
int len); /* max characters to

compare */

Description: The strncmp function compares the first len bytes of
string1 and string2 and returns a value indicating their
relationship.

Return Value: The strncmp function returns the following values to
indicate the relationship of the first len bytes of string1 to
string2:

Value Meaning

< 0 string1 less than string2

= 0 string1 equal to string2

> 0 string1 greater than string2

See Also: memcmp, strcmp

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strncmp (void) {
 char str1 [] = "Wrodanahan T.J.";
 char str2 [] = "Wrodanaugh J.W.";

 char i;

 i = strncmp (str1, str2, 15);

 if (i < 0) printf ("str1 < str2\n");
 else if (i > 0) printf ("str1 > str2\n");
 else printf ("str1 == str2\n");
}

Keil Software — C51 Compiler User’s Guide 283

8

strncpy

Summary: #include <string.h>
char *strncpy (

char *dest, /* destination string */
char *src, /* source string */
int len); /* max characters to

copy */

Description: The strncpy function copies at most len characters from
src to dest. If src contains fewer characters than len,
dest is padded out with null characters to len characters.

Return Value: The strncpy function returns dest.

See Also: strcat, strcpy, strlen, strncat

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strncpy (char *s) {
 char buf [21];

 strncpy (buf, s, sizeof (buf));
 buf [sizeof (buf)] = '\0';
}

284 Chapter 8. Library Reference

8

strpbrk

Summary: #include <string.h>
char *strpbrk (

char *string, /* string to search */
char *set); /* characters to find */

Description: The strpbrk function searches string for the first
occurrence of any character from set. The null terminator is
not included in the search.

Return Value: The strpbrk function returns a pointer to the matching
character in string. If string contains no characters from
set, a null pointer is returned.

See Also: strchr, strcspn, strpos, strrchr, strrpbrk, strrpos, strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strpbrk (void) {
 char vowels [] ="AEIOUaeiou";
 char text [] = "Seven years ago...";

 char *p;

 p = strpbrk (text, vowels);

 if (p == NULL)
 printf ("No vowels found in %s\n", text);

 else
 printf ("Found a vowel at %s\n", p);

}

Keil Software — C51 Compiler User’s Guide 285

8

strpos

Summary: #include <string.h>
int strpos (

const char *string, /* string to search */
char c); /* character to find */

Description: The strpos function searches string for the first occurrence
of c. The null character terminating string is included in
the search.

Return Value: The strpos function returns the index of the character
matching c in string or a value of -1 if no matching
character was found. The index of the first character in
string is 0.

See Also: strchr, strcspn, strpbrk, strrchr, strrpbrk, strrpos,
strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strpos (void) {
 char text [] = "Search this string for
 blanks";

 int i;

 i = strpos (text, ' ');

 if (i == -1)
 printf ("No spaces found in %s\n", text);

 else
 printf ("Found a space at offset %d\n", i);

}

286 Chapter 8. Library Reference

8

strrchr

Summary: #include <string.h>
char *strrchr (

const char *string, /* string to search */
char c); /* character to find */

Description: The strrchr function searches string for the last occurrence
of c. The null character terminating string is included in
the search.

Return Value: The strrchr function returns a pointer to the last character c
found in string or a null pointer if no matching character
was found.

See Also: strchr, strcspn, strpbrk, strpos, strrpbrk, strrpos, strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strrchr (void) {
 char *s;
 char buf [] = "This is a test";

 s = strrchr (buf, 't');

 if (s != NULL)
 printf ("found the last 't' at %s\n", s);

}

Keil Software — C51 Compiler User’s Guide 287

8

strrpbrk

Summary: #include <string.h>
char *strrpbrk (

char *string, /* string to search */
char *set); /* characters to find */

Description: The strrpbrk function searches string for the last
occurrence of any character from set. The null terminator is
not included in the search.

Return Value: The strrpbrk function returns a pointer to the last matching
character in string. If string contains no characters from
set, a null pointer is returned.

See Also: strchr, strcspn, strpbrk, strpos, strrchr, strrpos, strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strrpbrk (void) {
 char vowels [] ="AEIOUaeiou";
 char text [] = "American National Standards
 Institute";

 char *p;

 p = strpbrk (text, vowels);

 if (p == NULL)
 printf ("No vowels found in %s\n", text);

 else
 printf ("Last vowel is at %s\n", p);

}

288 Chapter 8. Library Reference

8

strrpos

Summary: #include <string.h>
int strrpos (

const char *string, /* string to search */
char c); /* character to find */

Description: The strrpos function searches string for the last occurrence
of c. The null character terminating string is included in
the search.

Return Value: The strrpos function returns the index of the last character
matching c in string or a value of -1 if no matching
character was found. The index of the first character in
string is 0.

See Also: strchr, strcspn, strpbrk, strpos, strrchr, strrpbrk, strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strrpos (char *s) {

 int i;

 i = strpos (s, ' ');

 if (i == -1)
 printf ("No spaces found in %s\n", s);

 else
 printf ("Last space in %s is at offset %d\n",
 s, i);
}

Keil Software — C51 Compiler User’s Guide 289

8

strspn

Summary: #include <string.h>
int strspn (

char *string, /* string to search */
char *set); /* characters to allow */

Description: The strspn function searches the src string for characters
not found in the set string.

Return Value: The strspn function returns the index of the first character
located in src that does not match a character in set. If the
first character in src does not match a character in set, a
value of 0 is returned. If all characters in src are found in
set, the length of src is returned.

See Also: strchr, strcspn, strpbrk, strpos, strrchr, strrpbrk,
strrpos

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strspn (char *digit_str) {
 char octd [] = "01234567";
 int i;

 i = strspn (digit_str, octd);

 if (digit_str [i] != '\0')
 printf ("%c is not an octal digit\n",
 digit_str [i]);

}

290 Chapter 8. Library Reference

8

tan / tan517

Summary: #include <math.h>
float tan (

float x); /* value to calculate tangent of
*/

Description: The tan function calculates the tangent of the floating-point
value x. The value of x must be in the -65535 to +65535
range or an NaN error value is generated.

The tan517 function is identical to tan, but uses the
arithmetic unit of the Siemens 80C517 to provide faster
execution. When using this function, include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

Return Value: The tan function returns the tangent of x.

See Also: cos, sin

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_tan (void) {
 float x, y, pi;

 pi = 3.14159;

 for (x = -(pi/4); x < (pi/4); x += 0.1) {
 y = tan (x);
 printf ("TAN(%f) = %f\n", x, y);
 }
}

Keil Software — C51 Compiler User’s Guide 291

8

tanh

Summary: #include <math.h>
float tanh (

float x); /* value to calc hyperbolic
tangent for */

Description: The tanh function calculates the hyperbolic tangent for the
floating-point value x.

Return Value: The tanh function returns the hyperbolic tangent of x.

See Also: cosh, sinh

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_tanh (void) {
 float x;
 float y;
 float pi;

 pi = 3.14159;

 for (x = -(pi/4); x < (pi/4); x += 0.1) {
 y = tanh (x);
 printf ("TANH(%f) = %f\n", x, y);
 }

}

292 Chapter 8. Library Reference

8

testbit

Summary: #include <intrins.h>
bit _testbit_ (

bit b); * bit to test and clear */

Description: The _testbit_ routine produces a JBC instruction in the
generated program code to simultaneously test the bit b and
clear it to 0. This routine can be used only on directly
addressable bit variables and is invalid on any type of
expression. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _testbit_ routine returns the value of b.

Example: #include <intrins.h>
#include <stdio.h> /* for printf */

void tst_testbit (void){
 bit test_flag;

 if (_testbit_ (test_flag))
 printf ("Bit was set\n");

 else
 printf ("Bit was clear\n");
}

Keil Software — C51 Compiler User’s Guide 293

8

toascii

Summary: #include <ctype.h>
char toascii (

char c); /* character to convert */

Description: The toascii macro converts c to a 7-bit ASCII character.
This macro clears all but the lower 7 bits of c.

Return Value: The toascii macro returns the 7-bit ASCII character for c.

See Also: toint

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_toascii (char c) {
 char k;

 k = toascii (c);

 printf ("%c is an ASCII character\n", k);
}

294 Chapter 8. Library Reference

8

toint

Summary: #include <ctype.h>
char toint (

char c); /* digit to convert */

Description: The toint function interprets c as a hexadecimal value.
ASCII characters ‘0’ through ‘9’ generate values of 0 to 9.
ASCII characters ‘A’ through ‘F’ and ‘a’ through ‘f’
generate values of 10 to 15.

Return Value: The toint function returns the value of the ASCII
hexadecimal character c.

See Also: toascii

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_toint (void) {
 unsigned long l;
 char k;

 for (l = 0; isdigit (k = getchar ());
 l *= 10) {

 l += toint (k);
 }
}

Keil Software — C51 Compiler User’s Guide 295

8

tolower

Summary: #include <ctype.h>
char tolower (

char c); /* character to convert */

Description: The tolower function converts c to a lowercase character.
If c is not an alphabetic letter, the tolower function has no
effect.

Return Value: The tolower function returns the lowercase equivalent of c.

See Also: _tolower, toupper, _toupper

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_tolower (void) {
 unsigned char i;

 for (i = 0x20; i < 0x7F; i++) {
 printf ("tolower(%c) = %c\n", i, tolower(i));
 }
}

296 Chapter 8. Library Reference

8

_tolower

Summary: #include <ctype.h>
char _tolower (

char c); /* character to convert */

Description: The _tolower macro is a version of tolower that can be used
when c is known to be an uppercase character.

Return Value: The _tolower macro returns a lowercase character.

See Also: tolower, toupper, _toupper

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst__tolower (char k) {

 if (isupper (k)) k = _tolower (k);
}

Keil Software — C51 Compiler User’s Guide 297

8

toupper

Summary: #include <ctype.h>
char toupper (

char c); /* character to convert */

Description: The toupper function converts c to an uppercase character.
If c is not an alphabetic letter, the toupper function has no
effect.

Return Value: The toupper function returns the uppercase equivalent of c.

See Also: tolower, _tolower, _toupper

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_toupper (void) {
 unsigned char i;

 for (i = 0x20; i < 0x7F; i++) {
 printf ("toupper(%c) = %c\n", i, toupper(i));
 }
}

298 Chapter 8. Library Reference

8

_toupper

Summary: #include <ctype.h>
char _toupper (

char c); /* character to convert */

Description: The _toupper macro is a version of toupper that can be
used when c is known to be a lowercase character.

Return Value: The _toupper macro returns an uppercase character.

See Also: tolower, _tolower, toupper

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst__toupper (char k) {
 if (islower (k)) k = _toupper (k);
}

Keil Software — C51 Compiler User’s Guide 299

8

ungetchar

Summary: #include <stdio.h>
char ungetchar (

char c); /* character to unget */

Description: The ungetchar function stores the character c back into the
input stream. Subsequent calls to getchar and other stream
input functions return c. Only one character may be passed
to unget between calls to getchar.

Return Value: The ungetchar function returns the character c if
successful. If ungetchar is called more than once between
function calls that read from the input stream, EOF is
returned indicating an error condition.

See Also: _getkey, putchar, ungetchar

Example: #include <stdio.h>

void tst_ungetchar (void) {
 char k;

 while (isdigit (k = getchar ())) {
 /* stay in the loop as long as k is a digit */
 }
 ungetchar (k);
}

300 Chapter 8. Library Reference

8

va_arg

Summary: #include <stdarg.h>
type va_arg (

argptr, /* optional argument list */
type); /* type of next argument */

Description: The va_arg macro is used to extract subsequent arguments
from a variable-length argument list referenced by argptr.
The type argument specifies the data type of the argument
to extract. This macro may be called only once for each
argument and must be called in the order of the parameters
in the argument list.

The first call to va_arg returns the first argument after the
prevparm argument specified in the va_start macro.
Subsequent calls to va_arg return the remaining arguments
in succession.

Return Value: The va_arg macro returns the value for the specified
argument type.

See Also: va_end, va_start

Keil Software — C51 Compiler User’s Guide 301

8

Example: #include <stdarg.h>
#include <stdio.h> /* for printf */

int varfunc (char *buf, int id, ...) {
 va_list tag;

 va_start (tag, id);

 if (id == 0) {
 int arg1;
 char *arg2;
 long arg3;

 arg1 = va_arg (tag, int);
 arg2 = va_arg (tag, char *);
 arg3 = va_arg (tag, long);
 }
 else {
 char *arg1;
 char *arg2;
 long arg3;

 arg1 = va_arg (tag, char *);
 arg2 = va_arg (tag, char *);
 arg3 = va_arg (tag, long);
 }
}

void caller (void) {
 char tmp_buffer [10];

 varfunc (tmp_buffer, 0, 27, "Test Code", 100L);
 varfunc (tmp_buffer, 1, "Test", "Code", 348L);
}

302 Chapter 8. Library Reference

8

va_end

Summary: #include <stdarg.h>
void va_end (

argptr); /* optional argument list */

Description: The va_end macro is used to terminate use of the
variable-length argument list pointer argptr that was
initialized using the va_start macro.

Return Value: None.

See Also: va_arg, va_start

Example: See va_arg.

Keil Software — C51 Compiler User’s Guide 303

8

va_start

Summary: #include <stdarg.h>
void va_start (

argptr, /* optional argument list */
prevparm); /* arg preceding optional args */

Description: The va_start macro, when used in a function with a
variable-length argument list, initializes argptr for
subsequent use by the va_arg and va_end macros. The
prevparm argument must be the name of the function
argument immediately preceding the optional arguments
specified by an ellipses (…). This function must be called
to initialize a variable-length argument list pointer before
any access using the va_arg macro is made.

Return Value: None.

See Also: va_arg, va_end

Example: See va_arg.

304 Chapter 8. Library Reference

8

vprintf

Summary: #include <stdio.h>
void vprintf (

const char * fmtstr, /* pointer to format string */
char * argptr); /* pointer to argument list */

Description: The vprintf function formats a series of strings and numeric
values and builds a string to write to the output stream using
the putchar function. The function is similar to the
counterpart printf, but it accepts a pointer to a list of
arguments instead of an argument list.

The fmtstr argument is a pointer to a format string and has
the same form and function as the fmtstr argument for the
printf function. Refer to “printf / printf517” on page 252
for a description of the format string. The argptr argument
points to a list of arguments that are converted and output
according to the corresponding format specifications in the
format.

NOTE
This function is implementation-specific and is based on the
operation of the putchar function. This function, as
provided in the standard library, writes characters using the
serial port of the 8051. Custom functions may use other I/O
devices.

Return Value: The vprintf function returns the number of characters
actually written to the output stream.

See Also: gets, puts, printf, scanf, sprintf, sscanf, vsprintf

Keil Software — C51 Compiler User’s Guide 305

8

Example: #include <stdio.h>
#include <stdarg.h>

void error (char *fmt, ...) {
 va_list arg_ptr;

 va_start (arg_ptr, fmt); /* format string */
 vprintf (fmt, arg_ptr);
 va_end (arg_ptr);
}

void tst_vprintf (void) {
 int i;
 i = 1000;
 /* call error with one parameter */
 error ("Error: '%d' number too large\n", i);
 /* call error with just a format string */
 error ("Syntax Error\n");
}

306 Chapter 8. Library Reference

8

vsprintf

Summary: #include <stdio.h>
void vsprintf (

char *buffer, /* pointer to storage buffer */
const char * fmtstr, /* pointer to format string */
char * argptr); /* pointer to argument list */

Description: The vsprintf function formats a series of strings and
numeric values and stores the string in buffer. The function
is similar to the counterpart sprintf, but it accepts a pointer
to a list of arguments instead of an argument list.

The fmtstr argument is a pointer to a format string and has
the same form and function as the fmtstr argument for the
printf function. Refer to “printf / printf517” on page 252
for a description of the format string. The argptr argument
points to a list of arguments that are converted and output
according the corresponding format specifications in the
format.

Return Value: The vsprintf function returns the number of characters
actually written to the output stream.

See Also: gets, puts, printf, scanf, sprintf, sscanf, vprintf

Keil Software — C51 Compiler User’s Guide 307

8

Example: #include <stdio.h>
#include <stdarg.h>

xdata char etxt[30]; /* text buffer */

void error (char *fmt, ...) {
 va_list arg_ptr;

 va_start (arg_ptr, fmt); /* format string */
 vsprintf (etxt, fmt, arg_ptr);
 va_end (arg_ptr);
}

void tst_vprintf (void) {
 int i;
 i = 1000;

 /* call error with one parameter */
 error ("Error: '%d' number too large\n", i);

 /* call error with just a format string */
 error ("Syntax Error\n");
}

Keil Software — C51 Compiler User’s Guide 309

A
Appendix A. Differences from ANSI C

The C51 compiler differs in only a few aspects from the ANSI C Standard.
These differences can be grouped into compiler-related differences and
library-related differences.

Compiler-related Differences

! Wide Characters
Wide 16-bit characters are not supported by C51. ANSI provides wide
characters for future support of an international character set.

! Recursive Function Calls
Recursive function calls are not supported by default. Functions that are
recursive must be declared using the reentrant function attribute. Reentrant
functions can be called recursively because the local data and parameters are
stored in a reentrant stack. In comparison, functions which are not declared
using the reentrant attribute use static memory segments for the local data of
the function. A recursive call to these functions overwrites the local data of
the prior function call instance.

Library-related Differences

The ANSI C Standard Library includes a vast number of routines, most of which
are included in C51. Many, however, are not applicable to an embedded
application and are excluded from the C51 library.

The following ANSI Standard library routines are included in the C51 library:

abs
acos
asin
atan
atan2
atof
atoi
atol
calloc
ceil
cos

cosh
exp
fabs
floor
free
getchar
gets
isalnum
isalpha
iscntrl
isdigit

isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
labs
log
log10
longjmp

310 Appendix A. Differences from ANSI C

A

malloc
memchr
memcmp
memcpy
memmove
memset
modf
pow
printf
putchar
puts
rand
realloc
scanf

setjmp
sin
sinh
sprintf
sqrt
srand
sscanf
strcat
strchr
strcmp
strcpy
strcspn
strlen
strncat

strncmp
strncpy
strpbrk
strrchr
strspn
tan
tanh
tolower
toupper
va_arg
va_end
va_start
vprintf
vsprintf

The following ANSI Standard library routines are not included in the C51
library:

abort
asctime
atexit
bsearch
clearerr
clock
ctime
difftime
div
exit
fclose
feof
ferror
fflush
fgetc
fgetpos
fgets
fmod
fopen
fprintf
fputc
fputs
fread

freopen
frexp
fscanf
fseek
fsetpos
ftell
fwrite
getc
getenv
gmtime
ldexp
ldiv
localeconv
localtime
mblen
mbstowcs
mbtowc
mktime
perror
putc
qsort
raise
remove

rename
rewind
setbuf
setlocale
setvbuf
signal
strcoll
strerror
strftime
strstr
strtod
strtok
strtol
strtoul
strxfrm
system
time
tmpfile
tmpnam
ungetc
vfprintf
wcstombs
wctomb

Keil Software — C51 Compiler User’s Guide 311

A

The following routines are not found in the ANSI Standard Library but are
included in the C51 library.

acos517
asin517
atan517
atof517
cabs
chkfloat
cos517
crol
cror
exp517
_getkey
init_mempool

irol
iror
log10517
log517
lrol
lror
memccpy
nop
printf517
scanf517
sin517
sprintf517

sqrt517
sscanf517
strpos
strrpbrk
strrpos
tan517
testbit
toascii
toint
_tolower
_toupper
ungetchar

312 Appendix A. Differences from ANSI C

A

Keil Software — C51 Compiler User’s Guide 313

B

Appendix B. Version Differences
This following appendix lists an overview of major product enhancements and
differences between Version 5 and previous versions. The current version of the
C51 compiler contains all enhancements listed below:

Version 4 Differences

! Byte Order of Floating-point Numbers
Floating-point numbers are now stored in the big endian order. Previous
releases of the C51 compiler stored floating-point numbers in little endian
format. Refer to “Floating-point Numbers” on page 147 for more
information.

! _chkfloat_ Library Function
The intrinsic function _chkfloat_ allows for fast testing of floating-point
numbers for error (NaN), ±INF, zero and normal numbers. Refer to
“_chkfloat_” on page 208 for more information.

! FLOATFUZZY Directive
C51 now supports the FLOATFUZZY directive. This directive controls the
number of bits ignored during the execution of a floating-point compare.
Refer to “FLOATFUZZY” on page 23 for more information.

! Floating-point Arithmetic is Fully Reentrant
Intrinsic floating-point arithmetic operations (add, subtract, multiply, divide,
and compare) are now fully reentrant. The C library routines fpsave and
fprestore are no longer needed. Several library routines are also reentrant.
Refer to “Routines by Category” on page 182 for more information.

! Long and Floating-point Operations no Longer use an Arithmetic Stack
The long and floating-point arithmetic is more efficient; the code generated
is now totally register-based and does not use a simulated arithmetic stack.
This also reduces the memory needs of the generated code.

! Memory Types
The memory types have been changed to achieve better performance in the
run-time library and to reflect the memory map of the MCS® 251 architecture.

314 Appendix B. Version Differences

B

! Memory Type Bytes for Generic Pointers
The memory type bytes used in generic pointers have changed. The
following table contains the memory type byte values and their associated
memory type.

Memory Type idata data bdata xdata pdata code

C51 V5 Value 0x00 0x00 0x00 0x01 0xFE 0xFF

C51 V4 Value 0x01 0x04 0x04 0x02 0x03 0x05

! WARNINGLEVEL Directive
C51 now supports the WARNINGLEVEL directive which lets you specify
the strength of the warning detection for the C51 compiler. The C51
compiler now also checks for unused local variables, labels, and expressions.
Refer to “WARNINGLEVEL” on page 55 for more information.

Keil Software — C51 Compiler User’s Guide 315

B

Version 3.4 Differences

! _at_Keyword
C51 supports variable location using the _at_ keyword. This new keyword
allows you to specify the address of a variable in a declaration. Refer to “The
at Keyword” on page 152 for more information.

! NOAMAKE Directive
C51 now supports the NOAMAKE directive. This directive causes C51 to
generate object modules without project information and register
optimization records. This is necessary only if you want to use object files
with older versions of C51 tools. Refer to “NOAMAKE” on page 35 for
more information.

! OH51 Hex File Converter
The OHS51 Object-Hex-Symbol Converter provided with prior versions of
C51 has been replaced with OH51.

! Optimizer Level 6
C51 now supports optimizer level 6 which provides loop rotation. The
resulting code is more efficient and executes faster. Refer to “OPTIMIZE”
on page 39 for more information.

! ORDER Directive
When you specify the ORDER directive, C51 locates variables in memory in
the order in which they are declared in your source file. Refer to “ORDER”
on page 42 for more information.

! REGFILE Directive
C51 now supports the REGFILE directive which lets you specify the name
of the register definition file generated by the linker. This file contains
information that is used to optimize the use of registers between functions in
different modules. Refer to “REGFILE” on page 47 for more information.

! vprintf and vsprint Library Functions
The vprintf and vsprintf library functions have been added. Refer to
“vprintf” on page 304 and “vsprintf” on page 306 for more information.

316 Appendix B. Version Differences

B

Version 3.2 Differences

! ANSI Standard Automatic Integer Promotion
The latest version of the ANSI C Standard requires that calculations use int
values if char or unsigned char values might overflow during the
calculation. This new requirement is based on the premise that int and char
operations are similar on 16-bit CPUs. C51 supports this feature as the
default and provides you with two new control directives, INTPROMOTE
and NOINTPROMOTE, to enable or disable integer promotion.

There is a big difference between 8-bit and 16-bit operations on the 8-bit
8051 in terms of code size and execution speed. For this reason, you might
want to disable integer promotion by using the NOINTPROMOTE control
directive.

However, if you wish to retain maximum compatibility with other C
compilers and platforms, leave integer promotions enabled.

! Assembly Source Generation with In-Line Assembly
You may use the new control directives ASM and ENDASM to include
source text to output to .SRC files generated using the SRC command
directive.

! New Control Directives
The control directives ASM, ENDASM, INTERVAL, INTPROMOTE,
INTVECTOR, MAXARGS, and NOINTPROMOTE have been added or
enhanced.

! Offset and Interval Can Now Be Specified for Interrupt Vectors
You may now specify the offset and interval for the interrupt vector table.
These features provide support for the SIECO-51 derivatives and allow you
to specify a different location for the interrupt vector in situations where the
interrupt table is not located at address 0000h.

! Parameter Passing to Indirectly Called Functions
Function parameters may now be passed to indirectly called functions if all of
the parameters can be passed in CPU registers. These functions do not have
to be declared with the reentrant attribute.

! Source Code Provided For Memory Allocation Functions
C source code for the memory allocation routines is now provided with the
C51 compiler. You may now more easily adapt these functions to the
hardware architecture of your embedded system.

Keil Software — C51 Compiler User’s Guide 317

B

! Trigraphs
C51 now supports trigraph sequences.

! Variable-length Argument Lists for All Functions
Variable-length argument lists are now supported for all function types.
Functions with a variable length argument list do not have to be declared
using the reentrant attribute. The new command line directive MAXARGS
determines the size of the parameter passing area.

Version 3.0 Differences

! New Control Directive Added for Assembly Source File Output
The SRC control directive has been added to direct the compiler to generate
an assembly language source file instead of an object file.

! New Library Functions
The library functions calloc, free, init_mempool, malloc, and realloc have
been added.

318 Appendix B. Version Differences

B

Version 2 Differences

! Absolute Register Addressing
C51 now generates code that performs absolute register addressing. This
improves execution speed. The control directives AREGS and NOAREGS,
respectively, enable or disable this feature.

! Bit-addressable Memory Type
Variable types of char and int can now be declared to reside in the
bit-addressable internal memory area by using the bdata memory specifier.

! Intrinsic Functions
Intrinsic functions have been added to the library to support some of the
special instructions built in to the 8051.

! Mixed Memory Models
Calls to and from functions of different memory models are now supported.

! New Optimizer Levels
Two new levels of optimization have been added to the C51 compiler. These
new levels support register variables, local common subexpression
elimination, loop optimizations, and global common subexpression
elimination, to name a few.

! New Predefined Macros
The macros _ _C51_ _ and _ _MODEL_ _ are now defined by the
preprocessor at compile time.

! Reentrant and Recursive Functions
Individual functions may now be defined as being reentrant or recursive by
using the reentrant function attribute.

! Registers Used for Parameter Passing
C51 now passes up to 3 function arguments using registers. The
REGPARMS and NOREGPARMS directives enable or disable this feature.

! Support for Memory-specific Pointers
Pointers may now be defined to reference data in a particular memory area.

! Support for PL/M-51 Functions
The alien keyword has been added to support PL/M-51 compatible functions
and function calls.

! Volatile Type Specifier
The volatile variable attribute may be used to enforce variable access and to
prevent optimizations involving that variable.

Keil Software — C51 Compiler User’s Guide 319

B

Using C51 Version 5 with Previous
Versions

You may wish to use the C51 Version 5 with older versions of the 8051
development tools such as BL51, OHS51, or debugging tools and emulators.
The new compiler adds object file records for register optimization which makes
the object format incompatible with the old tools. However, you can direct the
compiler and linker to generate object modules that are compatible with the old
tools.

1. Invoke C51 with the control NOAMAKE and do not use REGFILE.

or

2. Invoke L51 or BL51 with the control NOAMAKE.

If you are using old debugging tools, you may have problems displaying
floating-point numbers and pointers. Make sure that you have current versions
of the debugging software.

320 Appendix B. Version Differences

B

Keil Software — C51 Compiler User’s Guide 321

C

Appendix C. Writing Optimum Code
This section lists a number of ways you can improve the efficiency (i.e., smaller
code and faster execution) of the 8051 code generated by the C51 compiler. The
following is by no means a complete list of things to try. These suggestions in
most cases, however, improve the speed and code size of your program.

Memory Model

The most significant impact on code size and execution speed is memory model.
Compiling in small model always generates the smallest, fastest code possible.
The SMALL control directive instructs the C51 compiler to use the small
memory model. In small model, all variables, unless declared otherwise, reside
in the internal memory of the 8051. Memory access to internal data memory is
fast (typically performed in 1 or 2 clock cycles), and the generated code is much
smaller than that generated with the compact or large models. For example, the
following loop:

for (i = 0; i < 100; i++) {
 do_nothing ();
}

is compiled both in small model and in large model to demonstrate the difference
in generated code. The following is the small model translation:

stmt level source

 1 #pragma small
 2
 3 void do_nothing (void);
 4
 5
 6 void func (void)
 7 {
 8 1 unsigned char i;
 9 1
 10 1 for (i = 0; i < 100; i++)
 11 1 {
 12 2 do_nothing ();
 13 2 }
 14 1 }
 ; FUNCTION func (BEGIN)
 ; SOURCE LINE # 10
0000 E4 CLR A
0001 F500 R MOV i,A
0003 ?C0001:
0003 E500 R MOV A,i
0005 C3 CLR C
0006 9464 SUBB A,#064H

322 Appendix C. Writing Optimum Code

C

0008 5007 JNC ?C0004
 ; SOURCE LINE # 12
000A 120000 E LCALL do_nothing
 ; SOURCE LINE # 13
000D 0500 R INC i
000F 80F2 SJMP ?C0001
 ; SOURCE LINE # 14
0011 ?C0004:
0011 22 RET
 ; FUNCTION func (END)

In small model, the variable i is maintained in internal data memory. The
instructions to access i, MOV A,i and INC i, require only two bytes each of
code space. In addition, each of these instructions executes in only one clock
cycle. The total size for the main function when compiled in small model is 11h
or 17 bytes.

The following is the same code compiled using the large model:

 ; FUNCTION func (BEGIN)
 ; SOURCE LINE # 10
0000 E4 CLR A
0001 900000 R MOV DPTR,#i
0004 F0 MOVX @DPTR,A
0005 ?C0001:
0005 900000 R MOV DPTR,#i
0008 E0 MOVX A,@DPTR
0009 C3 CLR C
000A 9464 SUBB A,#064H
000C 500B JNC ?C0004
 ; SOURCE LINE # 12
000E 120000 E LCALL do_nothing
 ; SOURCE LINE # 13
0011 900000 R MOV DPTR,#i
0014 E0 MOVX A,@DPTR
0015 04 INC A
0016 F0 MOVX @DPTR,A
0017 80EC SJMP ?C0001
 ; SOURCE LINE # 14
0019 ?C0004:
0019 22 RET
 ; FUNCTION func (END)

In large model, the variable i is maintained in external data memory. To access
i, the compiler must first load the data pointer and then perform an external
memory access (see offset 0001h through 0004h in the above listing). These two
instructions alone take 4 clock cycles. The code to increment i is found from
offset 0011h to offset 0016h. This operation consumes 6 bytes of code space
and takes 7 clock cycles to execute. The total size for the main function when
compiled in small model is 19h or 25 bytes.

Keil Software — C51 Compiler User’s Guide 323

C

Variable Location

Frequently accessed data objects should be located in the internal data memory
of the 8051. Accessing the internal data memory is much more efficient than
accessing the external data memory. The internal data memory is shared among
register banks, the bit data area, the stack, and other user defined variables with
the memory type data.

Because of the limited amount of internal data memory (128 to 256 bytes), all
your program variables may not fit into this memory area. In this case, you must
locate some variables in other memory areas. There are two ways to do this.

One way is to change the memory model and let the compiler do all the work.
This is the simplest method, but it is also the most costly in terms of the amount
of generated code and system performance. Refer to “Memory Model” on page
321 for more information.

Another way to locate variables in other memory areas is to manually select the
variables that can be moved into external data memory and declare them using
the xdata memory specifier. Usually, string buffers and other large arrays can
be declared with the xdata memory type without a significant degradation in
performance or increase in code size.

Variable Size

Members of the 8051 family are all 8-bit CPUs. Operations that use 8-bit types
(like char and unsigned char) are much more efficient than operations that use
int or long types. For this reason, always use the smallest data type possible.

The C51 compiler directly supports all byte operations. Byte types are not
promoted to integers unless required. See the INTPROMOTE directive for
more information.

An example can be illustrated by examining of multiplication operations. The
multiplication of two char objects is done inline with the 8051 instruction
MUL AB. To accomplish the same operation with int or long types would require
a call to a compiler library function.

324 Appendix C. Writing Optimum Code

C

Unsigned Types

The 8051 family of processors does not specifically support operations with
signed numbers. The compiler must generate additional code to deal with sign
extensions. Far less code is produced if unsigned objects are used wherever
possible.

Local Variables

When possible, use local variables for loops and other temporary calculations.
As part of the optimization process, the compiler attempts to maintain local
variables in registers. Register access is the fastest type of memory access. The
best effect is normally achieved with unsigned char and unsigned int variable
types.

Other Sources

The quality of the compiler generated code is more often than not directly
influenced by the algorithms implemented in the program. Sometimes, you can
improve the performance or reduce the code size simply by using a different
algorithm. For example, a heap sort algorithm always outperforms a bubble sort
algorithm.

For more information on how to write efficient programs, refer to the following
books:

The Elements of Programming Style, Second Edition
Kernighan & Plauger
McGraw-Hill
ISBN 0-07-034207-5

Writing Efficient Programs
Jon Louis Bentley
Prentice-Hall Software Series
ISBN 0-13-970244-X

Efficient C
Plum & Brodie
Plum Hall, Inc.
ISBN 0-911537-05-8

Keil Software — C51 Compiler User’s Guide 325

D

Appendix D. Compiler Limits
The C51 compiler embodies some known limitations that can be arranged into
two distinct categories:

! Limitations of the compiler implementation

! Limitations of the Intel Object Module Format (OMF-51)

For the most part, there are no limits placed on the compiler with respect to
components of the C language; for example, you may specify an unlimited
number of symbols or number of case statements in a switch block. If there is
enough address space, several thousand symbols could be defined. However, at
this time, C51 is bound by a historical limit of 256 global symbols.

Limitations of the C51 Compiler
Implementation

! A maximum of 19 levels of indirection (access modifiers) to any standard
data type are supported. This includes array descriptors, indirection
operators, and function descriptors.

! Number of functions in a module (see OMF-51 Limitation values).

! Names can be up to 255 characters long. However, only the first 32 are
significant. The C language provides for case sensitivity in regard to function
and variable names. However, for compatibility reasons, all names in the
object file appear in capital letters. It is therefore irrelevant if an external
object name within the source program is written in capital or small letters.

! The maximum number of case statements in a switch block is not fixed.
Limits are imposed only by the available memory size and the maximum size
of individual functions.

! The maximum number of nested function calls in an invocation parameter list
is 10.

! The maximum number of nested include files is 9. This value is independent
of list files, preprocessor files, or whether or not an object file is to be
generated.

! The maximum depth of directives for conditional compilation is 20. This is a
preprocessor limitation.

326 Appendix D. Compiler Limits

D

! Instruction blocks ({…}) may be nested up to 15 levels deep.

! Macros may be nested up to 8 levels deep.

! A maximum of 32 parameters may be passed in a macro or function call.

! The maximum length of a line or a macro definition is 2000 characters. Even
after a macro expansion, the result may not exceed 2000 characters.

Limitations of the Intel Object Module
Format

! There may be a maximum of 255 segments. The number of functions that
may exist in a module is difficult to calculate. Each function definition in a
source program module receives a separate code segment. If local variables
exist within the function, a separate data segment is also created. If bit
variables exist within the function, a separate bit segment is created too. For
these reasons, the number of functions that may exist within a module
depends upon the number of variables in the functions.

! There may be a maximum of 256 external symbols. All module names which
have the memory class extern, are contained in this external symbol class.
The compiler produces external names for external functions, that are
dependent upon whether or not bit or data parameters are contained in the
function call. Thus, the reference name to the external data and bit segments
is produced in a manner analogous to the global functions.

Keil Software — C51 Compiler User’s Guide 327

E

Appendix E. Byte Ordering
Most microprocessors have a memory architecture that is composed of 8-bit
address locations known as bytes. Many data items (addresses, numbers, and
strings) are too long to be stored using a single byte and must be stored in a
series of consecutive bytes.

When using data that are stored in multiple bytes, byte ordering becomes an
issue. Unfortunately, there is not just one standard for the order in which bytes
in multi-byte data are stored. There are two popular methods of byte ordering
currently in widespread use.

The first method is called little endian and is often referred to as Intel order. In
little endian, the least significant, or low-order byte is stored first. For example,
a 16-bit integer value of 0x1234 (4660 decimal) would be stored using the little
endian method in two consecutive bytes as follows:

Address +0 +1

Contents 0x34 0x12

A 32-bit integer value of 0x57415244 (1463898692 decimal) would be stored
using the little endian method as follows:

Address +0 +1 +2 +3

Contents 0x44 0x52 0x41 0x57

A second method of accessing multi-byte data is called big endian and is often
referred to as Motorola order. In big endian, the most significant, or high-order
byte is stored first, and the least significant, or low-order byte is stored last. For
example, a 16-bit integer value of 0x1234 would be stored using the big endian
method in two consecutive bytes as follows:

Address +0 +1

Contents 0x12 0x34

A 32-bit integer value of 0x004A4F4E would be stored using the big endian
method as follows:

Address +0 +1 +2 +3

Contents 0x00 0x4A 0x4F 0x4E

328 Appendix E. Byte Ordering

E

The 8051 is an 8-bit machine and has no instructions for directly manipulating
data objects that are larger than 8 bits. Multi-byte data are stored according to
the following rules.

! The 8051 LCALL instruction stores the address of the next instruction on the
stack. The address is pushed onto the stack low-order byte first. The address
is, therefore, stored in memory in little endian format.

! All other 16-bit and 32-bit values are stored, contrary to other Intel
processors, in big endian format, with the high-order byte stored first. For
example, the LJMP and LCALL instructions expect 16-bit addresses that are
in big endian format.

! Floating-point numbers are stored according to the IEEE-754 format and are
stored in big endian format with the high-order byte stored first.

If your 8051 embedded application performs data communications with other
microprocessors, it may be necessary to know the byte ordering method used by
the other CPU. This is certainly true when transmitting raw binary data.

Keil Software — C51 Compiler User’s Guide 329

F

Appendix F. Hints, Tips, and
Techniques

This section lists a number of illustrations and tips which commonly require
further explanation. Items in this section are listed in no particular order and are
merely intended to be referenced if you experience similar problems.

Recursive Code Reference Error

The following program example:

#pragma code symbols debug oe

void func1(unsigned char *msg) { ; }

void func2(void) {
 unsigned char uc;
 func1("xxxxxxxxxxxxxxx");
}

code void (*func_array[])() = { func2 };

void main(void) {
 (*func_array[0])();
}

when compiled and linked using the following command lines:

C51 EXAMPLE1.C

BL51 EXAMPLE1.OBJ IX

fails and display the following error message.

*** WARNING 13: RECURSIVE CALL TO SEGMENT
 SEGMENT: ?CO?EXAMPLE1
 CALLER: ?PR?FUNC2?EXAMPLE1

In this program example, func2 defines a constant string (“xxx…xxx”) which is
directed into the constant code segment ?CO?EXAMPLE1. The definition code
void (*func_array[])() = { func2 }; yields a reference between segment
?CO?EXAMPLE1 (where the code table is located) and the executable code
segment ?PR?FUNC2?EXAMPLE1. Because func2 also refers to segment
?CO?EXAMPLE1, BL51 assumes that there is a recursive call.

330 Appendix F. Hints, Tips, and Techniques

F

To avoid this problem, link using the following command line:

BL51 EXAMPLE1.OBJ IX OVERLAY &
(?CO?EXAMPLE1 ~ FUNC2, MAIN ! FUNC2)

?CO?EXAMPLE1 ~ FUNC2 deletes the implied call reference between func2 and
the code constant segment in the example. Then, MAIN ! FUNC2 adds an
additional call to the reference listing between MAIN and FUNC2 instead. Refer
to the 8051 Utilities User’s Guide for more information.

In summary, automatic overlay analysis cannot be successfully accomplished
when references are made via pointers to functions. References of this type must
be manually implemented, as in the example above.

Problems Using the printf Routines

The printf functions are implemented using a variable-length argument list.
Arguments specified after the format string are passed using their inherent data
type. This can cause problems when the format specification expects a data
object of a different type than was passed. For example, the following code:

printf ("%c %d %u %bu", 'A', 1, 2, 3);

does not print the string “A 1 2 3”. This is because the C51 compiler passes the
arguments 1, 2, and 3 all as 8-bit byte types. The format specifiers %d and
%u both expect 16-bit int types.

To avoid this type of problem, you must explicitly define the data type to pass to
the printf function. To do this, you must type cast the above values. For
example:

printf ("%c %d %u %bu", 'A',(int) 1, (unsigned int) 2, (char) 3);

If you are uncertain of the size of the argument that is passed, you may cast the
value to the desired size.

Keil Software — C51 Compiler User’s Guide 331

F

Uncalled Functions

It is common practice during the development process to write but not call
additional functions. While the compiler permits this without error, the
Linker/Locator does not treat this code casually, because of the support for data
overlaying, and emits a warning message.

Interrupt functions are never called, they are invoked by the hardware. An
uncalled routine is treated as a potential interrupt routine by the linker. This
means that the function is assigned non-overlayable data space for its local
variables. This quickly exhausts all available data memory (depending upon the
memory model used).

If you unexpectedly run out of memory, be sure to check for linker warnings
relating to uncalled or unused routines. You can use the linker’s IXREF control
directive to include a cross reference list in the linker map (.M51) file.

332 Appendix F. Hints, Tips, and Techniques

F

Trouble with the bdata Memory Type

Some users have reported difficulties in using the bdata memory type. Using
bdata is similar to using the sfr modifier. The most common error is
encountered when referencing a bdata variable defined in another module. For
example:

extern bdata char xyz_flag;

sbit xyz_bit1 = xyz_flag^1;

In order to generate the appropriate instructions, the compiler must have the
absolute value of the reference to be generated. In the above example, this
cannot be done, as this address of xyz_flag cannot be known until after the
linking phase has been completed. Follow the rules below to avoid this problem.

1. A bdata variable (defined and used in the same way as an sfr) must be
defined in global space; not within the scope of a procedure.

2. A bdata bit variable (defined and used in the same way as an sbit) must also
be defined in global space, and cannot be located within the scope of a
procedure.

3. The definition of the bdata variable and the creation of its sbit access
component name must be accomplished where the compiler has a “view” of
both the variable and the component.

For example, declare the bdata variable and the bit component in the same
source module:

bdata char xyz_flag;
sbit xyz_bit1 = xyz_flag^1;

Then, declare the bit component external:

extern bit xyz_bit1;

As with any other declared and named C variable that reserves space, simply
define your bdata variable and its component sbits in a module. Then, use the
extern bit specifier to reference it as the need arises.

Keil Software — C51 Compiler User’s Guide 333

F

Using Monitor-51

If you want to test a C program with Monitor-51 and if the Monitor-51 is
installed at code address 0, consider the following rules (the specification refers
to a target system where the available code memory for user programs starts at
address 8000H):

! All C modules which contain interrupt functions must be translated with the
control directive INTVECTOR (0x8000).

! In the file STARTUP.A51 (directory: LIB) the statement CSEG AT 0 must be
replaced with CSEG AT 8000H. The this file must be assembled and added
to the linker/locator invocation according the specifications in the file header.

334 Appendix F. Hints, Tips, and Techniques

F

Function Pointers

Function pointers are one of the most difficult aspects of C to understand and to
properly utilize. Most problems involving function pointers are caused by
improper declaration of the function pointer, improper assignment, and
improper dereferencing.

The following brief example demonstrates how to declare a function pointer (f),
how to assign function addresses to it, and how to call the functions through the
pointer. The printf routine is used for example purposes when running DS51 to
simulate program execution.

#pragma code symbols debug oe

#include <reg51.h> /* special function register declarations */
#include <stdio.h> /* prototype declarations for I/O functions */

void func1(int d) { /* function #1 */
 printf("In FUNC1(%d)\n", d);
}

void func2(int i) { /* function #2 */
 printf("In FUNC2(%d)\n", i);
}

void main(void) {
 void (*f)(int i); /* Declaration of a function pointer */

/* that takes one integer arguments */
/* and returns nothing */

 SCON = 0x50; /* SCON: mode 1, 8-bit UART, enable rcvr */
 TMOD |= 0x20; /* TMOD: timer 1, mode 2, 8-bit reload */
 TH1 = 0xf3; /* TH1: reload value for 2400 baud */
 TR1 = 1; /* TR1: timer 1 run */
 TI = 1; /* TI: set TI to send first char of UART */

 while(1) {
 f = (void *)func1; /* f points to function #1 */
 f(1);
 f = (void *)func2; /* f points to function #2 */
 f(2);
 }
}

NOTE
Because of the limited stack space of the 8051, the linker overlays function
variables and arguments in memory. When you use a function pointer, the linker
cannot correctly create a call tree for your program. For this reason, you may
have to correct the call tree for the data overlaying. Use the OVERLAY
directive with the linker to do this. Refer to the 8051 Utilities User’s Guide for
more information.

Keil Software — C51 Compiler User’s Guide 335

Glossary

A51
The command used to assemble programs using the 8051 Macro Assembler.

aggregate types
Arrays, structures, and unions.

ANSI
American National Standards Institute. The organization responsible for
defining the C language standard.

argument
The value that is passed to a macro or function.

arithmetic types
Data types that are integral, floating-point, or enumerations.

array
A set of elements all of the same data type.

ASCII
American Standard Code for Information Interchange. This is a set of 256
codes used by computers to represent digits, characters, punctuation, and
other special symbols.

basename
The part of the file name that excludes the drive letter, directory name, and
file extension. For example, the basename for the file C:\C51\SAMPLE\SIO.C
is SIO.

batch file
A text file that contains MS-DOS commands and programs that can be
invoked from the command line.

BL51
The command used to link object files and libraries using the 8051
Code-Banking Linker/Locator.

block
A sequence of C statements, including definitions and declarations, enclosed
within braces ({ }).

336 Glossary

C51
The command used to compile programs using the 8051 Optimizing C Cross
Compiler.

constant expression
Any expression that evaluates to a constant non-variable value. Constants
may include character, integer, enumeration, and floating-point constant
values.

declaration
A C construct that associates the attributes of a variable, type, or function
with a name.

definition
A C construct that specifies the name, formal parameters, body, and return
type of a function or that initializes and allocates storage for a variable.

directive
An instruction to the C preprocessor or a control switch to the C51 compiler.

disk cache
A software program usually installed as a TSR or device driver that buffers
disk I/O operations in memory in an attempt to improve system performance
by satisfying disk reads from the memory buffer.

DS51
The command used to load and execute the 8051 Simulator/Debugger.

environment table
The memory area used by MS-DOS to store environment variables and their
values.

environment variable
A variable stored in the environment table. These variables provide MS-DOS
programs with information such as where to find include files and library
files.

escape sequence
A backslash (‘\’) character followed by a single letter or a combination of
digits that specifies a particular character value in strings and character
constants.

expression
A combination of any number of operators and operands that produces a
constant value.

Keil Software — C51 Compiler User’s Guide 337

formal parameters
The variables that receive the value of arguments passed to a function.

function
A combination of declarations and statements that can be called by name that
perform an operation and/or return a value.

function body
A block that contains the declarations and statements that make up a function.

function call
An expression that invokes and possibly passes arguments to a function.

function declaration
A declaration that provides the name and return type of a function that is
explicitly defined elsewhere in the program.

function definition
A definition that provides the name, formal parameters, return type,
declarations, and statements that define what a function does.

function prototype
A function declaration that includes the list of formal parameters in
parentheses following the function name.

in-circuit emulator (ICE)
A hardware device that aids in debugging embedded software by providing
hardware-level single-stepping, tracing, and break-pointing. Some ICEs
provide a trace buffer that stores the most recent CPU events.

include file
A text file that is incorporated into a source file using the #include
preprocessor directive.

keyword
A reserved word with a predefined meaning for the compiler.

L51
The command used to link object files and libraries using the 8051
Linker/Locator.

LIB51
The command used to manipulate library files using the 8051 Library
Manager.

338 Glossary

library
A file that stores a number of possibly related object modules. The linker can
extract modules from the library to use in building a target object file.

LSB
Least significant bit or byte.

macro
An identifier that represents a series of keystrokes that is defined using the
#define preprocessor directive.

manifest constant
A macro that is defined to have a constant value.

MCS-51
The general name applied to the Intel family of 8051 compatible
microprocessors.

memory manager
Any of the programs that utilize the extended memory of the 80386 and
80486 CPUs to reduce system overhead and provide convenient means of
accessing the different types of memory on IBM AT/286/386 based machines
or 100% compatibles.

memory model
Any of the models that specifies which memory areas are used for function
arguments and local variables.

monitor51
An 8051 program that can be loaded into your target CPU to aid in debugging
and rapid product development through rapid software downloading.

MSB
Most significant bit or byte.

newline character
The character used to mark the end of a line in a text file or the escape
sequence (‘\n’) used to represent the newline character.

null character
The ASCII character with the value 0 represented as the escape sequence
(‘\0’).

null pointer
A pointer that references nothing and has an offset of 0000h. A null pointer
has the integer value 0.

Keil Software — C51 Compiler User’s Guide 339

object
An area of memory that can be examined. Usually used when referring to the
memory area associated with a variable or function.

object file
A file, created by the compiler, that contains the program segment
information and relocatable machine code.

OH51
The command used to convert absolute object files into Intel HEX file format
using the Object File Converter.

operand
A variable or constant that is used in an expression.

operator
A symbol (e.g., +, -, *, /) that specifies how to manipulate the operands of an
expression.

parameter
The value that is passed to a macro or function.

PL/M-51
A high-level programming language that provides a blocked structure, a
facility for data structures, type checking, and a standard language for use on
most Intel hardware architectures.

pointers
A variable that contains the address of another variable, function, or memory
area.

pragma
A statement that passes an instruction to the compiler at compile time.

preprocessor
The compiler’s first pass text processor that manipulates the contents of a C
file. The preprocessor defines and expands macros, reads include files, and
passes control directives to the compiler.

RAM disk
A memory area used by a device drive or TSR that emulates a disk drive, but
provides much faster access.

relocatable
Able to be moved or relocated. Not containing absolute or fixed addresses.

340 Glossary

RTX51 Full
An 8051 Real-TIME Executive that provides a multitasking operating system
kernel and library of routines for its use.

RTX51 Tiny
A limited version of RTX51.

scalar types
In C, integer, enumerated, floating-point, and pointer types.

scope
The sections or a program where an item (function or variable) can be
referenced by name. The scope of an item may be limited to file, function, or
block.

source file
A text file containing C program code.

stack
An area of memory, indirectly accessed by a stack pointer, that shrinks and
expands dynamically as items are pushed onto the stack and popped off of the
stack. Items in the stack are removed on a LIFO (last-in first-out) basis.

static
A storage class that, when used with a variable declaration in a function,
causes variables to retain their value after exiting the block or function in
which they are declared.

stream functions
Routines in the library that read and write characters using the input and
output streams.

string
An array of characters that is terminated with a null character (‘\0’).

string literal
A string of characters enclosed within double quotes (“ ”).

structure
A set of elements of possibly different types grouped together under one
name.

structure member
One element of a structure.

Keil Software — C51 Compiler User’s Guide 341

token
A fundamental symbol that represents a name or entity in a programming
language.

TS51
The command used to load and execute the 8051 Target Debugger.

two’s complement
A binary notation that is used to represent both positive and negative
numbers. Negative values are created by complementing all bits of a positive
value and adding 1.

type
A description of the range of values associated with a variable. For example,
an int type can have any value within its specified range (-32768 to 32767).

type cast
An operation in which an operand of one type is converted to another type by
specifying the desired type enclosed within parentheses immediately
preceding the operand.

whitespace character
Characters that are used as delimiters in C programs such as space, tab, and
newline.

wild card
One of the MS-DOS characters (? or *) that can be used in place of characters
in a filename.

342 Glossary

Keil Software — C51 Compiler User’s Guide 343

Index

#..102
##..103
#define..101
#elif...101
#else..101
#endif..101
#error ..101
#if ...101
#ifdef ..101
#ifndef ..101
#include ..101
#line..101
#pragma..101
#undef...101
+INF

described.....................................148
.I files..5
.LST files ..5
.OBJ files..5
.SRC files..5
_ _C51_ _104,168,171
_ _DATE_ _104,168,171
_ _FILE_ _104,168,171
_ _LINE_ _.........................104,168,171
_ _MODEL_ _....................104,168,171
_ _STDC_ _........................104,168,171
_ _TIME_ _104,168,171
at.......................................71,151,311
chkfloat..................................183,206
crol..................................173,183,209
cror173,183,210
_getkey185,216
irol173,183,219
iror173,183,220
lrol173,183,237
lror173,183,238
nop..................................173,188,247
testbit173,188,289
_tolower.....................................181,293
_toupper.....................................181,295
16-bit Binary Integer Operations108
32-bit Binary Integer Operations108

8051 Derivatives 105
8051 Hardware Stack......................... 86
8051 Memory Areas 58
8051-Specific Optimizations............ 126
80C320/520 34
80C517 CPU...................................... 32
80C517 Routines

acos517 189
asin517 189
atan517....................................... 189
atof517 189
cos517 .. 189
exp517.. 189
log10517 189
log517 .. 189
printf517..................................... 189
scanf517 189
sin517... 189
sprintf517 189
sqrt517.. 189
sscanf517.................................... 189
tan517... 189

80C517.H... 189
80C521.. 34,35
80C751.LIB 174

A
A51

Interfacing 130
A51, defined..................................... 331
abs... 182,194
ABSACC.H...................................... 189
Absolute Memory Access
Macros ... 176

CBYTE 176
CWORD..................................... 176
DBYTE 177
DWORD..................................... 177
PBYTE....................................... 178
PWORD 178
XBYTE 179
XWORD..................................... 179

Absolute Memory Locations............ 149
Absolute register addressing 10

344 Index

Absolute value
abs .. 194
cabs .. 203
fabs... 212
labs ... 232

Abstract Pointers................................ 81
Access Optimizing 126
Accessing Absolute Memory
Locations ... 149
acos ... 182,195

function timing 109
acos517 .. 195

function timing 109
Additional items, notational
conventions .. v
Address of interrupts.......................... 92
Advanced Programming
Techniques....................................... 113
aggregate types, defined................... 331
alien ... 99
AMD

80C321....................................... 106
80C521....................................... 106
80C541....................................... 106

AMD 80C521 34,35
ANSI

Differences 305
Include Files............................... 189
Library.. 173
Standard C Constant................... 104

ANSI, defined 331
Arc

cosine ... 195
sine ... 196
tangent................................. 198,199

AREGS .. 10
Argument lists, variable-length ... 31,188
argument, defined 331
arithmetic types, defined 331
array, defined 331
ASCII, defined................................. 331
asin.. 182,196

function timing 109
asin517... 196

function timing 109
ASM... 12
Assembly code in-line........................ 12

Assembly listing14
Assembly source file generation.........53
assert ..197
ASSERt.H ..190
atan..182,198

function timing109
atan2..182,199
atan517...198

function timing109
atof ..182,200

function timing109
atof517 ...200

function timing109
atoi...182,201
atol...182,202
AUTOEXEC.BAT3

B
basename, defined331
batch file, defined.............................331
bdata...59
bdata, tips for....................................328
big endian...323
Binary Integer Operations108
bit

As first parameter in function
call ..87

Bit shifting functions
crol..183
cror ...183
irol ..183
iror ..183
lrol ..183
lror ..183

Bit Types ..65
Bit-addressable objects.......................66
BL51, defined...................................331
block, defined...................................331
bold capital text, use ofv
bold type, use ofv
Books

About the C Language2
braces, use of..v
Buffer Manipulation Routines..........180

memccpy..............................180,240
memchr180,241
memcmp180,242

Keil Software — C51 Compiler User’s Guide 345

memcpy................................180,243
memmove.............................180,244
memset180,245

C
C51

Control directives............................6
Errorlevel ..5
Extensions.....................................57
Output files5
Running...4

C51 command.......................................3
C51, defined331
C51C.LIB ...174
C51FPC.LIB.....................................174
C51FPL.LIB.....................................174
C51FPS.LIB174
C51INC ..3
C51L.LIB ...174
C51LIB...3
C51S.LIB..174
cabs..182,203
calloc ...184,204
CALLOC.C123
Case/Switch Optimizing126
Categories of C51 directives.................6
CBYTE......................................149,176
CD ..14
ceil ...182,205
Character Classification
Routines..181

isalnum..181
isalpha...181
iscntrl ..181
isdigit ..181
isgraph ..181
islower ..181
isprint ..181
ispunct...181
isspace...181
isupper ..181
isxdigit ..181

Character Conversion and
Classification Routines181
Character Conversion Routines181

_tolower181
_toupper181

toascii ... 181
toint .. 181
tolower 181
toupper 181

Choices, notational conventions........... v
CO.. 16
CODE ... 14,58
Code generation options 126
COMPACT 15,88
Compact memory model 15
Compact Model.................................. 62
Compatibility

differences from standard C 305
Differences to previous
versions 309
Differences to Version 2 314
Differences to Version 3.0 313
Differences to Version 3.2 312
Differences to Version 3.4 311
Differences to Version 4 309
standard C library differences 305

Compiling .. 3
COND.. 16
Conditional compilation..................... 16
constant expression, defined 332
Constant Folding.............................. 126
Control directives................................. 6
cos... 182,207

function timing 109
cos517.. 207

function timing 109
cosh... 182,208
courier typeface, use of v
CP .. 15
CTYPE.H... 190
Customization Files.......................... 113
CWORD 149,176

D
Dallas 80C320/520 34
Dallas Semiconductor

80C320....................................... 106
80C520....................................... 106
80C530....................................... 106

data... 59
Data Conversion Routines................ 182

abs .. 182

346 Index

atof ... 182
atoi ... 182
atol ... 182
cabs .. 182
labs ... 182

Data memory...................................... 59
Data Overlaying............................... 126
data pointers.............................. 106,107
Data sizes... 64
Data Storage Formats....................... 143
Data type ranges................................. 64
Data Types... 64
DB.. 18
DBYTE..................................... 149,177
Dead Code Elimination.................... 126
DEBUG ... 18
Debug information........................ 18,38
Debugging.. 152
declaration, defined.......................... 332
DEFINE...................................... 19,101
Defining macros on the
command line..................................... 19
definition, defined............................ 332
DF.. 19
Differences from Standard C 305
Differences to Previous Versions..... 309
Directive categories 6
Directive reference............................... 9
directive, defined 332
DISABLE .. 20
Disabling interrupts............................ 20
disk cache, defined........................... 332
Displayed text, notational
conventions .. v
Document conventions......................... v
double brackets, use of......................... v
DS51, defined 332
DWORD 149,177

E
EJ ... 22
EJECT.. 22
elif.. 101
ellipses, use of...................................... v
ellipses, vertical, use of........................ v
else ... 101
ENDASM .. 12

endian...323
endif ...101
environment table, defined332
environment variable, defined332
EOF..191
error..101
ERRORLEVEL....................................5
escape sequence, defined..................332
Execution timings.............................108
exp...182,211

function timing109
exp517..211

function timing109
exponent ...146
expression, defined...........................332
Extensions for C5157
Extensions to C57
External Data Memory60

F
fabs..182,212
Fatal Error Messages........................153
FF ...23
Filename, notational conventionsv
Files generated by C51.........................5
FLOATFUZZY23
Floating-point

exponent146
mantissa146
storage format.............................146

Floating-point compare23
Floating-Point Errors........................148

+INF ...148
-INF ..148
Nan ...148

Floating-point numbers146
Floating-point Operations.................109
floor...182,213
Form feeds..22
formal parameters, defined...............332
free ..184,214
FREE.C ..123
function body, defined......................333
function call, defined........................333
function declaration, defined............333
Function Declarations85
function definition, defined333

Keil Software — C51 Compiler User’s Guide 347

Function extensions85
Function Parameters130
Function Pointers, tips for330
function prototype, defined...............333
Function return values87,132
function, defined...............................333
Functions ..85

Interrupt ..92
Memory Models............................88
Parameters in Registers.................87
Recursive96
Reentrant.......................................96
Register Bank................................89
Stack & Parameters.......................86

G
General Optimizations......................126
getchar185,215
GETKEY.C123
gets ..185,217
Global Common Subexpression
Elimination126
Global register optimization47
Glossary..331

H
High-Speed Arithmetic108

I
IBPSTACK.......................................114
IBPSTACKTOP114
ICE, defined......................................333
idata ..59
IDATALEN......................................114
IEEE-754 standard146
if ...101
ifdef ..101
ifndef ..101
in-circuit emulator, defined333
include ..101
Include file listing...............................30
include file, defined333
Include Files189

80C517.H....................................189
ABSACC.H189

ASSERT.H................................. 190
CTYPE.H................................... 190
INTRINS.H................................ 190
MATH.H.................................... 190
REG152.H.................................. 189
REG252.H.................................. 189
REG451.H.................................. 189
REG452.H.................................. 189
REG51.H.................................... 189
REG515.H.................................. 189
REG517.H.................................. 189
REG51F.H.................................. 189
REG51G.H................................. 189
REG51GB.H 189
REG52.H.................................... 189
REG552.H.................................. 189
SETJMP.H 191
STDARG.H................................ 191
STDDEF.H................................. 191
STDIO.H.................................... 191
STDLIB.H.................................. 192
STRING.H 192

-INF
described 148

INIT.A51 ... 120
INIT_MEM.C 123
init_mempool 184,218
INIT751.A51 121
Initializing memory.......................... 114
Initializing the stream I/O
routines .. 185
In-line assembly 12
Integer Operations............................ 108
Integer promotion............................... 25
Interfacing C Programs to A51 130
Interfacing C Programs to
PL/M-51... 142
Internal Data Memory........................ 59
interrupt... 90,93

Addresses 92
Description 92
Function rules............................... 95
Functions 92
Numbers 92

Interrupt vector 27
Interrupt vector interval 24
Interrupt vector offset 27

348 Index

INTERVAL 24
INTPROMOTE 25
INTRINS.H...................................... 190
Intrinsic Routines............................. 173

crol ... 173
cror... 173
irol.. 173
iror.. 173
lrol.. 173
lror.. 173
nop ... 173
testbit...................................... 173

INTVECTOR..................................... 27
IP ... 25
isalnum...................................... 181,221
isalpha....................................... 181,222
iscntrl .. 181,223
isdigit .. 181,224
isgraph 181,225
islower 181,226
isprint .. 181,227
ispunct....................................... 181,228
isspace....................................... 181,229
isupper 181,230
isxdigit 181,231
italicized text, use of v
IV... 27

J
jmp_buf.. 175
Jump Optimizing.............................. 126

K
Key names, notational
conventions .. v
keyword, defined 333
Keywords... 57

L
L51, defined..................................... 333
LA.. 29
labs.. 182,232
Language elements, notational
conventions .. v
Language Extensions 57

LARGE ...29,88
Large memory model29
Large Model62
LC ..30
LIB51, defined333
Library Files174

80C751.LIB................................174
C51C.LIB174
C51FPC.LIB...............................174
C51FPL.LIB...............................174
C51FPS.LIB174
C51L.LIB174
C51S.LIB....................................174

Library Reference.............................173
Library Routines

ANSI, excluded from C51306
ANSI, included in C51305
non-ANSI307

Library Routines by Category180
library, defined333
Limitations

C51 ...321
OMF-51......................................322

line..101
Linker Location Controls150
LISTINCLUDE..................................30
Listing file generation46
Listing file page length.......................43
Listing file page width........................44
Listing include files30
little endian.......................................323
log ...182,233

function timing109
log10 ...182,234

function timing109
log10517 ..234

function timing109
log517 ..233

function timing109
longjmp188,235
LSB, defined334

M
macro, defined..................................334
malloc..184,239
MALLOC.C124
manifest constant, defined334

Keil Software — C51 Compiler User’s Guide 349

mantissa ..146
Manual organization............................iv
Math Routines182

chkfloat183
crol..183
cror..183
irol...183
iror ..183
lrol...183
lror ..183
acos ...182
asin..182
atan ...182
atan2 ...182
ceil ..182
cos...182
cosh...182
exp ..182
fabs ...182
floor ..182
log ...182
log10 ...182
modf..182
pow ...182
rand ...182
sin ...182
sinh..182
sqrt ..182
srand ...182
tan ...183
tanh ...183

MATH.H ..190
MAXARGS ..31
Maximum arguments in
variable-length argument lists.............31
MCS-51, defined334
memccpy....................................180,240
memchr180,241
memcmp180,242
memcpy180,243
memmove180,244
Memory Allocation Routines............184

calloc...184
free..184
init_mempool184
malloc ...184
realloc ...184

Memory areas..................................... 58
external data 60
internal data.................................. 59
program .. 58
special function register................ 61

memory manager, defined................ 334
Memory Model 61

Compact 62
Function 88
Large .. 62
Small .. 61

memory model, defined 334
Memory Type..................................... 62

bdata.. 59,63
code ... 58,63
data... 59
idata... 59,63
pdata.. 60,63
xdata.. 60,63

Memory Typedata.............................. 63
memset 180,245
Miscellaneous Routines 188

nop.. 188
testbit...................................... 188
longjmp 188
setjmp... 188

MOD517..................................... 32,107
MODDP2.................................... 34,106
modf.. 182,246
monitor51, defined........................... 334
MSB, defined 334

N
NaN...................... 207,249,264,265,287

described 148
newline character, defined 334
NOAMAKE 35
NOAREGS... 10
NOAU.. 32
NOCO.. 16
NOCOND .. 16
NODP8 .. 32
NOEXTEND...................................... 36
NOINTPROMOTE............................ 25
NOINTVECTOR............................... 27
NOIP.. 25
NOIV ... 27

350 Index

NOMOD517 32
NOMODDP2 34,106
NOOBJECT....................................... 37
NOOJ... 37
NOPR .. 46
NOPRINT.. 46
NOREGPARMS 49
NULL... 192
null character, defined...................... 334
null pointer, defined......................... 334

O
OBJECT .. 37
Object file generation......................... 37
object file, defined 335
object, defined 334
OBJECTEXTEND............................. 38
OE.. 38
offsetof... 248
OH51, defined 335
OHS51 ... 311
OJ... 37
Omitted text, notational
conventions .. v
operand, defined 335
Operation timings 108
operator, defined.............................. 335
OPTIMIZE .. 39
Optimizer ... 125
Optimizing programs 39
Optimum Code

Local Variables 320
Memory Model 317
Other Sources............................. 320
Variable Location....................... 319
Variable Size.............................. 319
Variable Types 320

Optional items, notational
conventions .. v
Options for Code Generation........... 126
OR.. 42
ORDER.. 42
Order of variables 42
OT.. 39
Output files .. 5
Overlaying Segments 135

P
Page length in listing file....................43
Page width in listing file.....................44
PAGELENGTH43
PAGEWIDTH....................................44
Parameter Passing in Fixed
Memory Locations132
Parameter Passing in Registers.........131
Parameter Passing Via Registers126
parameter, defined............................335
Passing arguments in registers............49
Passing Parameters in Registers87
PATH ...3
PBPSTACK115
PBPSTACKTOP..............................115
PBYTE......................................149,178
pdata...60
PDATALEN.....................................114
PDATASTART................................114
Peephole Optimization126
Philips

8xC750111
8xC751111
8xC752111

PL...43
PL/M-51 ...99

Defined335
Interfacing142

Pointer Conversions78
Pointer memory types.........................73
Pointers ..73

Generic ...73
Memory-specific...........................76

pointers, defined...............................335
pow..182,249
PP ...45
PPAGE...115
PPAGEENABLE115
PR...46
pragma..101
pragma, defined................................335
Predefined Macro Constants104

_ _C51_ _104
_ _DATE_ _104
_ _FILE_ _104
_ _LINE_ _.................................104
_ _MODEL_ _............................104

Keil Software — C51 Compiler User’s Guide 351

_ _STDC_ _................................104
_ _TIME_ _104

Preface.. iii
PREPRINT...45
Preprocessor101
Preprocessor directives

define ..101
elif...101
else..101
endif ..101
error ..101
if..101
ifdef...101
ifndef...101
include ..101
line ..101
pragma ..101
undef ...101

Preprocessor output file
generation ...45
preprocessor, defined........................335
PRINT ..46
Printed text, notational
conventions...v
printf ..185,250
printf, tips for....................................326
printf517 ...250
Program Memory................................58
Program memory size50
putchar185,255
PUTCHAR.C....................................123
puts ..185,256
PW..44
PWORD149,178

R
R0-R7 ...10
RAM disk, defined335
rand..182,257
Range for data types64
RB ..48
realloc ..184,258
REALLOC.C124
Real-Time Function Tasks................100
Recursive Code, tips for325
Recursive Functions96
reentrant..96

Reentrant Functions 96
REG152.H 189
REG252.H 189
REG451.H 189
REG452.H 189
REG51.H ... 189
REG515.H 189
REG517.H 189
REG51F.H 189
REG51G.H....................................... 189
REG51GB.H.................................... 189
REG52.H ... 189
REG552.H 189
REGFILE... 47
Register bank 10,48,89,91
Register banks.................................... 10
Register Usage 135
Register Variables............................ 126
REGISTERBANK 48
Registers used for parameters 49
Registers used for return values 87
REGPARMS...................................... 49
relocatable, defined.......................... 335
RESTORE.. 51
Return values 87
RF .. 47
ROM .. 50
Routines by Category....................... 180
RTX51 Full, defined 335
RTX51 Tiny, defined 336
Rules for interrupt functions 95
Running C51 .. 4

S
sans serif typeface, use of..................... v
SAVE... 51
SB .. 54
sbit ... 69
scalar types, defined......................... 336
scanf.. 185,259
scanf517... 259
scope, defined 336
Segment Naming Conventions 127
Serial Port, initializing for
stream I/O .. 185
setjmp.. 188,263
SETJMP.H....................................... 191

352 Index

sfr ... 68
sfr16... 69
SIECO-51 .. 312
Siemens

80C517....................................... 107
80C537....................................... 107

Siemens 80C517 32
Signetics

8xC750....................................... 111
8xC751....................................... 111
8xC752....................................... 111

sin ... 182,264
function timing 109

sin517 .. 264
function timing 109

sinh.. 182,265
Size of data types 64
SM ... 52
SMALL... 52,88
Small memory model 52
Small Model....................................... 61
source file, defined........................... 336
Special Function Register
Memory.. 61
Special Function Registers................. 68
sprintf.. 185,266
sprintf517... 266
sqrt .. 182,268

function timing 109
sqrt517 ... 268

function timing 109
srand ... 182,269
SRC.. 53
sscanf .. 185,270
sscanf517 ... 270
Stack .. 86
stack, defined 336
Standard Types 175

jmp_buf 175
va_list... 175

START751.A51............................... 118
STARTUP.A51................................ 114
static, defined................................... 336
STDARG.H 191
STDDEF.H 191
STDIO.H ... 191
STDLIB.H 192

Storage format
bit..143
char ...144
code pointer144
data pointer144
enum ...144
float...146
generic pointer145
idata pointer................................144
int..144
long...144
pdata pointer144
short..144
xdata pointer144

strcat ..187,272
strchr ...187,273
strcmp..187,274
strcpy...187,275
strcspn187,276
stream functions, defined..................336
Stream I/O Routines185

_getkey185
getchar ..185
gets ...185
Initializing185
printf ...185
putchar ..185
puts ...185
scanf ...185
sprintf ...185
sscanf ..185
ungetchar185
vprintf ...185
vsprintf..185

Stream Input and Output185
string literal, defined336
String Manipulation Routines...........187

strcat ...187
strchr...187
strcmp ...187
strcpy ..187
strcspn...187
strlen ...187
strncat ...187
strncmp187
strncpy ..187
strpbrk...187

Keil Software — C51 Compiler User’s Guide 353

strpos...187
strrchr..187
strrpbrk187
strrpos ...187
strspn...187

string, defined336
STRING.H..192
Stringize Operator102
strlen ..187,277
strncat ..187,278
strncmp187,279
strncpy187,280
strpbrk..187,281
strpos ...187,282
strrchr ..187,283
strrpbrk187,284
strrpos ..187,285
strspn ...187,286
structure member, defined336
structure, defined336
Symbol table generation54
SYMBOLS ...54
Syntax and Semantic Errors..............157

T
tan ..183,287

function timing............................109
tan517 ...287

function timing............................109
tanh ..183,288
Timing operation execution..............108
TMP..3
toascii ..181,290
toint..181,291
token, defined336
Token-Pasting Operator....................103
tolower.......................................181,292
toupper.......................................181,294
TS51, defined336
two’s complement, defined...............337
type cast, defined337
type, defined337

U
Uncalled Functions, tips for 327
undef .. 101
ungetchar................................... 185,296
using.. 89,94
Using Monitor-51, tips for 329

V
va_arg 188,297
va_end....................................... 188,299
va_list... 175
va_start...................................... 188,300
Variable-length argument list
routines .. 188

va_arg... 188
va_end .. 188
va_start 188

Variable-length argument lists 31
Variables, notational
conventions .. v
vertical bar, use of................................ v
vprintf 185,301
vsprintf 185,303

W
Warning detection.............................. 55
WARNINGLEVEL............................ 55
Warnings.. 169
WATCHDOG 120
whitespace character, defined 337
wild card, defined............................. 337
WL... 55

X
XBPSTACK 115
XBPSTACKTOP............................. 115
XBYTE..................................... 149,179
xdata... 60
XDATALEN.................................... 114
XDATASTART............................... 114
XOFF ... 123
XON... 123
XWORD 149,179

	Chapter 1. Introduction
	Books About the C Language

	Chapter 2. Compiling with C51
	Environment Settings
	Running C51
	DOS ERRORLEVEL
	C51 Output Files

	Control Directives
	Directive Categories

	Reference

	Chapter 3. Language Extensions
	Keywords
	8051 Memory Areas
	Program Memory
	Internal Data Memory
	External Data Memory
	Special Function Register Memory

	Memory Models
	Small Model
	Compact Model
	Large Model

	Memory Types
	Explicitly Declared Memory Types
	Implicit Memory Types

	Data Types
	Bit Types
	Bit˚addressable Objects
	Special Function Registers
	sfr
	sfr16
	sbit

	Absolute Variable Location
	Pointers
	Generic Pointers
	Memory˚specific Pointers
	Pointer Conversions
	Abstract Pointers

	Function Declarations
	Function Parameters and the Stack
	Passing Parameters in Registers
	Function Return Values
	Specifying the Memory Model for a Function
	Specifying the Register Bank for a Function
	Register Bank Access
	Interrupt Functions
	Reentrant Functions
	Alien Function (PL/M˚51 Interface)
	Real˚time Function Tasks

	Chapter 4. Preprocessor
	Directives
	Stringize Operator
	Token˚pasting Operator
	Predefined Macro Constants

	Chapter 5. 8051 Derivatives
	AMD 80C321, 80C521, and 80C541
	Dallas 80C320, 80C520, and 80C530
	Siemens 80C517 and 80C537
	Data Pointers
	High˚speed Arithmetic
	Library Routines

	Philips/Signetics 8xC750, 8xC751, and 8xC752

	Chapter 6. Advanced Programming Techniques
	Customization Files
	STARTUP.A51
	START751.A51
	INIT.A51
	INIT751.A51
	PUTCHAR.C
	GETKEY.C
	CALLOC.C
	FREE.C
	INIT_MEM.C
	MALLOC.C
	REALLOC.C

	Optimizer
	General Optimizations
	8051˚Specific Optimizations
	Options for Code Generation

	Segment Naming Conventions
	Data Objects
	Program Objects

	Interfacing C Programs to Assembler
	Function Parameters
	Parameter Passing in Registers
	Parameter Passing in Fixed Memory Locations
	Function Return Values
	Using the SRC Directive
	Register Usage
	Overlaying Segments
	Example Routines
	Small Model Example
	Compact Model Example
	Large Model Example

	Interfacing C Programs to PL/M˚51
	Data Storage Formats
	Bit Variables
	Signed and Unsigned Characters, �Pointers to data, idata, and pdata
	Signed and Unsigned Integers, �Enumerations, Pointers to xdata and code
	Signed and Unsigned Long Integers
	Generic Pointers
	Floating˚point Numbers
	Floating˚point Errors

	Accessing Absolute Memory Locations
	Absolute Memory Access Macros
	Linker Location Controls
	The _at_ Keyword

	Debugging

	Chapter 7. Error Messages
	Fatal Errors
	Actions
	Errors

	Syntax and Semantic Errors
	Warnings

	Chapter 8. Library Reference
	Intrinsic Routines
	Library Files
	Standard Types
	jmp_buf
	va_list

	Absolute Memory Access Macros
	CBYTE
	CWORD
	DBYTE
	DWORD
	PBYTE
	PWORD
	XBYTE
	XWORD

	Routines by Category
	Buffer Manipulation
	Character Conversion and Classification
	Data Conversion
	Math
	Memory Allocation
	Stream Input and Output
	String Manipulation
	Variable˚length Argument Lists
	Miscellaneous

	Include Files
	8051 Special Function Register Include Files
	80C517.H
	ABSACC.H
	ASSERT.H
	CTYPE.H
	INTRINS.H
	MATH.H
	SETJMP.H
	STDARG.H
	STDDEF.H
	STDIO.H
	STDLIB.H
	STRING.H

	Reference

	Appendix A. Differences from ANSI C
	Compiler-related Differences
	Library-related Differences

	Appendix B. Version Differences
	Version 4 Differences
	Version 3.4 Differences
	Version 3.2 Differences
	Version 3.0 Differences
	Version 2 Differences
	Using C51 Version 5 with Previous Versions

	Appendix C. Writing Optimum Code
	Memory Model
	Variable Location
	Variable Size
	Unsigned Types
	Local Variables
	Other Sources

	Appendix D. Compiler Limits
	Limitations of the C51 Compiler Implementation
	Limitations of the Intel Object Module Format

	Appendix E. Byte Ordering
	Appendix F. Hints, Tips, and Techniques
	Recursive Code Reference Error
	Problems Using the printf Routines
	Uncalled Functions
	Trouble with the bdata Memory Type
	Using Monitor-51
	Function Pointers

	Glossary
	Index

