

A51 Assembler
A251 Assembler

Macro Assemblers for the 8051
and MCS® 251 Microcontrollers

User’s Guide 04.95

ii Keil Software

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

© Copyright 1988-1995 Keil Elektronik GmbH., and Keil Software, Inc.
All rights reserved.

Keil C51™ and dScope™ are trademarks of Keil Elektronik GmbH.
Microsoft®, MS–DOS®, and Windows™ are trademarks or registered trademarks
of Microsoft Corporation.
IBM®, PC®, and PS/2® are registered trademarks of International Business
Machines Corporation.
Intel®, MCS® 51, MCS® 251, ASM–51®, and PL/M–51® are registered
trademarks of Intel Corporation.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

A15 D05/12/95

A51 Assembler / A251 Assembler iii

Preface
This manual describes how to use the A51 and A251 macro assemblers. The
A51 and A251 assembler translate programs you write in assembly language into
executable machine instructions. You may use the A51 assembler to assemble
programs for the 8051 family of microcontrollers. You may use the A251
assembler to assemble programs for the 8051 family as well as the MCS 251
family of microcontrollers. This manual assumes that you are familiar with the
MS-DOS operating system and know how to program the 8051 or MCS 251
microcontrollers.

This manual is divided into the following chapters.

“Chapter 1. Introduction,” describes the basics of assembly language
programming.

“Chapter 2. 8051 and MCS 251 Architecture,” contains an overview of the 8051
and MCS 251 hardware.

“Chapter 3. Writing Assembly Programs,” describes assembler statements,
operands and address descriptors, and the rules for arithmetic and logical
expressions.

“Chapter 4. Assembler Directives,” describes how to define segments and
symbols and how to use all directives.

“Chapter 5. Standard Macros,” describes the function of the standard macros
and contains information for using standard macros.

“Chapter 6. Macro Processing Language,” defines and describes the use of the
Intel Macro Processing Language.

“Chapter 7. Invocation and Controls,” describes how to invoke the assembler
and how to control the assembler operation.

“Chapter 8. Error Messages,” contains a list of all assembler error messages and
describes their causes and how to avoid them.

The Appendix includes information on the 8051 and MCS 251 instruction set, a
summary of directives and controls, the differences between assembler versions,
and other items of interest.

iv Preface

Document Conventions
This document uses the following conventions:

Examples Description

README.TXT Bold capital text is used for the names of executable programs, data
files, source files, environment variables, and commands you enter at
the MS-DOS command prompt. This text usually represents commands
that you must type in literally. For example:

CLS DIR BL51.EXE

Note that you are not required to enter these commands using all capital
letters.

Courier Text in this typeface is used to represent information that displays on
screen or prints at the printer.

This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents information that you must provide. For
example, projectfile in a syntax string means that you must supply the
actual project file name.

Occasionally, italics are also used to emphasize words in the text.

Elements that repeat… Ellipses (…) are used in examples to indicate an item that may be
repeated.

Omitted code
.
.
.

Vertical ellipses are used in source code examples to indicate that a
fragment of the program is omitted. For example:

void main (void) {
.
.
.
while (1);

!Optional Items" Optional arguments in command-line and option fields are indicated by
double brackets. For example:

C51 TEST.C PRINT !(filename)"
{ opt1 | opt2 } Text contained within braces, separated by a vertical bar represents a

group of items from which one must be chosen. The braces enclose all
of the choices and the vertical bars separate the choices. One item in
the list must be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue.”

A51 Assembler / A251 Assembler v

Contents

Chapter 1. Introduction..1
What is an Assembler?.. 1
How to Develop A Program ... 2

Advantages of Modular Programming .. 2
Efficient Program Development.. 3
Multiple Use of Subprograms ... 3
Ease of Debugging and Modifying.. 3

Modular Program Development Process .. 3
Segments, Modules, and Programs ... 4
Program Entry and Exit... 4
Assembly... 4
Relocation and Linkage... 5
Keeping Track of Files.. 5

Writing and Assembling Programs ... 6

Chapter 2. 8051 and MCS 251 Architecture ..9
New Features of the MCS 251 Architecture ... 9
8051 and MCS 251 Memory Model ... 10

8051 Address Space.. 11
Program Memory .. 12
Internal Data Memory ... 12
External Memory .. 12
Memory Classes .. 13

8051 and MCS 251 Register File.. 14
Special Function Registers .. 16

Differences to the 8051... 16
8051 Compatibility ... 17
Timing Issues .. 17
Stack Pointer (SPX) .. 17
Program Status Word .. 17
PSW Bit Definitions.. 18

Chapter 3. Writing Assembly Programs ..19
Assembly Statements .. 19

Directives .. 20
Controls... 20
Instructions.. 20

Comments ... 21
Symbols .. 22

Symbol Names .. 22
Labels.. 23
Operands... 24

Special Assembler Symbols .. 24

vi Contents

Immediate Data ...25
Indirect Addresses ...26
IDATA ..26
XDATA...26
CODE and CONST † ...26
EDATA † ...27
HDATA †...27
Direct Data Addresses ...27
Direct Bit Addresses..28
Program Addresses..28
Relative Jumps ..28
In-Block Jumps and Calls (ACALL and AJMP) ...29
Long Jumps and Calls (LJMP and LCALL)..29
Extended Jumps and Calls (EJMP and ECALL) ...29
Generic Jump and Call (JMP and CALL) ...29

Expressions and Operators..30
Numbers ..30
Characters..31
Character Strings ...32
Location Counter...32

Operators...33
Arithmetic Operators ...33
Binary Operators ...34
Relational Operators..34
Class Operators ...35
Type Operators †..35
Miscellaneous Operators ...36
Operator Precedence ...37

Expressions ...37
Expression Classes ..38
Relocatable Expressions..39
Simple Relocatable Expressions..39
Extended Relocatable Expressions..40

Chapter 4. Assembler Directives ...41
Introduction...41
Segment Controls ..42

Location Counter...42
Generic Segments..43
Stack Segment ...44
Absolute Segments ..44
Default Segment ..45
SEGMENT..46
RSEG...49
BSEG, CSEG, DSEG, ISEG, XSEG...50

Symbol Definition...51

A51 Assembler / A251 Assembler vii

EQU, SET ... 51
CODE, DATA, IDATA, XDATA... 52
LIT † .. 54

Memory Initialization ... 56
DB... 56
DW.. 56
DD †... 57

Memory Reservation... 58
DBIT ... 58
DS ... 59
DSB †... 59
DSW †.. 60
DSD † .. 61

Procedure Declaration † .. 62
PROC / ENDP †... 62
LABEL †.. 64

Program Linkage... 65
PUBLIC .. 65
EXTRN / EXTERN .. 65
NAME... 66

Address Control .. 67
ORG.. 67
EVEN †.. 68
USING .. 69

Other Directives.. 71
END .. 71

Chapter 5. Standard Macros..73
Directives.. 74
Defining a Macro .. 74

Parameters... 75
Labels.. 76
Repeating Blocks .. 77
REPT... 77
IRP .. 78
IRPC.. 78
Nested Definitions... 79
Nested Repeating Blocks .. 80
Recursive Macros.. 80

Operators .. 81
NUL Operator ... 81
& Operator .. 82
< and > Operators ... 83
% Operator .. 84
;; Operator ... 85
! Operator .. 85

viii Contents

Invoking a Macro ..85

Chapter 6. Macro Processing Language ...87
Overview...87
Creating and Calling MPL Macros ...87
Creating Parameterless Macros...88
MPL Macros with Parameters...89
Local Symbols List..92
Macro Processor Language Functions ..93

Comment Function ..93
Escape Function ..94
Bracket Function ...94
METACHAR Function ...95
Numbers and Expressions ...96
Numbers ..96
Character Strings ...97
SET Function...98
EVAL Function ...99
Logical Expressions and String Comparison...99

Conditional MPL Processing ..100
IF Function ..101
WHILE Function...101
REPEAT Function...102
EXIT Function...103

String Manipulation Functions..103
LEN Function..104
SUBSTR Function...104
MATCH Function ...105

Console I/O Functions...106
Advanced Macro Processing...107

Literal Delimiters ..107
Blank Delimiters..108
Identifier Delimiters ..109
Literal and Normal Mode ..109

MACRO Errors ...111

Chapter 7. Invocation and Controls ..113
Running A251 ...113

Command Files..114
DOS ERRORLEVEL ..114
Output Files ...114

Assembler Controls...115
COND / NOCOND ...118
DATE ..119
CASE †...120
DEBUG...121
EJECT ...122

A51 Assembler / A251 Assembler ix

ERRORPRINT.. 123
GEN / NOGEN ... 124
INCLUDE... 125
LINK † ... 126
LIST / NOLIST... 127
MACRO / NOMACRO... 128
MODBIN † .. 129
MODSRC †.. 130
MPL .. 131
NOAMAKE .. 132
NOLINES ... 133
NOMACRO .. 134
NOMOD51 ... 135
NOMOD251 † ... 136
NOSYMBOLS.. 137
OBJECT / NOOBJECT .. 138
PAGELENGTH .. 139
PAGEWIDTH... 140
PRINT / NOPRINT .. 141
REGISTERBANK / NOREGISTERBANK ... 142
REGUSE... 143
RESTORE... 144
SAVE .. 145
SYMLIST / NOSYMLIST.. 146
TITLE ... 147
XREF .. 148

Directives for Conditional Assembly.. 149
Conditional Assembly Controls .. 149

SET ... 151
RESET .. 152
IF... 153
ELSEIF ... 154
ELSE... 155
ENDIF... 156

Chapter 8. Error Messages ..157
Fatal Errors ... 157

Fatal Error Messages... 158
Non–Fatal Errors .. 160

Appendix A. 8051/251 Instruction Sets ...173
MCS 251 Opcode Map ... 194
8051 Microcontroller Instructions .. 195
MCS 251 Instructions ... 196

x Contents

Appendix B. Directive Summary...197

Appendix C. Control Summary ...199

Appendix D. Macro Summary ...201
MPL Built-in Functions. ...201

Appendix E. Reserved Symbols ...203

Appendix F. Listing File Format ...207
Assembler Listing File Format..207
Listing File Heading..208
Source Listing ...209
Format for Macros, Include Files, and Save Stack..210
Symbol Table ..211
Listing File Trailer ..212

Appendix G. Program Template ...213

Appendix H. Assembler Differences ...217
Differences Between A51 and A251...217
Differences between A51 and ASM51..218
Differences between A251 and ASM51..218

Glossary...221

Index..227

A51 Assembler / A251 Assembler 1

† New features in the A251 assembler and the MCS 251 architecture

1
Chapter 1. Introduction

This manual describes the A51 macro assembler and the A251 macro assembler
and explains the process of developing software in assembly language for the
MCS 251 and 8051 microcontroller families.

A brief overview of the 8051 and MCS 251 architecture can be found in
“Chapter 2. 8051 and MCS 251 Architecture” on page 9. In this overview, the
differences between the generic 8051 and the MCS 251 processors are described.
For the most complete information about the 8051 or MCS 251 microcontrollers,
contact your vendor.

Assembly language programs translate directly into machine instructions which
instruct the processor what operations to perform. Therefore, to effectively write
assembly programs, you should be familiar with both the microcomputer
architecture and assembly language. This chapter presents an overview of the
A251 macro assembler and how it is used.

The A251 assembler is a superset of A51 assembler. For this reason, this manual
serves as documentation for both assemblers. The term A251 is used within this
document to refer to both the A251 assembler and A51 assembler.

NOTE
New features in the A251 assembler and in the MCS 251 microcontroller family
which are not available in the A51 assembler or the 8051 microcontroller family
are marked with †.

What is an Assembler?

An assembler is a software tool – a program – designed to simplify the task of
writing computer programs. It performs the clerical task of translating symbolic
code into executable object code. This object code may then be programmed
into an 8051 or MCS 251 microcontroller and executed. If you have ever written
a computer program directly in machine-recognizable form, such as binary or
hexadecimal code, you will appreciate the advantages of programming in
symbolic assembly language.

Assembly language operation codes (mnemonics) are easily remembered (MOV
for move instructions, ADD for addition, and so on). You can also symbolically

2 Chapter 1. Introduction

† New features in the A251 assembler and the MCS 251 architecture

1

express addresses and values referenced in the operand field of instructions.
Since you assign these names, you can make them as meaningful as the
mnemonics for the instructions. For example, if your program must manipulate a
date as data, you can assign it the symbolic name DATE. If your program
contains a set of instructions used as a timing loop (a set of instructions executed
repeatedly until a specific amount of time has passed), you can name the
instruction group TIMER_LOOP.

An assembly program has three constituent parts:

′ Machine instructions

′ Assembler directives

′ Assembler controls

A machine instruction is a machine code that can be executed by the machine.
Detailed discussion of the machine instructions can be found in the hardware
manuals of the 8051 or MCS 251 microcontrollers. Appendix A provides an
overview about machine instructions.

Assembler directives are used to define the program structure and symbols, and
generate non-executable code (data, messages, etc.). Refer to “Chapter 4.
Assembler Directives” on page 41 for details on all of the assembler directives.

Assembler controls set the assembly modes and direct the assembly flow.
“Chapter 7. Invocation and Controls” on page 113 contains a comprehensive
guide to all the assembler controls.

How to Develop A Program

The A251 assembler enables the user to program in a modular fashion. The
following paragraphs explain the basics of modular program development.

Advantages of Modular Programming

Many programs are too long or complex to write as a single unit. Programming
becomes much simpler when the code is divided into small functional units.
Modular programs are usually easier to code, debug, and change than monolithic
programs.

A51 Assembler / A251 Assembler 3

† New features in the A251 assembler and the MCS 251 architecture

1

The modular approach to programming is similar to the design of hardware that
contains numerous circuits. The device or program is logically divided into
“black boxes” with specific inputs and outputs. Once the interfaces between the
units have been defined, the detailed design of each unit can proceed separately.

Efficient Program Development

Programs can be developed more quickly with the modular approach since small
subprograms are easier to understand, design, and test than large programs.
With the module inputs and outputs defined, the programmer can supply the
needed input and verify the correctness of the module by examining the output.
The separate modules are than linked and located by the linker into an absolute
executable single program module. Finally, the complete module is tested.

Multiple Use of Subprograms

Code written for one program is often useful in others. Modular programming
allows these sections to be saved for future use. Because the code is relocatable,
saved modules can be linked to any program which fulfills their input and output
requirements. With monolithic programming, such sections of code are buried
inside the program and are not so available for use by other programs.

Ease of Debugging and Modifying

Modular programs are generally easier to debug than monolithic programs.
Because of the well defined module interfaces of the program, problems can be
isolated to specific modules. Once the faulty module has been identified, fixing
the problem is considerably simpler. When a program must be modified,
modular programming simplifies the job. You can link new or debugged
modules to an existing program with the confidence that the rest of the program
will not change.

Modular Program Development Process

This section is a brief discussion of the program development process with the
relocatable A251 assembler, L251 Linker/Locator, and the OH251 code
conversion program.

4 Chapter 1. Introduction

† New features in the A251 assembler and the MCS 251 architecture

1
Segments, Modules, and Programs

In the initial design stages, the tasks to be performed by the program are defined,
and then partitioned into subprograms. Here are brief introductions to the kinds
of subprograms used with the A251 assembler and L251 linker/locator.

A segment is a block of code or data memory. A segment may be relocatable or
absolute. A relocatable segment has a name, type, and other attributes.
Segments with the same name, from different modules, are considered part of the
same segment and are called “partial segments”. Partial segments are combined
into segments by L251. An absolute segment cannot be combined with other
segments.

A module contains one or more segments or partial segments. A module has a
name assigned by the user. The module definitions determine the scope of local
symbols.

A program consists of a single absolute module, merging all absolute and
relocatable segments from all input modules.

Program Entry and Exit

After the design is completed, the source code for each module is entered into a
disk file using any text editor. When errors are detected in the development
process, the text editor may be used to make corrections in the source code.

Assembly

The A251 assembler translates the source code into object code. The assembler
produces a relocatable object file and a listing file showing the results of the
assembly. When the assembler invocation contains the DEBUG control, the
object file also receives the debug information for use during the symbolic
debugging of the program. This debugging may be via the dScope-251
Debugger/Simulator, or in-circuit emulators available from many vendors.

Object File: the object file contains machine language instructions and data that
can be loaded into memory for execution or interpretation. In addition, it
contains control information governing the loading process.

A51 Assembler / A251 Assembler 5

† New features in the A251 assembler and the MCS 251 architecture

1

Listing File: The listing file provides both the source program and the object
code. The assembler also produces diagnostic messages in the listing file for
syntax and other coding errors. For example, if you specify a 16-bit value for an
instruction that can only use an 8-bit value, the assembler tells you that the value
exceeds the permissible range. Appendix F describes the format of the listing
file. In addition, you can also request a symbol table to be appended to the
listing. The symbol table lists all the symbols and their attributes.

Relocation and Linkage

After assembly of all modules of the program, L251 processes the object module
files. the L251 program assigns absolute memory locations to all the relocatable
segments, combining segments with the same name and type. L251 also resolves
all references between modules. L251 outputs an absolute object module file
with the completed program, and a summary listing file showing the results of
the link/locate process.

Keeping Track of Files

It is convenient to use the extensions of filename to indicate the stage in the
process represented by the contents of each file. Thus, source code files can use
extensions like .SRC or .A51 (indicating that the code is for input to the A251
assembler). Object code files receive the extension .OBJ by default, or the user
can specify another extension. Executable files generally have no extension.
Listing files can use .LST, the default extension assigned by the assembler.
L251 uses .MAP for the default linker map file extension. L51 and BL51 use
.M51 for the default linker map file extension.

6 Chapter 1. Introduction

† New features in the A251 assembler and the MCS 251 architecture

1
Writing and Assembling Programs

There are several steps necessary to incorporate an 8051 microcomputer in your
application. The following figure shows an overview of the steps involved in
creating a program for the 8051 or 251.

Assembler
Source File

A251
Assembler

Object
File

L251
Linker/Locater

Absolute
Object

File

OH251
Object Hex Converter

HEX
File

dScope-251
HLL Debugger

PROM Programmer

In-Circuit
Emulator

Other
Objects or
Libraries

MAP
File

Listing
File

A51 Assembler / A251 Assembler 7

† New features in the A251 assembler and the MCS 251 architecture

1

If you are developing hardware for your application, consult the 8051, MCS 51,
or MCS 251 hardware manuals.

Following is an example listing file generated by the assembler.

A251 MACRO ASSEMBLER ASSEMBLER DEMO PROGRAM 24/11/94 10:09:15 PAGE 1

DOS MACRO ASSEMBLER A251 V1.00
OBJECT MODULE PLACED IN DEMO.OBJ
ASSEMBLER INVOKED BY: A251.EXE DEMO.A51

LOC OBJ LINE SOURCE

 1 $TITLE (ASSEMBLER DEMO PROGRAM)
 2 ; A simple Assembler Module for Demonstration
 3
 4 ; Symbol Definition
 00000D 5 CR EQU 13 ; Carriage-Return
 00000A 6 LF EQU 10 ; Line-Feed
 7
 8 ; Segment Definition
------ 9 ?PR?DEMO SEGMENT CODE ; Program Part
------ 10 ?CO?DEMO SEGMENT CODE ; Constant Part
 11
 12 ; Extern Definition
 13 EXTRN CODE (PRINTS, DEMO)
 14
 15 ; The Program Start
000000 16 CSEG AT 0 ; Reset Vector
000000 020000 F 17 JMP Start
 18
------ 19 RSEG ?PR?DEMO ; Program Part
000000 900000 F 20 START: MOV DPTR,#Txt ; Demo Text
000003 120000 E 21 CALL PRINTS ; Print String
 22 ;
000006 020000 E 23 JMP DEMO ; Demo Program
 24
 25 ; The Text Constants
------ 26 RSEG ?CO?DEMO ; Constant Part
000000 48656C6C 27 Txt: DB 'Hello World',CR,LF,0
000004 6F20576F
000008 726C640D
00000C 0A00
 28
 29 END ; End of Module

SYMBOL TABLE LISTING
------ ----- -------

N A M E T Y P E V A L U E ATTRIBUTES

?CO?DEMO C SEG 00000EH REL=UNIT, ALN=BYTE
?PR?DEMO C SEG 000009H REL=UNIT, ALN=BYTE
CR N NUMB 00000DH A
DEMO C ADDR ------- EXT
LF N NUMB 00000AH A
PRINTS C ADDR ------- EXT
START. C ADDR 000000H R SEG=?PR?DEMO
TXT. C ADDR 000000H R SEG=?CO?DEMO

REGISTER BANK(S) USED: 0
ASSEMBLY COMPLETE. 0 WARNING(S), 0 ERROR(S)

8 Chapter 1. Introduction

† New features in the A251 assembler and the MCS 251 architecture

1

To assemble this module, the assembler was invoked using the following
command line:

A251 DEMO.A51

The assembler output for this command line is:

DOS MACRO ASSEMBLER A251 V1.00

ASSEMBLY COMPLETE, NO ERRORS FOUND

After assembly, the object modules are linked and all variables and addresses are
resolved and located into an executable program by the L251 linker. The linker
is invoked with the following command line.

L251 DEMO.OBJ

The linker generates an absolute object file as well as a listing file and screen
messages. The screen output for the linker is:

DOS LINKER/LOCATER L251 V1.00

L251 LINKING COMPLETE, 0 WARNINGS, 0 ERRORS

A51 Assembler / A251 Assembler 9

† New features in the A251 assembler and the MCS 251 architecture

2

Chapter 2. 8051 and MCS 251
Architecture

This part reviews the existing 8051 memory and register architecture, before we
introduce the MCS 251 architecture. Also described will be the salient
differences between the 8051 microcontroller and the MCS 251 architecture.
This part will only touch upon the hardware issues.

The A251 macro assembler is capable of generating code for both processor
families with equal ease. The A251 assembler can be called upon to translate
code written for the 8051 family of microcontrollers, generate native code for the
8051, or native code directly for the MCS 251 microcontroller.

In the following both processor architectures are explained.

New Features of the MCS 251
Architecture

The MCS 251 instruction set is a superset of the standard MCS 51
microcontroller. The basic MCS 251 features:

′ Completely code compatible with the MCS 51 microcontroller.

′ Powerful 8/16/32-bit instructions.

′ Flexible 8/16/32-bit register.

′ 16MB linear address space; can be accessed fully by existing 8051 software;
external code-banking logic is not required!

′ The 251 can run your 51 programs up to 5 times faster.

′ C applications re-translated with the C251 compiler are up to 15 times faster.

′ True stack-oriented instruction set with 16-bit stack pointer.

′ Direct CPU support for 16-bit and 32-bit pointers.

10 Chapter 2. 8051 and MCS 251 Architecture

† New features in the A251 assembler and the MCS 251 architecture

2

8051 and MCS 251 Memory Model

The standard 8051 memory model, shown in the following figure, is familiar to
8051 users the world over.

XDATA

FFFF

0000

CODE

IDATA
256 BYTE

DATA
128 BYTE

00:0100

00:0080

00:0000

DATA
128 BYTE

00:007F

SFR:

SFR:FF

SFR
SPACE
DATA

80

88

90

98

F8

2F

20
1F

0

4 Register

Banks

8051
Bitspace

80

0000

FFFF

8051
Bit

addressable

A51 Assembler / A251 Assembler 11

† New features in the A251 assembler and the MCS 251 architecture

2

The following figure shows the memory model of the MCS 251 architecture.

HDATA
ECODE
HCONST

16 MB

XDATA
(default,
SEGMENT
mapable)

EDATA
64 KB

01:0000

00:0000

02:0000

CODE
default page

FF:0000

Reset Vector

FF:FFFF

EDATA
64 KB

IDATA
256 Bytes

DATA
128 Bytes

00:0100

00:0080

00:0000

00:FFFF

DATA
128 BYTE

00:007F

SFR:

SFR:

SFR
SPACE

DATA

80

88

90

98

F8

EBIT

bitaddr.
251

2F

20
1F

0

4 Register
Banks

8051
Bitspace

FF

80

The MCS 251 controller completely supports all aspects of the standard 8051
instruction set and memory organization. This ensures that all existing 8051
programs will successfully execute on the MCS 251. The 8051 family
architecture has 4 separate address spaces: Program memory, Special Function
registers, Internal and External Data memory.

8051 Address Space

All four 8051 memory spaces (DATA, IDATA, CODE and XDATA) are fully
supported by the MCS 251 architecture by mapping them into separate regions in
the MCS 251 address space. The four address spaces are integrated into one
address space, yet they retain their 8051 microcontroller identity guaranteeing
run-time compatibility with the 8051 microcontroller. The mapping is

12 Chapter 2. 8051 and MCS 251 Architecture

† New features in the A251 assembler and the MCS 251 architecture

2

completely transparent to the user and is taken care of by the A251 assembler
and L251 linker.

Program Memory

The 8051 microcontroller Program Memory space is mapped at FF0000H, which
is the MCS 251 “RESET” vector. All 8051 microcontroller instructions will
work just as before in the 64K region starting at FF0000H. The MOVC
instruction accesses the current active 64K segment, providing 8051
microcontroller compatibility. The A251 assembler translates 8051
microcontroller code in this 64K region making the mapping transparent to the
user. All ORG statements are interpreted with this mapping. The reset and
interrupt vectors are corresponding mapped, avoiding any problems on reset or
interrupts.

Internal Data Memory

The internal data memory is mapped to location 0 ensuring complete run-time
compatibility. Register banking, bit addressing, direct/indirect addressing as
well as stack access are compatible to the 8051 microcontroller. The MCS 251
address space begins as 8051 microcontroller internal data memory and extends
to 16M. This allows enhanced data/stack access using new instructions while
maintaining compatibility with the existing 8051 microcontroller family.

External Memory

The 64K 8051 microcontroller external data memory is mapable to any segment
within the 64KB memory space. After Reset the XDATA space is mapped to the
area 64KB .. 128KB. This provides complete run-time compatibility with the
8051 microcontroller, since the lowest 16 address bits of the external data
memory are identical to the standard 8051 controller. Keeping internal and
external data memory spaces separated ensures that MOVX instructions does not
access internal memory, and that 8051 microcontroller MOV instructions will
not access external memory.

A51 Assembler / A251 Assembler 13

† New features in the A251 assembler and the MCS 251 architecture

2

Memory Classes

Several new memory groups have been defined to take advantage of the 251
extended code and data capability. For convenience we refer to these as,
Memory Classes. Each class has specific requirements and capabilities. These
differences are listed below.

Memory Class Address Range Description

DATA 00:0000 - 00:007F Direct addressable on-chip RAM.

BIT 00:0020 - 00:002F 8051 compatible bit-addressable RAM; can be
accessed with short 8-bit addresses.

IDATA 00:0000 - 00:00FF Indirect addressable on-chip RAM; can be
accessed with @R0 or @R1.

EDATA 00:0000 - 00:FFFF Extended direct addressable memory area; can
be accessed with direct 16-bit addresses
available on the 251.

ECONST 00:0000 - 00:FFFF Same as EDATA - but allows the definition of
ROM constants.

EBIT 00:0020 - 00:007F Extended bit-addressable RAM; can be
accessed with the extended bit addressing
mode available on the 251.

XDATA 01:0000 - 01:FFFF
(default space)

8051 compatible DATA space. Can be mapped
on the 251 to any 64 KB memory segment.
Accessed with MOVX instruction.

HDATA 00:0000 - FF:FFFF Full 16 MB address space of the 251.
Accessed with MOV @DRK instructions. This
space is used for RAM areas.

HCONST 00:0000 - FF:FFFF Same as HDATA - but allows the definition of
ROM constants.

ECODE 00:0000 - FF:FFFF Full 16 MB address space of the 251;
executable code accessed with ECALL or EJMP
instructions.

CODE FF:0000 - FF:FFFF
(default space)

8051 compatible CODE space; used for
executable code or RAM constants. Can be
located with L251 to any 64 KB segment

CONST FF:0000 - FF:FFFF
(default space)

Same as CODE - but can be used for ROM
constants only.

14 Chapter 2. 8051 and MCS 251 Architecture

† New features in the A251 assembler and the MCS 251 architecture

2

8051 and MCS 251 Register File

The MCS 251 architecture supports an extra 32 bytes of register in addition to
the 4 banks of 8 registers that the 8051 microcontroller architecture. The lower
8 byte registers are mapped between location 00:00 - 00:01FH. The lower 8 byte
registers are mapped in this way to support 8051 microcontroller register
banking (see the following figure). The register-file can be addressed in the
following ways, depending upon the register accessed:

′ Register 0 - 15 can be addressed as either byte, word, or double word
(Dword) registers.

′ Register 16 - 31 can be addressed as either word or Dword registers.

′ Register 0 - 15 can be addressed only as Dword registers.

′ There are 16 possible byte registers (R0 - R15), 16 possible word registers
(WR0 - WR30) and 10 possible Dword registers (DR0 - DR28, DR56 -
DR60) that can be addressed in any combination.

′ All Dword registers are Dword aligned; each is addressed as Drk with “k”
being the lowest of the 4 consecutive registers. For example, DR4 consists of
registers 4 - 7.

′ All word registers are word aligned; each is addressed as Wrj with “j” being
the lower of the 2 consecutive registers. For example WR4 consists of
registers 4 - 5.

′ All byte registers are inherently byte aligned; each is addressed as Rm with
“m” being the register number. For example R4 consists of register 4.

A51 Assembler / A251 Assembler 15

† New features in the A251 assembler and the MCS 251 architecture

2

The following figure shows the register file format for the MCS 251
microcontroller.

WR24 WR26 WR28 WR30

WR16 WR18 WR20 WR22

WR8 WR10 WR12 WR14

WR0 WR2 WR4 WR6

R14 R15R13R12R11R10R9R8

R0 R1 R2 R3 R4 R5 R6 R7

8 Bytes

WORD REGISTER

BYTE REGISTER

DWORD REGISTER

Stack Pointer (SPX)

DR56 DR60

DR24

DR16

DR8

DR0

DR28

DR20

DR12

DR4

Stack Pointer (SPX)

DR56 DR60

DR24

WR16

WR8

WR0

WR28

DR20

R12

DR4

R13 R14 R15

WR30

WR18

WR10

R2 R3

EXAMPLE OF MIXED USAGE

Register 56 - 63

Register 8 - 31

Register 0 - 7

MEMORY

16 Chapter 2. 8051 and MCS 251 Architecture

† New features in the A251 assembler and the MCS 251 architecture

2

Special Function Registers

The 128-byte SFR space is completely compatible with direct addressing of the
8051 controller SFRs including bit addressing. The address/data SFRs such as
A, B, DPL, DPH, SP reside in the MCS 251 register file for high performance,
however, they are also mapped into the 128-byte SFR region for compatibility.
In the MCS 251 architecture, these SFRs can be referred to either by their 8051
microcontroller names, 8051 microcontroller addresses, or the new MCS 251
register names.

The following table shows how the MCS 51 microcontroller registers appear in
the MCS 251 architecture.

MCS 51
microcontroller

SFR Name

MCS 51
microcontroller
SFR Address

Register in 251
Register file

251 Register Name

R0 to R7 - 0 through 7 R0 to R7

ACC E0 11 R11

B F0 10 R10

DPH 83 58 DR56

DPL 82 59 DR56

SP 81 63 DR60 (SPX)

For purpose of compatibility the Program Status Word (PSW) of the 8051
microcontroller has been left unchanged.

Differences to the 8051

The MCS 251 microcontroller uses the von Neumann Architecture for flexibility
and simplicity. This means that code and data areas share a single contiguous
memory address space.

The increased instruction throughput and instruction fetch rates of the 251 will
require adjustments to code that is instruction cycle or timing dependent.

The extended memory and code space enables to work free of the 8051’s
historical restrictions.

A51 Assembler / A251 Assembler 17

† New features in the A251 assembler and the MCS 251 architecture

2

8051 Compatibility

The A251 assembler will assemble existing 8051 microcontroller code for the
MCS 251 without requiring any changes in the assembly code except for a few
cases described below, where a assembler source needs changes under user
control.

Timing Issues

The MCS 251 CPU significantly improves code performance; instructions are
executed about 5 times faster than typical 8051 microcontroller execution. For
example, the instruction ADD A,Rn instruction takes 6 states on the 8051
microcontroller and 1 state on the MCS 251. Some instructions are executed up
to 12 times faster.

Due to these intrinsic performance increases, special care must be given to the
timing loops of 8051 microcontroller code assembled for the MCS 251.
Additionally, 8051 microcontroller peripherals that rely on a time base may
require adjustment before assembling.

MCS 251 timing issues encountered by existing 8051 microcontroller code
would be the same as if the clock speed of the 8051 microcontroller were
increased from 12MHz to 60MHz.

Stack Pointer (SPX)

In addition to being a word register, DR60 is also the 16-bit stack pointer. It is
used for all the stack operations such as pushes/pops, call/returns, transfer to
interrupt service routine and return from interrupt service routine. Making the
stack pointer part of the register file allows all MCS 251 instructions to be used
for stack pointer manipulation, and enhances stack access through a rich set of
addressing modes.

Program Status Word

The Program Status Word (PSW) contains status bits that reflect the current state
of the CPU. It consists of two 8-bit registers, PSW and PSW1. The PSW
register retains the existing 8051 microcontroller flags and the PSW1 register

18 Chapter 2. 8051 and MCS 251 Architecture

† New features in the A251 assembler and the MCS 251 architecture

2

contains the new MCS 251 flags as well as the CY, AC, and OV. The Z flag will
be set if the result of the last arithmetic or logical operation was a zero. The N
flag will be set if the result of the last logical operation was negative.

PSW Bit Definitions

PSW Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CY AC F0 RS1 RS0 OV UD P

PSW1 Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CY AC N RS1 RS0 OV Z –

The following table describes the bits in the PSW.

Symbol Function

CY Carry flag

AC Auxiliary Carry flag (For BCD Operations)

F0 Flag 0 (Available to the user for General Purpose)

RS1,
RS0

Register bank select bit 1
Register bank select bit 0

RS1 RS0 Working Register Bank and Address
 0 0 Bank0 (00:00H - 00:07H)
 0 1 Bank1 (00:08H - 00:0FH)
 1 0 Bank2 (00:10H - 00:17H)
 1 1 Bank3 (00:18H - 00:1FH)

OV Overflow flag

UD User definable flag

P Parity flag

– Reserved for future use

Z Zero flag

N Negative flag

A51 Assembler / A251 Assembler 19

† New features in the A251 assembler and the MCS 251 architecture

3

Chapter 3. Writing Assembly Programs
The A251 macro assembler is a two pass assembler that translates 8051
assembly language programs into Intel compatible object files. These object
files are then combined or linked using the Linker/Locator to form an
executable, ready to run, absolute object module. As a subsequent step, absolute
object modules can be converted to Intel HEX files suitable for loading onto to
your target hardware, device programmer, or ICE (In-Circuit Emulator) unit.

The following sections describes the components of an assembly program, and
some aspects of writing assembly programs. An assembly program consists of
one or more statements. These statements contain directives, controls, and
instructions.

Assembly Statements

Assembly program source files are made up of statements which may include
assembler controls, assembler directives, or 8051 assembly language instructions
(mnemonics). For example:

$TITLE(Demo Program #1)
 ORG 0000h
 JMP $
 END

This example program consists of four statements. $TITLE is an assembler
control, ORG and END are assembler directives, and JMP is an assembly
language instruction.

Each line of an assembly program can contain only one control, directive, or
instruction statement. Statements must be contained in exactly one line. Multi–
line statements are not allowed.

Statements in 8051/251 assembly programs are not column sensitive. Controls,
directives, and instructions may start in any column. Indentation used in the
examples in this manual, is done for program clarity and is neither required nor
expected by the assembler. The only exception is that arguments and instruction
operands must be separated from controls, directives, and instructions by at least
one space.

20 Chapter 3. Writing Assembly Programs

† New features in the A251 assembler and the MCS 251 architecture

3

All 8051/251 assembly programs must include the END directive. This directive
signals to the assembler that this is the end of the assembly program. Any
instructions, directives, or controls found after the END directive are ignored.
The shortest valid assembly program contains only an END directive.

Directives

Assembler directives provide the assembly programmer with a means to instruct
the assembler how to process subsequent assembly language instructions.
Directives also provide a way for you to define program constants and reserve
space for dynamic variables.

“Chapter 4. Assembler Directives” on page 41 provides complete descriptions
and examples of all of the assembler directives that you may include in your
program. Refer to this chapter for more information about how to use directives.

Controls

Assembler controls direct the operations of the assembler when generating a
listing file or object file. Typically, controls do not impact the code that is
generated by the assembler. Controls can be specified on the command line or
within an assembler source file.

The conditional assembly controls are the only assembler controls that will
impact the code that is assembled by the A251 assembler. The IF, ELSE,
ENDIF, and ELSEIF controls provide a powerful set of conditional operators
that can be used to include or exclude certain parts of your program from the
assembly.

“Chapter 7. Invocation and Controls” on page 113 describes the available
assembler controls in detail and provides an example of each. Refer to this
chapter for more information about control statements.

Instructions

Assembly language instructions specify the program code that is to be assembled
by the A251 assembler. The A251 assembler translates the assembly

A51 Assembler / A251 Assembler 21

† New features in the A251 assembler and the MCS 251 architecture

3

instructions in your program into machine code and stores the resulting code in
an object file.

Assembly instructions have the following general format:

!label:" mnemonic !operand" !, operand" !, operand" !; comment"

where

label is a symbol name that is assigned the address at which the
instruction is located.

mnemonic is the ASCII text string that symbolically represents a
machine language instruction.

operand is an argument that is required by the specified mnemonic.

comment is an optional description or explanation of the instruction.
A comment may contain any text you wish. Comments are
ignored by the assembler.

The 8051 and 251 instructions are listed in “Appendix A. 8051/251 Instruction
Sets” on page 173 by mnemonic and by machine language opcode. Refer to this
section for more information about assembler instructions.

Comments

Comments are lines of text that you may include in your program to identify and
explain the program. Comments are ignored by the A251 assembler and are not
required in order to generate working programs.

You can include comments anywhere in your assembler program. Comments
must be preceded with a semicolon character (;). A comment can appear on a
line by itself or can appear at the end of an instruction. For example:

;This is a comment
 NOP ;This is also a comment

When the assembler recognizes the semicolon character on a line, it ignores
subsequent text on that line. Anything that appears on a line to the right of a
semicolon will be ignored by the A251 assembler. Comments have no impact on
object file generation or the code contained therein.

22 Chapter 3. Writing Assembly Programs

† New features in the A251 assembler and the MCS 251 architecture

3

Symbols

A symbol is a name that you define to represent a value, text block, address, or
register name. You can also use symbols to represent numeric constants and
expressions.

Symbol Names

Symbols are composed of up to 31 characters from the following list:

A - Z, a - z, 0 - 9, _, and ?

A symbol name can start with any of these characters except the digits 0 - 9.

Symbols can be defined in a number of ways. You can define a symbol to
represent (or EQUate to) an expression using the EQU or SET directives:

NUMBER_FIVE EQU 5
TRUE_FLAG SET 1
FALSE_FLAG SET 0

you can define a symbol to be a label in your assembly program:

LABEL1: DJNZ R0, LABEL1

and you can define a symbol to refer to a variable location:

SERIAL_BUFFER DATA 99h

Symbols are used throughout an assembly program. Symbols provide better
human understandable program element attributes. The following sections
provide more information about the use and definition of symbols.

A51 Assembler / A251 Assembler 23

† New features in the A251 assembler and the MCS 251 architecture

3

Labels

A label is a type of symbol that you define. A label defines a “place”. A labels
name represents an address. All rules that apply to symbol names also apply to
labels. When defined, a label must be the first text field in a line but may be
preceded by tabs or spaces. A colon character (:) must immediately follow the
symbol name to identify it as a label. Only one label can be defined on a line.
For example:

LABEL1: DS 2
LABEL2: ;label by itself
NUMBER: DB 27, 33, 'STRING', 0 ;label at a message
COPY: MOV R6, #12H ;label in a program

In the above examples, LABEL1, LABEL2, NUMBER, and COPY are all labels.

When a label is defined, it receives the current value of the location counter of
the currently selected segment. Refer to “Location Counter” on page 32 for
more information about the location counter.

You can use a label just like you would use a program offset within an
instruction. Labels can refer to program code, to variable space in internal or
external data memory, or can refer to constant data stored in the program or code
space.

You can use a label to transfer program execution to a different location. The
instruction immediately following a label can be referenced by using the label.
Your program can jump to or make a call to the label. The code immediately
following the label will be executed.

You can also use labels to provide information to simulators and debuggers. A
simulator or debugger can provide the label symbols while debugging. This can
help to simplify the debugging process.

Labels may only be defined once. They may not be redefined.

24 Chapter 3. Writing Assembly Programs

† New features in the A251 assembler and the MCS 251 architecture

3

Operands

Operands are arguments, or expressions, that are specified along with assembler
directives or instructions. Assembler directives require operands that are
constants or symbols. For example:

VVV EQU 3
 DS 10h

Assembler instructions support a wider variety of operands than do directives.
Some instructions require no operands and some may require up to 3 operands.
Multiple operands are separated by commas. For example:

MOV R2, #0

The number of operands that are required and their types depend on the
instruction or directive that is specified. In the following table the first four
operands can also be expressions. Instruction operands can be classified as one
the following types:

Operand Type Description

Immediate Data Symbols or constants the are used as an numeric value.

Direct Bit Address Symbols or constants that reference a bit address.

Program Addresses Symbols or constants that reference a code address.

Direct Data Addresses Symbols or constants that reference a data address.

Indirect Addresses Indirect reference to a memory location, optionally with offset.

Special Assembler Symbol Register names.

Special Assembler Symbols

The A251 assembler defines and reserves names of the 8051 register set. These
predefined names are used in 8051 programs to access the 8051 processor
registers.

A51 Assembler / A251 Assembler 25

† New features in the A251 assembler and the MCS 251 architecture

3

Following, is a list of the each of the 8051 registers along with a brief
description:

Register Description

A Represents the 8051 Accumulator. It is used with many operations including
multiplication and division, moving data to and from external memory, boolean
operations, etc.

DPTR The DPTR register is a 16-bit data pointer used to address data in XDATA or
CODE memory.

PC The PC register is the 16-bit program counter. It contains the address of the
next instruction to be executed.

C The Carry flag; indicates the status of operations that generate a carry bit. It is
also used by operations that require a borrow bit.

AB The A and B register pair used in MUL and DIV instructions.

R0 – R7 The eight 8-bit general purpose 8051 registers in the currently active register
bank. A Maximum of four register banks are available.

AR0 – AR7 Represent the absolute data addresses of R0 through R7 in the current
register bank. The absolute address for these registers will change depending
on the register bank that is currently selected. These symbols are only
available when the USING directive is given. Refer to the USING directive for
more information on selecting the register bank. These representations are
suppressed by the NOAREGS directive. Refer to the NOAREGS directive for
more information.

R8 - R15 † Additional eight 8–bit general purpose registers of the 251.

WR0 - WR30 † Sixteen 16–bit general purpose registers of the 251. The registers WR0 -
WR14 overlap the registers R0 - R15. Note that there is no WR1 available.

DR0 - DR28 †

DR56 †

DR60 †

Ten 32-bit general purpose registers of 251. The registers DR0 - DR28
overlap the registers WR0 - WR30. Note that there is no DR1, DR2 and DR3
available.

Immediate Data

An immediate data operand is a numeric expression that is encoded as a part of
the machine language instruction. Immediate data values are used literally in an
instruction to change the contents of a register or memory location. The pound
(or number) sign (#) must precede any expression that is to be used as an
immediate data operand. The following shows some examples of how the
immediate data is typically used:

MOV A, #0E0h ; load 0E0h into the accumulator
MOV DPTR, #8000h ; load 8000h into the data pointer
ANL A, #128 ; AND the accumulator with 128
XRL R0, #0FFh ; XOR R0 with 0ffh
MOV R5, #BUFFER ; load R5 with the value of BUFFER

26 Chapter 3. Writing Assembly Programs

† New features in the A251 assembler and the MCS 251 architecture

3

Indirect Addresses

With indirect address operands it is possible to access the following memory
classes of the 8051/251:

IDATA

Elements of this type must be accessed via registers R0 or R1. If these data
elements also exist within the DATA memory class, 0H .. 07FH, then you may
also access them directly.

Example
; BUFFER is a symbol with class IDATA or DATA.

MOV R0,#BUFFER ; load the address
MOV A,@R0 ; the indirect access

XDATA

XDATA memory can be accessed with the instruction MOVX via the register
DPTR or via the registers R0, R1.

Example
; XBUFFER is a symbol with class XDATA.
MOV DPTR,#XBUFFER ; load address
MOVX @DPTR,A ; access via DPTR
MOV R1,#XBUFFER ; load address
MOVX A,@R1 ; access via R0 or R1

CODE and CONST †

CODE or CONST memory can be accessed with the instruction MOVC via the
DPTR register.

Example
; TABLE is a symbol of class CODE or NCONST
MOV DPTR,#TABLE ; load address of table
MOV A,#3 ; load offset into table
MOVC A,@A+DPTR ; access via MOVC instruction

A51 Assembler / A251 Assembler 27

† New features in the A251 assembler and the MCS 251 architecture

3

EDATA †

EDATA memory can be accessed via the registers WR0 .. WR30. Also variables
of the class IDATA and DATA can be access with this addressing mode.

Example
; STRING is a symbol of class NDATA
MOV WR4,#STRING ; load address of STRING
MOV R6,@WR4 ; indirect access
MOV @WR4+2,R6 ; access with constant offset

HDATA †

HDATA memory can be accessed via the registers DR0 .. DR28. Any memory
location can be accessed with these instructions.

Example
; ARRAY is a symbol of class HDATA
MOV WR8,#WORD2 ARRAY ; load address of ARRAY
MOV WR10,#WORD0 ARRAY ; into DR8
MOV R4,@DR8 ; indirect access
MOV @DR8+50H,R4 ; access with constant offset

Direct Data Addresses

Direct Data addresses represent the exact address of the data to access in the
memory. Also the special function registers of the 8051 can be accessed with
direct data addresses. With direct data address operands you can access the
following memory classes of the 8051/251:

; accesses to DATA space
VALUE DATA 20H
 MOV 50H,A
 MOV R0,VALUE

; accesses to EDATA space
EVAR EDATA 1000H
 MOV R5,EDATA 2000H
 MOV EVAR,R4

28 Chapter 3. Writing Assembly Programs

† New features in the A251 assembler and the MCS 251 architecture

3

Direct Bit Addresses

Direct bit addresses represent the exact address of the bit to access in the
memory. Also the special function registers of the 8051/251 are bit addressable
and can be accessed with direct bit addresses.

Bit addresses can be accessed using the period (.) to access the bits of byte
variables that reside in the bit–addressable area (20h to 2Fh) or to access the bits
of certain special function registers. The period must be specified after a byte
base symbol and must have a trailing bit position to access.

With direct bit address operands you can access the following memory classes of
the 8051/251:

; accesses to BIT class
; also variables with the class DATA BITADDRESSABLE can be accessed
 SETB 20H.6 ; set bit 6 in location 20H
 CLR 10 ; clear bit 2 in location 21H, this is
 ; the bit address 10
 MOV C,ACC.5 ; move bit 5 of register A to the
 ; carry flag.

; accesses to EBIT space
; also variables with the class DATA can be accessed.
 MOV 40H.5,C
 SETB DPL.7 ; set bit 7 in the register DPL

Program Addresses

Program addresses are absolute or relocatable expressions with the memory class
CODE or ECODE. There are four types of instructions that require a program
address in their operands:

Relative Jumps

Relative jumps include conditional jumps (CJNE, DJNZ, JB, JBC, JC, …) and
the unconditional SJMP instruction. The addressable offset is –128 to +127
bytes from the first byte of the instruction that follows the relative jump. When
you use a relative jump in your code, you must use an expression that evaluates
to the code address of the jump destination. The assembler does all the offset
computations. If the address is out of range, the assembler will issue an error
message.

A51 Assembler / A251 Assembler 29

† New features in the A251 assembler and the MCS 251 architecture

3

In-Block Jumps and Calls (ACALL and AJMP)

In-block jumps and calls permit access only within a 2KByte block of program
space. The low order 11 bits of the program counter are replaced when the jump
or call is executed.

If ACALL or AJMP is the last instruction in a block, the high order bits of the
program counter change when incremented to address the next instruction.; thus
the jump will be made within the block following the ACALL or AJMP.

Long Jumps and Calls (LJMP and LCALL)

Long jumps and calls allow to access within a 64KByte segment of program
space. The low order 16 bits of the program counter are replaced when the jump
or call is executed.

For the 8051 only: LJMP and LCALL can access the entire 8051 address space.

For the 251 only: If LJMP and LCALL is the last instruction in a segment, the
high order bits of the program counter change when incremented to address the
next instruction; thus the jump will be made within the block following the
LJMP or LCALL.

Extended Jumps and Calls (EJMP and ECALL)

Extended jumps and calls allow access within the 16MByte program space of the
251. The low order 24 bits of the program counter are replaced when the jump or
call is executed.

Generic Jump and Call (JMP and CALL)

The assembler provides two instruction mnemonics that do not represent a
specific opcode. The are JMP and CALL. JMP may assemble to SJMP,
AJMP, LJMP or EJMP. CALL may assemble to ACALL, LCALL or
ECALL. These generic mnemonics will always evaluate to an instruction, not
necessarily the shortest, that will reach the specified program address operand.

30 Chapter 3. Writing Assembly Programs

† New features in the A251 assembler and the MCS 251 architecture

3

This is an effective tool to use during program development, since sections of
code change drastically in size with each development cycle. Note that the
assembler decision may not be optimal. For example, if the code address is a
forward reference, the assembler will generate a long jump although a short
jump may be possible.

Expressions and Operators

An operand may be a numeric constant, a symbolic name, a character string or an
expression.

Operators are used to combine and compare operands within your assembly
program. Operators are not assembly language instructions nor do they generate
8051 assembly code. They represent operations that are evaluated at assembly-
time. Therefore, operators can only handle calculations of values that are known
when the program is assembled.

An expression is a combination of numbers, character string, symbols, and
operators that evaluate to a single 32-bit binary number. Expressions are
evaluated at assembly time and can, therefore, be used to calculate values that
would otherwise be difficult to determine beforehand.

The following sections describe operators and expressions and how they are used
in 8051 assembly programs.

Numbers

Numbers can be specified in hexadecimal (base 16), decimal (base 10), octal
(base 8), and binary (base 2). The base of a number is specified by the last
character in the number. A number that is specified without an explicit base is
interpreted as decimal number.

A51 Assembler / A251 Assembler 31

† New features in the A251 assembler and the MCS 251 architecture

3

The following table lists the base types, the base suffix character, and some
examples:

Base Suffix Legal Characters Examples

Hexadecimal H, h 0 – 9, A – F, a – f 1234h 99h 0A0F0h 0FFh

Decimal D, d 0 – 9 1234 65590d 20d 123

Octal O, o, Q, q 0 – 7 177o 25q 123o 177777q

Binary B, b 0 and 1 10011111b 101010101b

The first character of a number must be a digit between 0 and 9. Hexadecimal
numbers which do not have a digit as the first character should be prefixed with
a 0.

The A251 assembler supports also hex numbers written in C notation. For
example:

0xA0F0 0x24 0xff

The dollar sign character ($) can be used in a number to make it more readable,
however, the dollar sign character cannot be the first or last character in the
number. A dollar sign used within a number is ignored by the assembler and has
no impact on the value of the number. For example:

1111$0000$1010$0011b is equivalent to 1111000010100011B
1$2$3$4 is equivalent to 1234

Characters

The A251 assembler allows you to use ASCII characters in an expression to
generate a numeric value. Up to two characters enclosed within single quotes (')
may be included in an expression. More than two characters in single quotes in
an expression will cause the A251 assembler to generate an error. Following are
examples of character expressions:

'A' evaluates to 0041h
'AB' evaluates to 4142h
'a' evaluates to 0061h
'ab' evaluates to 6162h
'' null string evaluates to 0000h
'abc' generates an ERROR

32 Chapter 3. Writing Assembly Programs

† New features in the A251 assembler and the MCS 251 architecture

3

Characters may be used anywhere in your program as a immediate data operand.
For example:

LETTER_A EQU 'A'

TEST: MOV @R0, #'F'
 SUBB A, #'0'

Character Strings

Character strings can be used in combination with the DB directive to define
messages that are used in your 8051 assembly program. Character strings must
be enclosed within single quotes ('). For example:

KEYMSG: DB 'Press any key to continue.'

generates the hexadecimal data (50h, 72h, 65h, 73h, 73h, 20h, … 6Eh, 75h, 65h,
2Eh) starting at KEYMSG. You can mix string and numeric data on the same line.
For example:

EOLMSG: DB 'End of line', 00h

appends the value 00h to the end of the string 'End of line'.

Two successive single quote characters can be used to insert a single quote into a
string. For example:

MSGTXT: DB 'ISN''T A QUOTE REQUIRED HERE?'.

Location Counter

The A251 assembler maintains a location counter for each segment. The
location counter contains the offset of the instruction or data being assembled
and is incremented after each line by the number of bytes of data or code in that
line.

The location counter is initialized to 0 for each segment, but can be changed
using the ORG directive.

A51 Assembler / A251 Assembler 33

† New features in the A251 assembler and the MCS 251 architecture

3

The dollar sign character ($) returns the current value of the location counter.
This operator allows you to use the location counter in an expression. For
example, the following code uses $ to calculate the length of a message string.

MSG: DB 'This is a message', 0
MSGLEN EQU $ – MSG

You can also use $ in an instruction. For example, the following line of code
will repeat forever.

JMP $; repeat forever

Operators

The A251 assembler provides several classes of operators that allow you to
compare and combine operands and expressions. These operators are described
in the sections that follow.

Arithmetic Operators

Arithmetic operators perform arithmetic functions like addition, subtraction,
multiplication, and division. These operators require one or two operands
depending on the operation. The result is always a 16-bit value. Overflow and
underflow conditions are not detected. Division by zero is detected and causes
an assembler error.

The following table lists the arithmetic operators and provides a brief description
of each.

Operator Syntax Description

+ + expression Unary plus sign

– – expression Unary minus sign

+ expression + expression Addition

– expression – expression Subtraction

* expression * expression Multiplication

/ expression / expression Integer division

MOD expression MOD expression Remainder

(and) (expression) Specify order of execution

34 Chapter 3. Writing Assembly Programs

† New features in the A251 assembler and the MCS 251 architecture

3

Binary Operators

Binary operators are used to complement, shift, and perform bit–wise operations
on the binary value of their operands. The following table lists the binary
operators and provides a brief description of each.

Operator Syntax Description

NOT NOT expression Bit–wise complement

SHR expression SHR count Shift right

SHL expression SHL count Shift left

AND expression AND expression Bit–wise AND

OR expression OR expression Bit–wise OR

XOR expression XOR expression Bit–wise exclusive OR

Relational Operators

The relational operators compare two operands. The results of the comparison is
a TRUE or FALSE result. A FALSE result has a value of 0000h. A TRUE
result has a non–zero value.

The following table lists the relational operators and provides a brief description
of each.

Operator Syntax Result

GTE expression1 GTE expression2 True if expression1 is greater than or equal to
expression2

LTE expression1 LTE expression2 True if expression1 is less than or equal to
expression2

NE expression1 NE expression2 True if expression1 is not equal to expression2

EQ expression1 EQ expression2 True if expression1 is equal to expression2

LT expression1 LT expression2 True if expression1 is less than expression2

GT expression1 GT expression2 True if expression1 is greater than expression2

>= expression1 >= expression2 True if expression1 is greater than or equal to
expression2

<= expression1 <= expression2 True if expression1 is less than or equal to
expression2

<> expression1 <> expression2 True if expression1 is not equal to expression2

= expression1 = expression2 True if expression1 is equal to expression2

< expression1 < expression2 True if expression1 is less than expression2

A51 Assembler / A251 Assembler 35

† New features in the A251 assembler and the MCS 251 architecture

3

Operator Syntax Result

> expression1 > expression2 True if expression1 is greater than expression2

Class Operators

The class operator assigns a memory class to an expression. This is how you
associate an expression with a class. The A251 assembler generates an error
message if you use an expression with a class on an instruction which does not
support this class, for example, when you use an HDATA expression as a direct
address.

The following table lists the class operators and provides a brief description of
each.

Operator Syntax Description

BIT BIT expression Assigns the class BIT to the expression.

CODE CODE expression Assigns the class CODE to the expression.

CONST † CONST expression Assigns the class CONST to the expression.

DATA DATA expression Assigns the class DATA to the expression.

EBIT † EBIT expression Assigns the class EBIT to the expression.

ECODE † ECODE expression Assigns the class ECODE to the expression.

ECONST † ECONST expression Assigns the class ECONST to the expression.

EDATA † EDATA expression Assigns the class EDATA to the expression.

HCONST † HCONST expression Assigns the class HCONST to the expression.

HDATA † HDATA expression Assigns the class HDATA to the expression.

IDATA IDATA expression Assigns the class IDATA to the expression.

XDATA XDATA expression Assigns the class XDATA to the expression.

Type Operators †

The type operator assigns a data type to an expression. Thus the expression is
associated with this type. A251 will generate an error message if you are using
an expression with an type on an instruction which does not support this types.
For example when you are using a WORD expression as argument in a byte-
wide instruction of the 251.

36 Chapter 3. Writing Assembly Programs

† New features in the A251 assembler and the MCS 251 architecture

3

The following table lists the type operators and provides a brief description of
each.

Operator Syntax Description

BYTE BYTE expression Assigns the type BYTE to the expression.

WORD WORD expression Assigns the class WORD to the expression.

DWORD DWORD expression Assigns the class DWORD to the expression.

NEAR NEAR expression Assigns the class NEAR to the expression.

FAR FAR expression Assigns the class FAR to the expression.

Miscellaneous Operators

A251 provides operators that do not fall into the previously listed categories.
These operators are listed and described in the following table.

Operator Syntax Description

LOW LOW expression Low–order byte of expression

HIGH HIGH expression High–order byte of expression

BYTE0 † BYTE0 expression Byte 0 of expression. See table below. (identical
with LOW).

BYTE1 † BYTE1 expression Byte 1 of expression. See table below. (identical
with HIGH).

BYTE2 † BYTE2 expression Byte 2 of expression. See table below.

BYTE3 † BYTE3 expression Byte 3 of expression. See table below.

WORD0 † WORD0 expression Word 0 of expression. See table below.

WORD2 † WORD2 expression Word2 of expression. See table below.

The following table shows how the byte and word operators impact a 32-bit
value.

MSB LSB

BYTE3 BYTE2 BYTE1 BYTE0

WORD2 WORD0

HIGH LOW

A51 Assembler / A251 Assembler 37

† New features in the A251 assembler and the MCS 251 architecture

3

Operator Precedence

All operators are evaluated in a certain, well–defined order. This order of
evaluation is referred to as operator precedence. Operator precedence is required
in order to determine which operators are evaluated first in an expression. The
following table lists the operators in the order of evaluation. Operators at level 1
are evaluated first. If there is more than one operator on a given level, the
leftmost operator is evaluated first followed by each subsequent operator on that
level.

Level Operators

1 ()

2 NOT, HIGH, LOW, BYTE0, BYTE1, BYTE2, BYTE3, WORD0, WORD2

3 † BIT, CODE, CONST, DATA, EBIT, EDATA, ECONST, ECODE, HCONST,
HDATA, IDATA, XDATA

4 † BYTE, WORD, DWORD, NEAR, FAR

5 + (unary), – (unary)

6 *, /, MOD

7 +, –

8 SHR, SHL

9 AND, OR, XOR

10 >=, <=, =, <>, <, >, GTE, LTE, EQ, NE, LT, GT

Expressions

An expression is a combination of operands and operators that must be
calculated by the assembler. An operand with no operators is the simplest form
of an expression. An expression can be used in most places where an operand is
required.

Expressions have a number of attributes that are described in the following
sections.

38 Chapter 3. Writing Assembly Programs

† New features in the A251 assembler and the MCS 251 architecture

3

Expression Classes

Expressions are assigned classes based on the operands that are used. The
following classes apply to expressions:

Expression Class Description

N NUMB A classless number.

C ADDR A CODE address symbol.

D ADDR A DATA address symbol.

I ADDR An IDATA address symbol.

X ADDR An XDATA address symbol.

B ADDR A BIT address symbol.

CO ADDR † A CONST address symbol.

EC ADDR † An ECONST address symbol.

CE ADDR † An ECODE address symbol.

ED ADDR † An EDATA address symbol.

EB ADDR † An EBIT address symbol.

HD ADDR † An HDATA address symbol.

HC ADDR † An HCONST address symbol.

Typically, expressions are assigned the class NUMBER because they are
composed only of numeric operands. You can assign a class to an expression
using a class operand. An address symbol value gets automatically the class
from the segment where it is defined. When an value has a class, a few rules
apply to how expressions are formed:

1. The result of a unary operation has the same class as its operand.

2. The result of all binary operations except + and – will be a NUMBER type.

3. If only one of the operands of an addition or subtraction operation has a class,
the result will have that class. If both operands have a class, the result will be
a NUMBER.

This means that a class value (i.e. an addresses symbol) plus or minus a number
(or a number plus a class value) give a value with class.

A51 Assembler / A251 Assembler 39

† New features in the A251 assembler and the MCS 251 architecture

3

Examples
data_address - 10 gives a data_address value
10 + edata_address gives an edata_address value
(data_address - data_address) gives a classless number
code_address + (data_address - data_address) gives a code_address value

Expressions that have a type of NUMBER can be used virtually anywhere.
Expressions that have a class can only be used where a class of that type is valid.

Relocatable Expressions

Relocatable expressions are so named because they contain a reference to a
relocatable or external symbol. These types of expressions can only be partially
calculated by the assembler since the assembler does not know the final location
of relocatable segments. The final calculations are performed by the linker.

A relocatable expression normally contains only a relocatable symbol, however,
it may contain other operands and operators as well. A relocatable symbol can
be modified by adding or subtracting a constant value.

Examples for valid relocatable expression

′ relocatable_symbol + absolute_expression

′ relocatable_symbol - absolute_expression

′ absolute_expression + relocatable_symbol

There are two basic types of relocatable expressions: simple relocatable
expressions and extended relocatable expressions.

Simple Relocatable Expressions

Simple relocatable expressions contain symbols that are defined in a relocatable
segment. Segment and external symbols are not allowed in simple relocatable
expressions.

40 Chapter 3. Writing Assembly Programs

† New features in the A251 assembler and the MCS 251 architecture

3

Simple relocatable expression can be used in four contexts:

1. As an operand to the ORG directive.

2. As an operand to a symbol definition directive (i.e. EQU, SET)

3. As an operand to a data initialization directive (DB, DW or DD)

4. As an operand to a machine instruction

Examples for simple relocatable expressions
REL1 + ABS1 * 10
REL2 - ABS1
REL1 + (REL2 - REL3) assuming REL2 and REL3 refer to the same segment.

Invalid form of simple relocatable expressions
(REL1 + ABS1) * 10 relocatable value may not be multiplied.
(EXT1 - ABS1) this is a general relocatable expression
REL1 + REL2 you cannot add relocatable symbols.

Extended Relocatable Expressions

The extended relocatable expressions have generally the same rules that apply to
simple relocatable expressions. Segment and external symbols are allowed in
extended relocatable expressions. Extended relocatable expression can be used
only in statements that generate code as operands; these are:

′ As an operand to a data initialization directive (DB, DW or DD)

′ As an operand to a machine instruction

Examples for extended relocatable expressions
REL1 + ABS1 * 10
EXT1 - ABS1
LOW (REL1 + ABS1)
WORD2 (SEG1)

Invalid form of simple relocatable expressions
(SEG1 + ABS1) * 10 relocatable value may not be multiplied.
(EXT1 - REL1) you can add/subtract only absolute quantities

LOW (REL1) + ABS1 LOW may be applied only to the
final relocatable expression

A51 Assembler / A251 Assembler 41

† New features in the A251 assembler and the MCS 251 architecture

4

Chapter 4. Assembler Directives
This part describes the assembler directives. It shows how to define symbols and
how to control the placement of code and data in program memory.

Introduction

The A251 assembler has several directives that permit you to define symbol
values, reserve and initialize storage, and control the placement of your code.

The directives should not be confused with instructions. They do not produce
executable code, and with the exception of the DB, DW and DD directives, they
have no direct effect on the contents of code memory. These directives change
the state of the assembler, define user symbols, and add information to the object
file.

The directives are divided into the following categories:

′ Segment Control
Generic Segments: SEGMENT, RSEG
Absolute Segments: CSEG, DSEG, BSEG, ISEG, XSEG

′ Symbol Definition
Generic Symbols: EQU, SET
Address Symbols: BIT,.CODE, DATA, IDATA, XDATA
Text Replacement: LIT †

′ Memory Initialization
DB, DW, DD †

′ Memory Reservation
DBIT, DS, DSB †, DSW †, DSD †

′ Procedure Declaration †
PROC / ENDP †, LABEL †

′ Program Linkage
PUBLIC, EXTRN / EXTERN †, NAME

′ Address Control
ORG, EVEN †, USING

42 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

′ Others
END

The A251 assembler is a two-pass assembler. In the first pass, symbols values
are determined, and in the second, forward references are resolved, and object
code is produced. This structure imposes a restriction on the source program:
expressions which define symbol values (refer to “Symbol Definition” on page
51) and expressions which control the location counter (refer to “ORG” on page
67, “DS” on page 59, and “DBIT” on page 58) may not have forward references.

Segment Controls

A segment is a block of code or data memory the assembler creates from code or
data in an 8051 assembly source file. How you use segments in your source
modules depends on the complexity of your application. Smaller applications
need less memory and are typically less complex than large multi–module
applications.

The 8051 is a architecture CPU with specific memory areas. You use segments
to locate program code, constant data, and variables in these areas.

Location Counter

A251 maintains a location counter for each segment. The location counter is a
pointer to the address space of the active segment and represents an offset for
generic segments or the actual address for absolute segments. When a segment
is first activated, the location counter is set to 0. The location counter is changed
after each instruction by the length of the instruction. The memory initialization
and reservation directives (i.e. DS, DB or DBIT) change the value of the location
counter as memory is allocated by these directives. The ORG directive sets a
new value for the location counter. If you change the active segment and later
return to that segment, the location counter is restored to its previous value.
Whenever the assembler encounters a label it assigns the current value of the
location counter and the type of the current segment to that label.

The dollar sign ($) indicates the value of the location counter in the active
segment. When you use the $ symbol, keep in mind that its value changes with
each instruction, but only after that instruction has been completely evaluated. If

A51 Assembler / A251 Assembler 43

† New features in the A251 assembler and the MCS 251 architecture

4

you use $ in an operand to an instruction or directive, it represents the address of
the first byte of that instruction.

The following sections describe the different types of segments.

Generic Segments

Generic segments have a name and a class as well as other attributes. Generic
segments with the same name but from different object modules are considered
to be parts of the same segment and are called partial segments. These segments
are combined at link time by the linker/locator.

Generic segments are created using the SEGMENT directive. You must specify
the name of the segment, the segment class, and an optional relocation type and
alignment type when you create a relocatable segment.

Example
MYPROG SEGMENT CODE

defines a segment named MYPROG with a memory class of CODE. This means
that data in the MYPROG segment will be located in the code or program area of
the 8051. Refer to “SEGMENT” on page 46 for more information on how to
declare generic segments.

Once you have defined a relocatable segment name, you must select that segment
using the RSEG directive. When RSEG is used to select a segment, that
segment becomes the active segment that A251 uses for subsequent code and
data until the segment is changed with RSEG or with an absolute segment
directive.

Example
RSEG MYPROG

will select the MYPROG segment that is defined above.

Typically, assembly routines are placed in generic segments. If you interface
your assembly routines to C, all of your assembly routines must reside in
separate generic segments and the segment names must follow the standards
used by C51. Refer to the C51 Compiler User’s Guide or the C251 Compiler
User’s Guide for more information on interfacing assembler programs to C.

44 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

Stack Segment

The 8051 and MCS 251 architecture uses a hardware stack to store return
addresses for CALL instructions and also for temporary storage using the PUSH
and POP instructions. An 8051 application that uses these instructions must
setup the stack pointer to an area of memory that will not be used by other
variables.

For the 8051 a stack segment must be defined and space must be reserved as
follows.

STACK SEGMENT IDATA
 RSEG STACK ; select the stack segment
 DS 10h ; reserve 16 bytes of space

Then, you must initialize the stack pointer early in your program.

CSEG AT 0 ; RESET Vector
 JMP STARTUP ; Jump to startup code
STARTUP: ; code executed at RESET
 MOV SP,#STACK - 1 ; load Stack Pointer

For the MCS 215 a stack segment must be defined and space must be reserved as
follows.

STACK SEGMENT EDATA
 RSEG STACK ; select the stack segment
 DS 10h ; reserve 16 bytes of space

Then, you must initialize the stack pointer early in your program.

CSEG AT 0 ; RESET Vector
 JMP STARTUP ; Jump to startup code
STARTUP: ; code executed at RESET
 MOV DR60,#STACK - 1 ; load Stack Pointer

If you are interfacing assembly routines to C, you probably do not need to setup
the stack. This is already done for you in the C startup code.

Absolute Segments

Absolute segments reside in a fixed memory location. Absolute segments are
created using the CSEG, DSEG, XSEG, ISEG, and BSEG directives. These
directives allow you to locate code and data or reserve memory space in a fixed
location. You use absolute segments when you need to access a fixed memory

A51 Assembler / A251 Assembler 45

† New features in the A251 assembler and the MCS 251 architecture

4

location or when you want to place program code or constant data at a fixed
memory address. Refer to the CSEG, DSEG, ISEG, XSEG, ISEG directives
for more information on how to declare absolute segments.

After reset, the 8051 begins program executing at CODE address 0. The 251
starts execution at address FF0000. Some type of program code must reside at
this address. You can use an absolute segment to force program code into this
address. The following example is used in the C51 startup routines to branch
from the reset address to the beginning of the initialization code.

.

.

.
 CSEG AT 0
RESET_VEC: LJMP STARTUP
.
.
.

The program code that we place at address 0000h (for 251 at address FF0000h)
with the CSEG AT 0 directive performs a jump to the STARTUP label.

A251 supports absolute segment controls for compatibility to A51. A251
translates the CSEG, DSEG, XSEG, ISEG and BSEG directives to a generic
segment directive.

Default Segment

By default, A251 assumes that the CODE segment is selected and initializes the
location counter to 0000h (FF0000h) when it begins processing an assembly
source module. This allows you to create programs without specifying any
relocatable or absolute segment directives.

46 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

SEGMENT

The SEGMENT directive is used to declare a generic segment. A relocation
type and a allocation type may be specified in the segment declaration. The
SEGMENT directive is specified using the following format:

segment SEGMENT class reloctype alloctype

where

segment is the symbol name to assign to the segment. this symbol
name is referred by the following RSEG directive. The
segment symbol name can be used also in expressions to
represent the base or start address of the combined segment
as calculated by the Linker/Locator.

class is the memory class to use for the specified segment. The
class specifies the memory space for the segment. See the
table below for more information.

reloctype is the relocation type for the segment. This determines
what relocation options may be performed by the
Linker/Locator. Refer to the table below for more
information.

alloctype is the allocation type for the segment. This determines what
relocation options may be performed by the Linker/Locator.
Refer to the table below for more information.

Class

The name of each segment within a module must be unique. However, the linker
will combine segments having the same segment type. This applies to segments
declared in other source modules as well.

class specifies the memory class space for the segment. The A251 differs
between basic classes and user defined classes. The class is used by the
linker/locator to access all the segments which belong to that class.

The basic classes are listed below:

Basic Class Description

BIT BIT space (address 20H .. 2FH).

A51 Assembler / A251 Assembler 47

† New features in the A251 assembler and the MCS 251 architecture

4

Basic Class Description

CODE CODE space (default for 251 address 0FF0000H .. 0FFFFFFH).

CONST † CONST space; same as CODE but for constant only; access via MOVC.

DATA DATA space (address 0 to 7FH & SFR registers).

EBIT † Extended 251 bit space (address 20H .. 7FH)

EDATA † EDATA space (address 0 .. 0FFFFH).

ECONST † ECONST space; same as EDATA but for constants; (address 0 .. 0FFFFH).

IDATA IDATA space (address 0 to 0FFH).

ECODE † Entire 251 address space for program code.

HCONST † Entire 251 address space for constants; access via MOV @DRk.

HDATA † Entire 251 address space for data; access via MOV @DRk.

XDATA XDATA space (default for 251 address 10000H .. 1FFFFH); access via MOVX.

User-defined Class Names †

User-defined class names are composed for a basic class name plus an extension.
With user-defined class names you can access the same address space as with the
basic class name. The advantage is that you can reference with the user defined
class name all segment names which that name and direct them at the
linker/locator level to a specific physical address. User-defined class names must
be enclosed in quotation marks (').

Examples
seg1 SEGMENT 'NDATA_FLASH'
seg2 SEGMENT 'HCONST_BITIMAGE'
seg3 SEGMENT 'DATA1'

Relocation Type

The optional relocation type defines the relocation operation that may be
performed by the Linker/Locator. The following table lists the valid relocation
types:

Relocation Type Description

AT address Specifies an absolute segment. The segment will be placed at the
specified address.

BITADDRESSABLE Specifies a segment which will be located within the bit addressable
memory area (20H to 2FH in DATA space). BITADDRESSABLE is
only allowed for segments with the class DATA that do not exceed
16 bytes in length.

48 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

Relocation Type Description

INBLOCK Specifies a segment which must be contained in a 2048Byte block.
This relocation type is only valid for segments with the class CODE.

INPAGE Specifies a segment which must be contained in a 256Byte page.

OFFS offset † Specifies an absolute segment. The segment will be placed at the
start address of the memory class plus the specified offset. The
advantage compare to the AT relocation type is, that the start
address of the memory class can be defined at Linker/Locator level.
Refer to the MCS 251 Utilities User’s Guide for more information.

OVERLAYABLE Specifies that the segment can share memory with other segments.
Segments declared with this relocation type can be overlaid with
other segments which are also declared with the OVERLAYABLE
relocation type. When using this relocation type, the segment name
must be declared according to the C251, C51 or PL/M-51 segment
naming rules. Refer to the C51 Compiler User’s Guide or the C251
Compiler User’s Guide for more information.

INSEG † Specifies a segment which must be contained in a 64KByte
segment.

Allocation Type

The optional allocation type defines the allocation operation that may be
performed by the Linker/Locator. The following table lists the valid allocation
types:

Allocation Type Description

BIT † Specify bit alignment for the segment. This is the default for all segments
with the class BIT.

BYTE † Specify byte alignment for the segment. This is the default for all
segments except of BIT.

WORD † Specify word alignment for the segment.

DWORD † Specify dword alignment for the segment.

PAGE Specify a segment whose starting address must be on a 256Byte page
boundary.

BLOCK † Specify a segment whose starting address must be on a 2048Byte block
boundary.

SEG † Specify a segment whose starting address must be on a 64KByte segment
boundary.

Examples for Segment Declarations

IDS SEGMENT IDATA

Defines a segment with the name IDS and the memory class IDATA.

A51 Assembler / A251 Assembler 49

† New features in the A251 assembler and the MCS 251 architecture

4

MYSEG SEGMENT CODE AT 0FF2000H

Defines a segment with the name MYSEG and the memory class CODE to be
located at address 0FF2000H.

HDSEG SEGMENT HDATA INSEG DWORD

Defines a segment with the name HDSEG and the memory class HDATA. The
segment is located within one 64KByte segment and is DWORD aligned.

XDSEG SEGMENT XDATA PAGE

Defines a segment with the name XDSEG and the memory class XDATA. The
segment is PAGE aligned, this means it starts on a 256Byte page.

HCSEG SEGMENT HCONST SEG

Defines a segment with the name HCSEG with the memory class HCONST.
The segment is SEGMENT aligned, this means it starts on a 64KByte segment.

RSEG

The RSEG directive selects a generic segment that was previously declared
using the SEGMENT directive. The RSEG directive uses the following format:

RSEG segment

where

segment is the name of a segment that was previously defined using
the SEGMENT directive. Once selected, the specified
segment remains active until a new segment is specified.

Example
.
.
.
MYPROG SEGMENT CODE ; declare a segment

 RSEG MYPROG ; select the segment
 MOV A, #0
 MOV P0, A
.
.
.

50 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

BSEG, CSEG, DSEG, ISEG, XSEG

The BSEG, CSEG, DSEG, ISEG, XSEG directive selects an absolute segment.
This directives are using the following format:

BSEG AT address defines an absolute BIT segment.
CSEG AT address defines an absolute CODE segment.
DSEG AT address defines an absolute DATA segment.
ISEG AT address defines an absolute IDATA segment.
XSEG AT address defines an absolute XDATA segment.

where

address is an optional absolute base address at which the segment
begins. The address may not contain any forward
references and must be an expression that can be evaluated
to a valid address.

CSEG, DSEG, ISEG, BSEG and XSEG select an absolute segment within the
code, internal data, indirect internal data, bit, or external data address spaces. If
you choose to specify an absolute address (by including AT address), the
assembler terminates the last absolute segment, if any, of the specified segment
type, and creates a new absolute segment starting at that address. If you do not
specify an address, the last absolute segment of the specified type is continued.
If no absolute segment of this type was selected and the absolute address is
omitted, a new segment is created starting at location 0. You cannot use any
forward references and the start address must be an absolute expression.

The A251 Macro Assembler supports the BSEG, CSEG, DSEG, ISEG, and
XSEG directives for A51 compatibility. These directives are converted to
standard segments as follows:

A51 Directive Converted to A251 Segment Declaration

BSEG AT 20H.1 ?BI?modulename?n SEGMENT OFFS 20H.1

CSEG AT 1234H ?CO?modulename?n SEGMENT OFFS 1234H

DSEG AT 40H ?DT?modulename?n SEGMENT OFFS 40H

ISEG AT 80H ?ID?modulename?n SEGMENT OFFS 80H

XSEG AT 5100H ?XD?modulename?n SEGMENT OFFS 5100H

where

modulname is the name of the current assembler module

A51 Assembler / A251 Assembler 51

† New features in the A251 assembler and the MCS 251 architecture

4

n is a sequential number incremented for every absolute
segment.

Examples
 BSEG AT 30h ; absolute bit segment @ 30h
DEC_FLAG: DBIT 1 ; absolute bit
INC_FLAG: DBIT 1
 CSEG AT 100h ; absolute code segment @ 100h
PARITY_TAB: DB 00h ; parity for 00h
 DB 01h ; 01h
 DB 01h ; 02h
 DB 00h ; 03h
.
.
.
 DB 01h ; FEh
 DB 00h ; FFh
 DSEG AT 40h ; absolute data segment @ 40h
TMP_A: DS 2 ; absolute data word
TMP_B: DS 4
 ISEG AT 40h ; abs indirect data seg @ 40h
TMP_IA: DS 2
TMP_IB: DS 4

 XSEG AT 1000h ; abs external data seg @ 1000h
OEMNAME: DS 25 ; abs external data
PRDNAME: DS 25
VERSION: DS 25

Symbol Definition

The symbol definition directives allow you to create symbols that can be used to
represent registers, numbers, and addresses.

Symbols defined by these directives may not have been previously defined and
may not be redefined by any means. The SET directive is the only exception to
this.

EQU, SET

The EQU and SET directive assigns a numeric value or register symbol to the
specified symbol name. Symbols defined with EQU may not have been
previously defined and may not be redefined by any means. The SET directive
allows later redefinition of symbols. Statements involving the EQU or SET
directive are formatted as follows:

52 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

symbol EQU expression
symbol EQU register
symbol SET expression
symbol SET register

where

symbol is the name of the symbol to define. The expression or
register specified in the EQU or SET directive will be
substituted for each occurrence of symbol that is used in
your assembly program.

expression is a numeric expression which contains no forward
references, or a simple relocatable expression.

register is one of the following register names: A, R0, R1, R2, R3,
R4, R5, R6, or R7.

Symbols defined with the EQU or SET directive may be used anywhere in
operands, expressions, or addresses. Symbols that are defined as a register name
can be used anywhere a register is allowed. A251 replaces each occurrence of
the defined symbol in your assembly program with the specified numeric value
or register symbol.

Symbols defined with the EQU directive may not be changed or redefined. You
cannot use the SET directive if a symbol was previously defined with EQU and
you cannot use the EQU directive if a symbol which was defined with SET.

Examples
LIMIT EQU 1200
VALUE EQU LIMIT – 200 + 'A'
SERIAL EQU SBUF
ACCU EQU A
COUNT EQU R5
VALUE SET 100
VALUE SET VALUE / 2
COUNTER SET R1
TEMP SET COUNTER
TEMP SET VALUE * VALUE

CODE, DATA, IDATA, XDATA

The BIT, CODE, DATA, IDATA, and XDATA directives assigns an address
value to the specified symbol. Symbols defined with the BIT, CODE, DATA,

A51 Assembler / A251 Assembler 53

† New features in the A251 assembler and the MCS 251 architecture

4

IDATA, and XDATA directives may not be changed or redefined. The format
of theses directives is:

symbol BIT bit_address defines a BIT symbol
symbol CODE code_address defines a CODE symbol
symbol DATA data_address defines a DATA symbol
symbol IDATA idata_address defines an IDATA symbol
symbol XDATA xdata_address defines a XDATA symbol

where

symbol is the name of the symbol to define. The symbol name can
be used anywhere an address of this memory class is valid.

bit_address is the address of a bit in internal data memory in the area
20H .. 2FH or a bit address of an 8051 bit-addressable SFR.

code_address is a code address in the range 0000H .. 0FFFFH.

data_address is a data memory address in the range 0 to 127 or a special
function register (SFR) address in the range 128 .. 255.

idata_address is an idata memory address in the range 0 to 255.

xdata_address is an xdata memory address in the range 0 to 65535.

Example
DATA_SEG SEGMENT BITADDRESSABLE
RSEG DATA_SEG ; a bitaddressable rel_seg

CTRL: DS 1 ; a 1–byte variable (CTRL)
ALARM BIT CTRL.0 ; bit in a relocatable byte
SHUT BIT ALARM+1 ; the next bit
ENABLE_FLAG BIT 60H ; an absolute bit
DONE_FLAG BIT 24H.2 ; an absolute bit
P1_BIT2 EQU 90H.2 ; a SFR bit
RESTART CODE 00H
INTVEC_0 CODE RESTART + 3
INTVEC_1 CODE RESTART + 0BH
INTVEC_2 CODE RESTART + 1BH
SERBUF DATA SBUF ; redfinition of the SFR SBUF
RESULT DATA 40H
RESULT2 DATA RESULT + 2
PORT1 DATA 90H ; a SFR symbol
BUFFER IDATA 60H
BUF_LEN EQU 20H
BUF_END IDATA BUFFER + BUF_LEN – 1
XSEG1 SEGMENT XDATA
RSEG XSEG1

DTIM: DS 6 ;reserve 6–bytes for DTIM
TIME XDATA DTIM + 0
DATE XDATA DTIM + 3

54 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

LIT †

The LIT directive provides a simple text substitution facility. The LIT directive
has the following format:

symbol LIT ’literal string’
symbol LIT “literal string“

where

symbol is the name of the symbol to define. The literal string
specified in the LIT directive will be substituted for each
occurrence of symbol that is used in your assembly
program.

literal string is a numeric expression which contains no forward
references, or a simple relocatable expression.

Every time the symbol is encountered, it will be replaced by the literal
string assigned to symbol name. The symbol name follows the same rules as
other identifiers, that is, a literal name is not encountered if it not forms a
separate token. If a substring is to be replaced, then symbol must be enclosed in
braces: TEXT{symbol}. The assembler listing shows the expanded lines where
literals are substituted.

Example

Source text containing literals before assembly:

 $INCLUDE (REG51.INC)

 REG1 LIT 'R1'
 NUM LIT 'A1'
 DBYTE LIT "DATA BYTE"
 FLAG LIT 'ACC.3'

 ?PR?MOD SEGMENT CODE
 RSEG ?PR?MOD

 MOV REG1,#5
 SETB FLAG
 JB FLAG,LAB_{NUM}
 PUSH DBYTE 0
 LAB_{NUM}:

 END

A51 Assembler / A251 Assembler 55

† New features in the A251 assembler and the MCS 251 architecture

4

Assembler listing from previous example:

 1 $INCLUDE (REG51.INC)
 +1 80 +1 $RESTORE
 81
 82 REG1 LIT 'R1'
 83 NUM LIT 'A1'
 84 DBYTE LIT "DATA BYTE"
 85 FLAG LIT 'ACC.3'
 86
------ 87 ?PR?MOD SEGMENT CODE
------ 88 RSEG ?PR?MOD
 89
000000 7E1005 90 MOV R1,#5
000003 D2E3 91 SETB ACC.3
000005 20E300 F 92 JB ACC.3,LAB_A1
000008 C000 93 PUSH DATA BYTE 0
00000A 94 LAB_A1:
 95
 96 END

56 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

Memory Initialization

The memory initialization directives are used to initialize code or const space in
either word, dword or byte units. The memory image starts at the point indicated
by the current value of the location counter in the currently active segment.

DB

The DB directive initializes code memory with 8-bit byte values. The DB
directive has the following format:

 label: DB expression , expression …

where

label is the symbol that is given the address of the initialized
memory and

expression is a byte value. Each expression may be a symbol, a
character string, or an expression.

The DB directive can only be specified within a code or const segment. If the
DB directive is used in a different segment, A251 will generate an error
message.

Example
REQUEST: DB 'PRESS ANY KEY TO CONTINUE', 0
TABLE: DB 0,1,8,'A','0', LOW(TABLE),';'
ZERO: DB 0, ''''
CASE_TAB: DB LOW(REQUEST), LOW(TABLE), LOW(ZERO)

DW

The DW directive initializes code memory with 16-bit word values. The DW
directive has the following format:

 label: DW expression , expression …

A51 Assembler / A251 Assembler 57

† New features in the A251 assembler and the MCS 251 architecture

4

where

label is the symbol that is given the address of the initialized
memory and

expression is the initialization data. Each expression may contain a
symbol, a character string, or an expression.

The DW directive can only be specified within a code or const segment. If the
DW directive is used in a different segment, A251 will generate an error
message.

Example
TABLE: DW TABLE, TABLE + 10, ZERO
ZERO: DW 0
CASE_TAB: DW CASE0, CASE1, CASE2, CASE3, CASE4
 DW $

DD †

The DD directive initializes code memory with 32–bit double word values. The
DD directive has the following format:

 label: DD expression , expression …

where

label is the symbol that is given the address of the initialized
memory and

expression is the initialization data. Each expression may contain a
symbol, a character string, or an expression.

The DD directive can only be specified within a code or const segment. If the
DD directive is used in a different segment, A251 will generate an error
message.

Example
TABLE: DD TABLE, TABLE + 10, ZERO
 DD $
ZERO: DD 0
LONG_VAL: DD 12345678H, 0FFFFFFFFH, 1

58 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

Memory Reservation

The memory reservation directives are used to reserve space in either word,
dword, byte, or bit units. The space reserved starts at the point indicated by the
current value of the location counter in the currently active segment.

DBIT

The DBIT directive reserves space in a bit or ebit segment. The DBIT directive
has the following format:

 label: DBIT expression

where

label is the symbol that is given the address of the reserved
memory. The label is a symbol of the type BIT and gets the
current address value and the memory class of the active
segment. The label can only be used where a symbol of this
type is allowed.

expression is the number of bits to reserve. The expression cannot
contain forward references, relocatable symbols, or external
symbols.

The DBIT directive reserves space in the bit segment starting at the current
address. The location counter for the bit segment is increased by the value of the
expression. You should note that the location counter for the bit segment
references bits and not bytes.

NOTE
The A251 assembler is a two–pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DBIT directive may not contain forward
references.

Example
ON_FLAG: DBIT 1 ;reserve 1 bit
OFF_FLAG: DBIT 1

A51 Assembler / A251 Assembler 59

† New features in the A251 assembler and the MCS 251 architecture

4

DS

The DS directive reserves a specified number of bytes in a memory space. The
DS directive has the following format:

label: DS expression

where

label is the symbol that is given the address of the reserved
memory. The label is a typeless number and gets the current
address value and the memory class of the active segment.
The label can only be used where a symbol of this type is
allowed.

expression is the number of bytes to reserve. The expression cannot
contain forward references, relocatable symbols, or external
symbols.

The DS directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expression. The sum
of the location counter and the value of the specified expression should not
exceed the limitations of the current address space.

NOTE
The A251 assembler is a two–pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DS directive may not contain forward
references.

Example
GAP: DS (($ + 16) AND 0FFF0H) – $
 DS 20
TIME: DS 8

DSB †

The DSB directive reserves a specified number of bytes in a memory space. The
DSB directive has the following format:

label: DSB expression

60 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

where

label is the symbol that is given the address of the reserved
memory. The label is a symbol of the type BYTE and gets
the current address value and the memory class of the active
segment. The label can only be used where a symbol of this
type is allowed.

expression is the number of bytes to reserve. The expression cannot
contain forward references, relocatable symbols, or external
symbols.

The DSB directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expression. The sum
of the location counter and the value of the specified expression should not
exceed the limitations of the current address space.

NOTE
The A251 assembler is a two–pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DSB directive may not contain forward
references.

Example

DAY: DSB 1
MONTH: DSB 1
HOUR: DSB 1
MIN: DSB 1

DSW †

The DSW directive reserves a specified number of words in a memory space.
The DSW directive has the following format:

label: DSW expression

where

label is the symbol that is given the address of the reserved
memory. The label is a symbol of the type WORD and gets
the current address value and the memory class of the active

A51 Assembler / A251 Assembler 61

† New features in the A251 assembler and the MCS 251 architecture

4

segment. The label can only be used where a symbol of this
type is allowed.

expression is the number of bytes to reserve. The expression cannot
contain forward references, relocatable symbols, or external
symbols.

The DSW directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expression. The sum
of the location counter and the value of the specified expression should not
exceed the limitations of the current address space.

NOTE
The A251 assembler is a two–pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DSW directive may not contain forward
references.

Example
YEAR: DSW 1
DAYinYEAR: DSW 1

DSD †

The DSD directive reserves a specified number of double words in a memory
space. The DSD directive has the following format:

 label: DSD expression

where

label is the symbol that is given the address of the reserved
memory. The label is a symbol of the type DWORD and
gets the current address value and the memory class of the
active segment. The label can only be used where a symbol
of this type is allowed.

expression is the number of bytes to reserve. The expression cannot
contain forward references, relocatable symbols, or external
symbols.

62 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

The DSD directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expression. The sum
of the location counter and the value of the specified expression should not
exceed the limitations of the current address space.

NOTE
The A251 assembler is a two–pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DSD directive may not contain forward
references.

Example
SEC_CNT: DSD 1
LONG_ARR: DSD 50

Procedure Declaration †

A251 provides procedures to implement the concept of subroutines. Procedures
can be executed in-line (control “falls through” to them), jumped to, or invoked
by a CALL. Calls are recommended as a better programming practice.

PROC / ENDP †

The PROC / ENDP directive pair is used to define a label for a sequence of
machine instructions called a procedure. A procedure is called within the same
physical 64KByte segment (LCALL or ACALL = NEAR) or from a different
64kbyte segment (ECALL = FAR). A procedure may have either the type
NEAR or FAR. Unless procedures known from high level languages, the
scoping of identifiers is different in the assembly language. Identifiers must be
unique in A251 because the visibility is module wide. The format of the
PROC/ENDP directives is:

name PROC [type]
.
.
.
 ; procedure text
.
.
.

A51 Assembler / A251 Assembler 63

† New features in the A251 assembler and the MCS 251 architecture

4

 RET
name ENDP

where

name is the name of the procedure.

type specifies the type of the procedure, and must be one of the
following:

Type Description

none The type defaults to NEAR

NEAR Defines a near procedure; called with LCALL or ACALL.

FAR Defines a far procedure; called with ECALL.

You should specify FAR if the procedure will be called from different 64KByte
segment. A procedure normally ends with a RET instruction. The software
instruction RET will be automatically converted to an appropriate machine
return instruction, that is:

RET from a near procedure.

ERET from a far procedure.

Example
P100 PROC NEAR
 RET ; near return
 ENDP

P200 PROC FAR
 RET ; far return (ERET)
 ENDP

P300 PROC NEAR
 CALL P100 ; LCALL
 CALL P200 ; ECALL
 RET ; near return
 ENDP

 END

64 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

LABEL †

A label is a symbol name for an address location in a segment. The LABEL
directive can be used to define a program label. The label name can be followed
by a colon, but it is not required. The label inherits the attributes of the program
or code segment currently active. The LABEL directive may therefore never be
used outside the scope of a program segment. The syntax of the LABEL
directive is:

name[:] LABEL [type]

where

name is the name of the label.

type specifies the type of the label, and must be one of the
following:

Type Description

none The type defaults to NEAR

NEAR Defines a near label.

FAR Defines a far label; use ECALL or EJMP.

You should specify FAR if the label will be referenced from a different 64KByte
segment. NEAR lets you refer to this label for the current 64KByte segment.

Example
 RSEG ECODE_SEG1 ; activate an ECODE segment
ENTRY: LABEL FAR ; entry point

 RSEG ECODE_SEG2 ; activate another ECODE segment
 EJMP ENTRTY ; Jump across 64KB segment

A51 Assembler / A251 Assembler 65

† New features in the A251 assembler and the MCS 251 architecture

4

Program Linkage

Program linkage directives allow the separately assembled modules to
communicate by permitting inter-module references and the naming of modules.

PUBLIC

The PUBLIC directive lists symbols that may be used in other object modules.
The PUBLIC directive makes the specified symbols available in the generated
object module. This, in effect, publicizes the names of these symbols. The
PUBLIC directive has the following format:

PUBLIC symbol , symbol …

where

symbol must be a symbol that was defined somewhere within the
source file. Forward references to symbol names are
permitted. All symbol names, with the exception of register
symbols and segment symbols, may be specified with the
PUBLIC directive. Multiple symbols must be separated
with a comma (,).

If you want to use public symbols in other source files, the EXTRN or
EXTERN directive must be used to specify that the symbols are declared in
another object module.

Example
PUBLIC PUT_CRLF, PUT_STRING, PUT_EOS
PUBLIC ASCBIN, BINASC
PUBLIC GETTOKEN, GETNUMBER

EXTRN / EXTERN

The EXTRN or EXTERN † directive lists symbols that are referenced in the
current source module that are actually declared in other modules. The format
for the EXTRN / EXTERN directive is as follows:

66 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

EXTRN class : type (symbol , symbol …)
EXTERN class : type (symbol , symbol …) †

where

class is the memory class where the symbol has been defined and
may be one of the following: BIT, CODE, CONST †,
DATA, EBIT †, ECONST †, EDATA †, ECODE †,
HDATA †, HCONST †, IDATA, XDATA, or NUMBER
(to specify a typeless symbol).

type † is the symbol type of the external symbol and may be one of
the following: BYTE, WORD, DWORD, NEAR, FAR.

symbol is an external symbol name.

The EXTRN or EXTERN directive may appear anywhere in the source
program. Multiple symbols may be separated and included in parentheses
following the class and type information.

Symbol names that are specified with the EXTRN / EXTERN directive must
have been specified as public symbols with the PUBLIC directive in the source
file in which they were declared.

The Linker/Locator resolves all external symbols at link time and verifies that
the symbol class and symbol types (specified with the EXTRN / EXTERN and
PUBLIC directives) matches. Symbols with the class NUMBER matches to
every memory class.

Examples
EXTRN CODE (PUT_CRLF), DATA (BUFFER)
EXTERN CODE (BINASC, ASCBIN)
EXTRN NUMBER (TABLE_SIZE)
EXTERN CODE:FAR (main) †
EXTRN EDATA:BYTE (VALUE, COUNT) †
EXTRN NCONST:DWORD (LIMIT) †

NAME

The NAME directive specifies the name to use for the object module generated
for the current program. The filename for the object file is not the object module
name. The object module name is embedded within the object file. The format
for the NAME directive is as follows:

A51 Assembler / A251 Assembler 67

† New features in the A251 assembler and the MCS 251 architecture

4

NAME modulename

where

modulename is the name to use for the object module and can be up to 40
characters long. The modulename must adhere to the rules
for symbol names.

If a NAME directive is not present in the source program, the object module
name will be the basename of the source file without the extension.

NOTE
Only one NAME directive may be specified in a source file.

Example
NAME PARSERMODULE

Address Control

The following directives allow the control of the address location counter or the
control of absolute register symbols.

ORG

The ORG directive is used to alter the location counter of the current active
segment and sets an new origin for statements that follow the directive. The
format for the ORG statement is as follows:

ORG expression

where

expression must be an absolute or simple relocatable expression and
may not have any forward references. Only absolute
addresses or symbol values of the current segment may be
used.

When an ORG statement is encountered, the assembler calculates the value of
the expression and changes the location counter for the current segment. If the
ORG statement occurs in an absolute segment, the location counter will be

68 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

assigned the absolute address value. If the ORG statement occurs in a
relocatable segment, the location counter will be assigned the offset of the
specified expression.

The ORG directive changes the location counter but does not produce a new
segment. A possible address gap may be introduced into the current segment.
With absolute segments, the location counter cannot reference an address prior
to the segment base.

NOTE
The A251 assembler is a two–pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the ORG directive may not contain forward
references.

Example
ORG 100H
ORG RESTART
ORG EXTI1
ORG ($ + 16) AND 0FFF0H

EVEN †

The EVEN directive ensures that code or data following EVEN is aligned on a
word boundary. The assembler creates a gap of one byte if necessary. The
content of the byte gap is undefined. The EVEN directive has the following
syntax:

EVEN

Example
MYDATA SEGMENT DATA WORD ; word alignment
 RSEG MYDATA ; activate segment
var1: DSB 1 ; reserve a byte variable
 EVEN ; ensure word alignment
var2: DSW 1 ; reserve a word variable

A51 Assembler / A251 Assembler 69

† New features in the A251 assembler and the MCS 251 architecture

4

USING

The USING directive specifies which register bank to use for coding the AR0
through AR7 registers. The USING directive is specified as follows:

USING expression

where

expression is the register bank number which must be a value between
0 and 3.

The USING directive does not generate any code to change the register bank.
Your program must make sure the correct register bank is selected. For example,
the following code can be used to select register bank 2:

 PUSH PSW ;save PSW/register bank
 MOV PSW,#(2 SHL 3) ;select register bank 2
.
.
.
 ;function or subroutine body
.
.
.
 POP PSW ;restore PSW/register bank

The register bank selected by the USING directive is marked in the object file
and the memory area required by these registerbank reserved by the
Linker/Locator.

The value of AR0 through AR7 is calculated as the absolute address of R0
through R7 in the register bank specified by the USING directive. Some 8051
instruction (i.e. PUSH / POP) only allow to use absolute register addresses. By
default the register bank 0 is assigned to the symbols AR0 through AR7.

NOTE
When the EQU directive is used to define a symbol for an ARn register, the
address of the register Rn is calculated when the symbol is defined; not when it
is used. If the USING directive subsequently changes the register bank, the
defined symbol will not have the proper address of the ARn register and the
generated code is likely to fail.

70 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

Example
 USING 3
 PUSH AR2 ; Push register 2 in bank 3

 USING 1
 PUSH AR2 ; Push register 2 in bank 1

A51 Assembler / A251 Assembler 71

† New features in the A251 assembler and the MCS 251 architecture

4

Other Directives

END

The END directive signals the end of the assembly module. Any text in the
assembly file that appears after the END directive is ignored.

The END directive is required in every assembly source file. If the END
statement is excluded, A251 will generate a fatal error message.

Example
END

72 Chapter 4. Assembler Directives

† New features in the A251 assembler and the MCS 251 architecture

4

A51 Assembler / A251 Assembler 73

† New features in the A251 assembler and the MCS 251 architecture

5

Chapter 5. Standard Macros
A macro is a name that you assign to one or more assembly statements. A251
provides a macro processor that enables you to define and to use macros in your
8051 assembly programs. This chapter describes some of the features and
advantages of using macros, lists the directives and operators that are used in
macro definitions, and provides a number of example macros.

When you define a macro, you provide text (usually assembly code) that you
want to associate with a macro name. Then, when you want to include the macro
text in your assembly program, you provide the name of the macro. The A251
assembler will replace the macro name with the text specified in the macro
definition.

Macros provide a number of advantages when writing assembly programs.

′ The frequent use of macros can reduce programmer induced errors. A macro
allows you to define instruction sequences that are used repetitively
throughout your program. Subsequent use of the macro will faithfully
provide the same results each time. A macro can help reduce the likelihood
of errors introduced in repetitive programming sequences. Of course,
introduction of an error into a macro definition will cause that error to be
duplicated where the macro is used.

′ The scope of symbols used in a macro is limited to that macro. You do not
need to be concerned about utilizing a previously used symbol name.

′ Macros are well suited for the creation of simple code tables. Production of
these tables by hand is both tedious and error prone.

A macro can be thought of as a subroutine call with the exception that the code
that would be contained in the subroutine is included in–line at the point of the
macro call. However, macros should not be used to replace subroutines. Each
invocation of a subroutine only adds code to call the subroutine. Each
invocation of a macro causes the assembly code associated with the macro to be
included in–line in the assembly program. This can cause a program to grow
rapidly if a large macro is used frequently. In a static environment, a subroutine
is the better choice, since program size can be considerably reduced. But in time
critical, dynamic programs, macros will speed the execution of algorithms or
other frequently called statements without the penalty of the procedure calling
overhead.

74 Chapter 5. Standard Macros

† New features in the A251 assembler and the MCS 251 architecture

5

Use the following guidelines when deciding between macros or subroutines:

′ Subroutines are best used when certain procedures are frequently executed or
when memory space usage must be kept to a minimum.

′ Macros should be used when maximum processor speed is required and when
memory space used is of less importance.

′ Macros can also be used to make repetitive, short assembly blocks more
convenient to enter.

Directives

A251 provides a number of directives that are used specifically for defining
macros. These directives are listed in the following table:

Directive Description

ENDM Ends a macro definition.

EXITM Causes the macro expansion to immediately terminate.

IRP Specifies a list of arguments to be substituted, one at a time, for a specified
parameter in subsequent lines.

IRPC Specifies an argument to be substituted, one character at a time, for a
specified parameter in subsequent lines.

LOCAL Specifies up to 16 local symbols used within the macro.

MACRO Begins a macro definition and specifies the name of the macro and any
parameters that may be passed to the macro.

REPT Specifies a repetition factor for subsequent lines in the macro.

Refer to “Assembler Controls” on page 115 as well as the following sections for
more information on these and other directives.

Defining a Macro

Macros must be defined in the program before they can be used. A macro
definition begins with the MACRO directive which declares the name of the
macro as well as the formal parameters. The macro definition must be
terminated with the ENDM directive. The text between the MACRO and
ENDM directives is called the macro body.

A51 Assembler / A251 Assembler 75

† New features in the A251 assembler and the MCS 251 architecture

5

Example
WAIT MACRO X ; macro definition
 REPT X ; generate X NOP instructions
 NOP
 ENDM ; end REPT
 ENDM ; end MACRO

In this example, WAIT is the name of the macro and X is the only formal
parameter.

In addition to the ENDM directive, the EXITM directive can be used to
immediately terminate a macro expansion. When an EXITM directive is
detected, the macro processor stops expanding the current macro and resumes
processing after the next ENDM directive. The EXITM directive is useful in
conditional statements.

Example
WAIT MACRO X ; macro definition
 IF NUL X ; make sure X has a value
 EXITM ; if not then exit
 ENDIF

 REPT X ; generate X NOP instructions
 NOP
 ENDM ; end REPT
 ENDM ; end MACRO

Parameters

Up to 16 parameters can be passed to a macro in the invocation line. Formal
parameter names must be defined using the MACRO directive.

Example
MNAME MACRO P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,P16

defines a macro with 16 parameters. Parameters must be separated by commas
both in the macro definition and invocation. The invocation line for the above
macro would appear as follows:

MNAME A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P

where A, B, C, … O, P are parameters that correspond to the format parameter
names P1, P2, P3, … P15, P16.

76 Chapter 5. Standard Macros

† New features in the A251 assembler and the MCS 251 architecture

5

Null parameters can be passed to a macro. Null parameters have the value
NULL and can be tested for using the NUL operator described later in this
chapter. If a parameter is omitted from the parameter list in the macro
invocation, that parameter is assigned a value of NULL.

Example
MNAME A,,C,,E,,G,,I,,K,,M,,O,

P2, P4, P6, P8, P10, P12, P14, and P16 will all be assigned the value NULL
when the macro is invoked. You should note that there are no spaces between
the comma separators in the above invocation line. A space has an ASCII value
of 20h and is not equivalent to a NULL.

Labels

You can use labels within a macro definition. By default, labels used in a macro
are global and if the macro is used more than once in a module, A251 will
generate an error.

Example
MS–DOS MACRO ASSEMBLER A251
OBJECT MODULE PLACED IN M_GLAB.OBJ
ASSEMBLER INVOKED BY: A251 M_GLAB.A251

LOC OBJ LINE SOURCE

 1 GLABEL MACRO
 2 LOOP: NOP
 3 JMP LOOP
 4 ENDM
 5
 6
 7 GLABEL
0000 00 8+1 LOOP: NOP
0001 80FD 9+1 JMP LOOP
 10 GLABEL
 11+1 LOOP: NOP
*** _________________________^
*** ERROR #9, LINE #11, ATTEMPT TO DEFINE AN ALREADY DEFINED LABEL
0003 80FB 12+1 JMP LOOP
 13
 14
 15 END

Labels used in a macro should be local labels. Local labels are visible only
within the macro and will not generate errors if the macro is used multiple times

A51 Assembler / A251 Assembler 77

† New features in the A251 assembler and the MCS 251 architecture

5

in one source file. You can define a label (or any symbol) used in a macro to be
local with the LOCAL directive. Up to 16 local symbols may be defined using
the LOCAL directive.

Example
CLRMEM MACRO ADDR, LEN
 LOCAL LOOP
 MOV R7, #LEN
 MOV R0, #ADDR
 MOV A, #0
LOOP: MOV @R0, A
 INC R0
 DJNZ R7, LOOP
 ENDM

In this example, the label LOOP is local because it is defined with the LOCAL
directive. Any symbol that is not defined using the LOCAL directive will be a
global symbol.

A251 generates an internal symbol for local symbols defined in a macro. The
internal symbol has the form ??0000 and is incremented each time the macro is
invoked. Therefore, local labels used in a macro are unique and will not
generate errors.

Repeating Blocks

A251 provides the ability to repeat a block of text within a macro. The REPT,
IRP, and IRPC directives are used to specify text to repeat within a macro.
Each of these directives must be terminated with an ENDM directive.

REPT

The REPT directive will cause a block of text to be repeated a fixed number of
times. The following macro:

DELAY MACRO ;macro definition
 REPT 5 ;insert 5 NOP instructions
 NOP
 ENDM ;end REPT block
 ENDM ;end macro definition

 will insert 5 NOP instructions when it is invoked.

78 Chapter 5. Standard Macros

† New features in the A251 assembler and the MCS 251 architecture

5

Example
NOP
NOP
NOP
NOP
NOP

IRP

The IRP directive will repeat a block once for each argument in a specified list.
A specified parameter in the text block will be replaced by each argument. The
following macro:

CLRREGS MACRO ; macro definition
 IRP RNUM, <R0,R1,R2,R3,R4,R5,R6,R7>
 MOV RNUM, #0
 ENDM ; end IRP
 ENDM ; end MACRO

replaces the argument RNUM with R0, R1, R2, … R7 and will generate the
following code when invoked:

MOV R0, #0
MOV R1, #0
MOV R2, #0
MOV R3, #0
MOV R4, #0
MOV R5, #0
MOV R6, #0
MOV R7, #0

IRPC

The IRPC directive will repeat a block once for each character in the specified
argument. A specified parameter in the text block will be replaced by each
character. The following macro:

DEBUGOUT MACRO ; macro definition
 IRPC CHR, <TEST>
 JNB TI, $; wait for xmitter
 CLR TI
 MOV A,#'CHR'
 MOV SBUF,A ; xmit CHR
 ENDM ; end IRPC
 ENDM ; end MACRO

A51 Assembler / A251 Assembler 79

† New features in the A251 assembler and the MCS 251 architecture

5

replaces the argument CHR with the characters T, E, S, and T and will
generate the following code when invoked:

JNB TI, $; WAIT FOR XMITTER
CLR TI
MOV A,#'T'
MOV SBUF,A ; XMIT T
JNB TI, $; WAIT FOR XMITTER
CLR TI
MOV A,#'E'
MOV SBUF,A ; XMIT E
JNB TI, $; WAIT FOR XMITTER
CLR TI
MOV A,#'S'
MOV SBUF,A ; XMIT S
JNB TI, $; WAIT FOR XMITTER
CLR TI
MOV A,#'T'
MOV SBUF,A ; XMIT T

Nested Definitions

Macro definitions can be nested up to nine levels deep.

Example
L1 MACRO
 LOCAL L2
 L2 MACRO
 INC R0
 ENDM
 MOV R0, #0
 L2
 ENDM

The macro L2 is defined within the macro definition of L1. Since the LOCAL
directive is used to define L2 as a local symbol, it is not visible outside L1. If
you want to use L2 outside of L1, exclude L2 from the LOCAL directive
symbol list.

Invocation of the L1 macro generates the following:

MOV R0, #0
INC R0

80 Chapter 5. Standard Macros

† New features in the A251 assembler and the MCS 251 architecture

5

Nested Repeating Blocks

You can also nest repeating blocks, specified with the REPT, IRP, and IRPC
directives.

Example
PORTOUT MACRO ; macro definition
 IRPC CHR, <Hello>
 REPT 4 ; wait for 4 cycles
 NOP
 ENDM ; end REPT
 MOV A,#'CHR'
 MOV P0,A ; write CHR to P0
 ENDM ; end IRPC
 ENDM ; end MACRO

This macro nests a REPT block within an IRPC block.

Recursive Macros

Macros can call themselves directly or indirectly (via another macro). However,
the total number of levels of recursion may not exceed nine. A fatal error will be
generated if the total nesting level is greater than nine. The following example
shows a recursive macro that is invoked by a non–recursive macro.

RECURSE MACRO X ; recursive macro
IF X<>0
 RECURSE %X–1
 ADD A,#X ; gen add a,#?
ENDIF
 ENDM

SUMM MACRO X ; macro to sum numbers
 MOV A,#0 ; start with zero
IF NUL X ; exit if null argument
 EXITM
ENDIF
IF X=0 ; exit if 0 argument
 EXITM
ENDIF

 RECURSE X ; sum to 0
 ENDM

A51 Assembler / A251 Assembler 81

† New features in the A251 assembler and the MCS 251 architecture

5

Operators

A251 provides a number of operators that may be used within a macro
definition. The following table lists the operators and gives a description of
each.

Operator Description

NUL The NUL operator can be used to determine if a macro argument is NULL.
NUL generates a non–zero value if its argument is a NULL. Non–NULL
arguments will generate a value of 0. The NUL operator can be used with an
IF control to enable condition macro assembly.

& The ampersand character is used to concatenate text and parameters.

< > Angle brackets are used to literalize delimiters like commas and blanks. Angle
brackets are required when passing these characters to a nested macro. One
pair of angle brackets is required for every nesting level.

% The percent sign is used to prefix a macro argument that should be interpreted
as an expression. When this operator is used, the numeric value of the
following expression is calculated. That value is passed to the macro instead
of the expression text.

;; A double semicolon indicates that subsequent text on the line should be
ignored. The remaining text is not processed or emitted. This helps to reduce
memory usage.

! If an exclamation mark is used in front of a character, that character will be
literalized. This allows character operators to be passed to a macro as a
parameter.

NUL Operator

When a formal parameter in a macro call is omitted, the parameter is given a
value of NULL. You can check for NULL parameters by using the NUL
operator within an IF control statement in the macro. The NUL operator
requires an argument. If no argument is found, NUL returns a value of 0 to the
IF control.

For example, the following macro definition:

EXAMPLE MACRO X
 IF NUL X
 EXITM
 ENDIF
ENDM

when invoked by:

EXAMPLE

82 Chapter 5. Standard Macros

† New features in the A251 assembler and the MCS 251 architecture

5

will cause the IF NUL X test to pass, process the EXITM statement, and exit the
macro expansion.

NOTE
A blank character (‘ ’) has an ASCII value of 20h and is not equivalent to a
NULL.

& Operator

The ampersand macro operator (&) can be used to concatenate text and macro
parameters. The following macro declaration demonstrates the proper use of this
operator.

MAK_NOP_LABEL MACRO X
LABEL&X: NOP
 ENDM

The MAK_NOP_LABEL macro will insert a new label and a NOP instruction for
each invocation. The argument will be appended to the text LABEL to form the
label for the line.

Example
LOC OBJ LINE SOURCE

 1 MAK_NOP_LABEL MACRO X
 2 LABEL&X: NOP
 3 ENDM
 4
 5
 6 MAK_NOP_LABEL 1
0000 00 7+1 LABEL1: NOP
 8 MAK_NOP_LABEL 2
0001 00 9+1 LABEL2: NOP
 10 MAK_NOP_LABEL 3
0002 00 11+1 LABEL3: NOP
 12 MAK_NOP_LABEL 4
0003 00 13+1 LABEL4: NOP
 14
 15 END

The MAK_NOP_LABEL macro is invoked in the above example in lines 6, 8, 10,
and 12. The generated label and NOP instructions are shown in lines 7, 9, 11,
and 13. Note that the labels are concatenated with the argument that is passed in
the macro invocation.

A51 Assembler / A251 Assembler 83

† New features in the A251 assembler and the MCS 251 architecture

5

< and > Operators

The angle bracket characters (< >) are used to enclose text that should be
passed literally to macros. Some characters; for example, the comma; cannot be
passed without being enclosed within angle brackets.

The following example shows a macro declaration and invocation passing an
argument list within angle brackets.

 1 FLAG_CLR MACRO FLAGS
 2 MOV A, #0
 3 IRP F, <FLAGS>
 4 MOV FLAG&F, A
 5 ENDM
 6 ENDM
 7
 8 DSEG
0000 9 FLAG1: DS 1
0001 10 FLAG2: DS 1
0002 11 FLAG3: DS 1
0003 12 FLAG4: DS 1
0004 13 FLAG5: DS 1
0005 14 FLAG6: DS 1
0006 15 FLAG7: DS 1
0007 16 FLAG8: DS 1
0008 17 FLAG9: DS 1
 18
 19 CSEG
 20
 21 FLAG_CLR <1>
0000 7400 22+1 MOV A, #0
 23+1 IRP F, <1>
 24+1 MOV FLAG&F, A
 25+1 ENDM
0002 F500 26+2 MOV FLAG1, A
 27 FLAG_CLR <1,2,3>
0004 7400 28+1 MOV A, #0
 29+1 IRP F, <1,2,3>
 30+1 MOV FLAG&F, A
 31+1 ENDM
0006 F500 32+2 MOV FLAG1, A
0008 F501 33+2 MOV FLAG2, A
000A F502 34+2 MOV FLAG3, A
 35 FLAG_CLR <1,3,5,7>
000C 7400 36+1 MOV A, #0
 37+1 IRP F, <1,3,5,7>
 38+1 MOV FLAG&F, A
 39+1 ENDM
000E F500 40+2 MOV FLAG1, A
0010 F502 41+2 MOV FLAG3, A
0012 F504 42+2 MOV FLAG5, A
0014 F506 43+2 MOV FLAG7, A
.
.

84 Chapter 5. Standard Macros

† New features in the A251 assembler and the MCS 251 architecture

5

In the above example, the FLAG_CLR macro is declared to clear any of a number
of flag variables. The FLAGS argument specifies a list of arguments that are
used by the IRP directive in line 3. The IRP directive repeats the instruction
MOV FLAG&F, A for each parameter in the FLAGS argument.

The FLAG_CLR macro is invoked in lines 21, 27, and 35. In line 21, only one
parameter is passed. In line 27, three parameters are passed, and in line 35, four
parameters are passed. The parameter list is enclosed in angle brackets so that it
may be referred to as a single macro parameter, FLAGS. The code generated by
the macro is found in lines 26, 32–34, and 40–43.

% Operator

The percent character (%) is used to pass the value of an expression to a macro
rather than passing the literal expression itself. For example, the following
program example shows a macro declaration that requires a numeric value along
with macro invocations that use the percent operator to pass the value of an
expression to the macro.

 1 OUTPORT MACRO N
 2 MOV A, #N
 3 MOV P0, A
 4 ENDM
 5
 6
 00FF 7 RESET_SIG EQU 0FFh
 0000 8 CLEAR_SIG EQU 0
 9
 10
 11 OUTPORT %(RESET_SIG AND NOT 11110000b)
0000 740F 12+1 MOV A, #15
0002 F580 13+1 MOV P0, A
 14
 15 OUTPORT %(CLEAR_SIG OR 11110000b)
0004 74F0 16+1 MOV A, #240
0006 F580 17+1 MOV P0, A

In this example, the expressions evaluated in lines 11 and 15 could not be passed
to the macro because the macro expects a numeric value. Therefore, the
expressions must be evaluated before the macro. The percent sign forces A251
to generate a numeric value for the expressions. This value is then passed to the
macro.

A51 Assembler / A251 Assembler 85

† New features in the A251 assembler and the MCS 251 architecture

5

;; Operator

The double semicolon operator is used to signal that the remaining text on the
line should not be emitted when the macro is expanded. This operator is
typically used to precede comments that do not need to be expanded when the
macro is invoked.

Example
REGCLR MACRO CNT
REGNUM SET 0
 MOV A, #0 ;; load A with 0
 REPT CNT ;; rpt for CNT registers
 MOV R®NUM, A ;; set R# to 0
 REGNUM SET %(REGNUM+1)
 ENDM
 ENDM

! Operator

The exclamation mark operator is used to indicate that a special character is to
be passed literally to a macro. This operator enables you to pass comma and
angle bracket characters, that would normally be interpreted as delimiters, to a
macro.

Invoking a Macro

Once a macro has been defined, it can be called many times in the program. A
macro call consists of the macro name plus any parameters that are to be passed
to the macro.

In the invocation of a macro, the position of the actual parameters corresponds to
the position of the parameter names specified in the macro definition. A251
performs parameter substitution in the macro starting with the first parameter.
The first parameter passed in the invocation replaces each occurrence of the first
formal parameter in the macro definition, the second parameter that is passed
replaces the second formal parameter in the macro definition, and so on.

If more parameters are specified in the macro invocation than are actually
declared in the macro definition, A251 ignores the additional parameters. If
fewer parameters are specified than declared, A251 replaces the missing
parameters with a NULL character.

86 Chapter 5. Standard Macros

† New features in the A251 assembler and the MCS 251 architecture

5

To invoke a macro in your assembly programs, you must first define the macro.
For example, the following definition:

.

.

.
DELAY MACRO CNT ;macro definition
 REPT CNT ;insert CNT NOP instructions
 NOP
 ENDM ;end REPT block
 ENDM ;end macro definition
.
.
.

defines a macro called DELAY that accepts one argument CNT. This macro will
generate CNT NOP instructions. So, if CNT is equal to 3, the emitted code will
be:

NOP
NOP
NOP

The following code shows how to invoke the DELAY macro from an assembly
program.

.

.

.
LOOP: MOV P0, #0 ;clr PORT 0
 DELAY 5 ;wait 5 NOPs
 MOV P0, #0ffh ;set PORT 0
 DELAY 5 ;wait 5 NOPs
 JMP LOOP ;repeat
.
.
.

In this example, a value of 0 is written to port 0. The DELAY macro is then
invoked with the parameter 5. This will cause 5 NOP instructions to be inserted
into the program. A value of 0FFh is written to port 0 and the DELAY macro is
invoked again. The program then repeats.

A51 Assembler / A251 Assembler 87

† New features in the A251 assembler and the MCS 251 architecture

6

Chapter 6. Macro Processing
Language

The Macro Processing Language (MPL) is a string replacement facility. The
macro processing language is enabled with the assembler control MPL and fully
compatible to the Intel ASM 51 macro processing language. It permits you to
write repeatedly used sections of code once and then insert that code at several
places in your program. Perhaps MPL’s most valuable capability is conditional
assembly-with all microprocessors, compact configuration dependent code is
very important to good program design. Conditional assembly of sections of
code can help to achieve the most compact code possible.

Overview

The MPL processor views the source file in different terms than the assembler:
to the assembler, the source file is a series of lines – control lines, and directive
lines. To the MPL processor, the source file is a long string of characters.

All MPL processing of the source file is performed before your code is
assembled. Because of this independent processing of the MPL macros and
assembly of code, we must differentiate between macro-time and assembly-
time. At macro-time, assembly language symbols and labels are unknown.
SET and EQU symbols, and the location counter are also not known.
Similarly, at assembly-time, no information about the MPL is known.

The MPL processor scans the source file looking for macro calls. A macro
call is a request to the processor to replace the macro name of a built-in or
user-defined macro by some replacement text.

Creating and Calling MPL Macros

The MPL processor is a character string replacement facility. It
searches the source file for a macro call, and then replaces the call
with the macro's return value. A % character signals a macro call.

88 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

The MPL processor function DEFINE creates macros. MPL processor functions
are a predefined part of the macro language, and can be called without definition.
The syntax for DEFINE is:

%[*]DEFINE (macro name) [parameter-list] (macro-body)

DEFINE is the most important macro processor function. Each of the symbols in
the syntax above (macro name, parameter-list, and macro-body) are described in
the following.

Creating Parameterless Macros

When you create a parameterless macro, there are two parts to a DEFINE call:

′ macro name
The macro name defines the name used when the macro is called.

′ macro body
The macro-body defines the return value of the call.

The syntax of a parameterless macro definition is shown below:

%*DEFINE (macro name) (macro-body)

The ‘ %’ is the metacharacter that signals a macro call. The ‘*’ is the literal
character. The use of the literal character is described later in this part.

Macro names have the following conventions:

′ Maximum of 31 characters long

′ First character: ‘A’ - ‘Z’, ‘a’ - ‘z’, ‘_’, or ‘?’

′ Other characters: ‘A’ - ‘Z’, ‘a’ - ‘z’, ‘_’, ‘?’, ‘0’ - ‘9’

The macro-body is usually the replacement text of the macro call. However, the
macro-body may contain calls to other macros. If so, the replacement text is
actually the fully expanded macro-body, including the calls to other macros.
When you define a macro using the syntax shown above, macro calls contained
in the body of the macro are not expanded, until you call the macro.

A51 Assembler / A251 Assembler 89

† New features in the A251 assembler and the MCS 251 architecture

6

The syntax of DEFINE requires that left and right parentheses surround the
macro-body. For this reason, you must have balanced parentheses within the
macro-body (each left parenthesis must have a succeeding right parenthesis, and
each right parenthesis must have a preceding left parenthesis). We call character
strings that meet these requirements balanced-text.

To call a macro, use the metacharacter followed by the macro name for the MPL
macro. (The literal character is not needed when you call a user-defined macro.)
The MPL processor will remove the call and insert the replacement text of the
call. If the macro- body contains any call to other macros, they will be replaced
with their replacement text.

Once a macro has been created, it may be redefined by a second DEFINE.

MPL Macros with Parameters

Parameters in a macro body allow to fill in values when you call the MPL macro.
This permits you to design a generic macro that produces code for many
operations.

The term parameter refers to both the formal parameters that are specified when
the macro is defined, and the actual parameters or arguments that are replaced
when the macro is called.

The syntax for defining MPL macros with parameters is:

%*DEFINE (macro-name(parameter-list)) (macro-body)

The parameter-list is a list of identifiers separated by macro delimiters. The
identifier for each parameter must be unique.

Typically, the macro delimiters are parentheses and commas. When using these
delimiters, you would enclose the parameter-list in parentheses and separate each
formal parameter with a comma. When you define a macro using parentheses
and commas as delimiters, you must use those same delimiters, when you call
that macro.

The macro-body must be a balanced-text string. To indicate the locations of
parameter replacement, place the parameter's name preceded by the
metacharacter in the macro-body. The parameters may be used any number of
times and in any order within the macro-body. If a macro has the same name as

90 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

one of the parameters, the macro cannot be called within the macro-body since
this would lead to infinite recursion.

The example below shows the definition of a macro with three dummy
parameters - SOURCE, DESTINATION, and COUNT. The macro will produce
code to copy any number of bytes from one part of memory to another.

%*DEFINE (BMOVE (src, dst, cnt)) LOCAL lab (
 MOV R0,#%src
 MOV R1,#%dst
 MOV R2,#%cnt
%lab: MOV A,@R0
 MOV @R1,A
 INC R0
 INC R1
 DJNZ R2, %lab
)

To call the above macro, you must use the metacharacter followed by the macro's
name similar to simple macros without parameters. However, a list of the actual
parameters must follow. The actual parameters must be surrounded in the macro
definition. The actual parameters must be balanced-text and may optionally
contain calls to other macros. A simple program example with the macro
defined above might be:

Assembler source text
%*DEFINE (BMOVE (src, dst, cnt)) LOCAL lab (
 MOV R0,#%src
 MOV R1,#%dst
 MOV R2,#%cnt
%lab: MOV A,@R0
 MOV @R1,A
 INC R0
 INC R1
 DJNZ R2, %lab
)

ALEN EQU 10 ; define the array size
DSEC SEGMENT IDATA ; define a IDATA segment
PSEC SEGMENT CODE ; define a CODE segment

 RSEG DSEC ; activate IDATA segment
arr1: DS ALEN ; define arrays
arr2: DS ALEN

 RSEG PSEC ; activate CODE segment
; move memory block
%BMOVE (arr1,arr2,ALEN)

 END

A51 Assembler / A251 Assembler 91

† New features in the A251 assembler and the MCS 251 architecture

6

The following listing shows the assembler listing of the above source code.

LOC OBJ LINE SOURCE

 1
 2
00000A 3 ALEN EQU 10 ; define the array size
------ 4 DSEC SEGMENT IDATA ; define a IDATA segment
------ 5 PSEC SEGMENT CODE ; define a CODE segment
 6
------ 7 RSEG DSEC ; activate IDATA segment
000000 8 arr1: DS ALEN ; define arrays
00000A 9 arr2: DS ALEN
 10
------ 11 RSEG PSEC ; activate CODE segment
 12 ; move memory block
 13 ; %BMOVE (arr1,arr2,ALEN)
 14 ;
 15 ; MOV R0,#%src
 16 ; MOV R1,#%dst
 17 ; MOV R2,#%cnt
 18 ; %lab: MOV A,@R0
 19 ; MOV @R1,A
 20 ; INC R0
 21 ; INC R1
 22 ; DJNZ R2, %lab
 23
 24 ; MOV R0,#%src
 25 ; arr1
000000 7E0000 F 26 MOV R0,#arr1
 27 ; MOV R1,#%dst
 28 ; arr2
000003 7E1000 F 29 MOV R1,#arr2
 30 ; MOV R2,#%cnt
 31 ; ALEN
000006 7E200A 32 MOV R2,#ALEN
 33 ; %lab: MOV A,@R0
 34 ;LAB0
000009 A5E6 35 LAB0: MOV A,@R0
00000B A5F7 36 MOV @R1,A
00000D A508 37 INC R0
00000F A509 38 INC R1
 39 ; DJNZ R2, %lab
 40 ; LAB0
000011 A5DA00 F 41 DJNZ R2, LAB0
 42
 43 END

The example shows an assembled file containing a macro definition in lines
1 to 9. The macro definition shows semicolons at start of each line. These
semicolons are added by the assembler to prevent assembly of the definition text
which is meaningful to the MPL preprocessor, but not to the remaining
assembler phases. The listing will not include macro definitions or macro calls,
if the general control NOGEN (which is the default if none is given), is used.

92 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

The macro BMOVE is called in line 12 with three actual parameters. Lines 14 to
20 shows the macro expansion, which is the return value of the macro call. This
text will be assembled.

The example will produce assembly errors because no section directives are
included in the source file. The purpose here is to show MPL processing, not the
assembler semantics.

Local Symbols List

The DJNZ instruction in the previous example uses a local label for target of the
branch. If a fixed label name is used (for example xlab, without leading %) then
activation of the macro a second time would cause assembly errors due to
multiple definitions of a single name.

The solution to this problem are local symbols. Local symbols are generated by
the MPL processor as 'local_symbol_nnn', where local_symbol is the name of
the local symbol and nnn is some number. Each time the macro is called, the
number will be automatically incremented, the resulting names will be unique on
each macro call.

The MPL processor increments a counter each time your program calls a macro
that uses the LOCAL construct. The counter is incremented once for each
symbol in the LOCAL list. Symbols in the LOCAL list, when used in the macro-
body, receive a one to five digit suffix that is the decimal value of the counter.
The first time you call a macro that uses the LOCAL construct, the suffix is '0'.

The syntax for the LOCAL construct in the DEFINE functions is shown below
(this is finally the complete syntax for the MPL processor function DEFINE):

%*DEFINE (macro-name (parameter-list)) [LOCAL local-list] (macro-body)

The local-list is a list of valid macro identifiers separated by spaces or commas.
The LOCAL construct in a macro has no affect on the syntax of a macro call.

A51 Assembler / A251 Assembler 93

† New features in the A251 assembler and the MCS 251 architecture

6

Macro Processor Language Functions

The MPL processor has several predefined macro processor functions. These
MPL processor functions perform many useful operations that would be difficult
or impossible to produce in a user-defined macro. An important difference
between a user-defined macro and a MPL processor function is that user-defined
macros may be redefined, while MPL processor functions can not be redefined.

We have already seen one of these MPL processor functions, DEFINE. DEFINE
creates user defined macros. MPL processor functions are already defined when
the MPL processor is started.

Comment Function

The MPL processing language can be very subtle, and the operation of macros
written in a straightforward manner may not be immediately obvious. Therefore,
it is often necessary to comment macro definitions. The comment function has
the following syntax:

%'text'
%'text end-of-line

The comment function always evaluates to the null string. Two terminating
characters are recognized, the apostrophe and the end-of-line character. The
second form allows to spread macro definitions over several lines, while
avoiding unwanted end-of-lines in the return value. In either form of the
comment function, the text or comment is not evaluated for macro calls.

Example
%'this is macro comment.' ; this is an assembler comment.

%'the complete line including end-of-line is a comment

Source text before MPL processing
MOV R5, R15 %'the following line will be kept separate'
MOV R1, %'this comment eats the newline character
R12

Output text from MPL processor
MOV R5, R15
MOV R1, R12

94 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

Escape Function

Sometimes it is required to prevent the MPL processor from processing macro
text. Two MPL processor functions perform this operation:

′ escape function

′ bracket function

The escape function interrupts scanning of macro text. The syntax of the escape
function is:

%n text-n-characters-long

The metacharacter followed by a single decimal digit specifies the number of
characters (maximum is 9) shall not be evaluated. The escape function is useful
for inserting a metacharacter (normally the % character), a comma, or a
parenthesis.

Example
10%1% OF 10 = 1; expands to: 10% OF 10 = 1;
ASM%0251 expands to: ASM251

Bracket Function

The other MPL processor function that inhibits the processing of macro text is
the bracket function. The syntax of the bracket function is:

%(balanced-text)

The bracket function disables all MPL processing of the text contained within
the parentheses. However, the escape function, the comment function, and
parameter substitution are still recognized.

Since there is no restriction for the length of the text within the bracket function,
it is usually easier to use than the escape function.

Example
ASM%(251) evaluates to: ASM251
%(1,2,3,4,5) evaluates to: 1,2,3,4,5

A51 Assembler / A251 Assembler 95

† New features in the A251 assembler and the MCS 251 architecture

6

Macro definition of ‘DW’
%*DEFINE (DW (LIST, LABEL)) (
%LABEL: DW %LIST
)

Macro call to ‘DW’
%DW (%(120, 121, 122, 123, -1), TABLE)

Return value of the macro call to ‘DW’
TABLE: DW 120, 121, 122, 123, -1

The macro above will add word definitions to the source file. It uses two
parameters: one for the word expression list and one for the label name. Without
the bracket function it would not be possible to pass more than one expression in
the list, since the first comma would be interpreted as the delimiter separating
the actual parameters to the macro. The bracket function used in the macro call
prevents the expression list (120, 121, 122, 123, -1) from being evaluated as
separate parameters.

METACHAR Function

The MPL processor function METACHAR allows the programmer to change the
character that will be recognized by the MPL processor as the metacharacter.
The use of this function requires extreme care.

The syntax of the METACHAR function is:

%METACHAR (balanced_text)

The first character of the balanced text is taken to be the new value of the
metacharacter. The characters @, (,), *, blank, tab, and identifier-characters are
not allowed to be the metacharacter.

Example
%METACHAR (!) ; change metacharacter to '!'
!(1,2,3,4) ; bracket function invoked with !

96 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

Numbers and Expressions

Balanced text strings appearing in certain places in built-in MPL processor
functions are interpreted as numeric expressions:

′ The argument to evaluate function 'EVAL'

′ The argument to the flow of control functions 'IF', 'WHILE', 'REPEAT'
and 'SUBSTR'.

Expressions are processed as follows:

′ The text of the numeric expression will be expanded in the ordinary manner
of evaluating an argument to a macro function.

′ The resulting string is evaluated to both a numeric and character
representation of the expressions result. The return value is the character
representation.

The following operators are allowed (shown in order of precedence).

1. Parenthesized Expressions

2. HIGH, LOW

3. *, /, MOD, SHL, SHR

4. EQ, LT, LE, GT, GE, NE

5. NOT

6. AND, OR, XOR

The arithmetic is done using signed 16-bit integers. The result of the relational
operators is either 0 (FALSE) or 1 (TRUE).

Numbers

Numbers can be specified in hexadecimal (base 16), decimal (base 10), octal
(base 8) and binary (base 2). A number without an explicit base is interpreted as

A51 Assembler / A251 Assembler 97

† New features in the A251 assembler and the MCS 251 architecture

6

decimal, this being the default representation. The first character of a number
must always be a digit between 0 and 9. Hexadecimal numbers which do not
have a digit as the first character must have a 0 placed in front of them.

Base Suffix Valid Characters Examples

hexadecimal H,h 0 - 9, A-F (a - f) 1234H 99H 123H 0A0F0H 0FFH

Hexadecimal numbers must be preceded with a 0, if the first
digit is in range A to F

decimal D,d 0 - 9 1234 65590D 20d 123

octal O,o,Q,q 0 - 7 177O 7777o 25O 123o 177777O

binary B,b 0 - 1 1111B 10011111B 101010101B

Dollar ($) signs can be placed within the numbers to make them more readable.
However a $ sign is not allowed to be the first or last character of a number and
will not be interpreted.

1111$0000$1010$0011B is equivalent to 1111000010100011B

1$2$3$4 is equivalent to 1234

Hexadecimal numbers may be also entered using the convention from the C
language:

0xFE02 0x1234
0X5566 0x0A

Character Strings

The MPL processor allows the use of ASCII characters strings in expressions.
An expression is permitted to have a string consisting of one or two characters
enclosed in single quote characters (').

'A' evaluates to 0041H

'AB' evaluates to 4142H

'a' evaluates to 0061H

'ab' evaluates to 6162H

'' the null string is not valid!

'abc' ERROR due to more than two characters

98 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

The MPL processor cannot access the assembler's symbol table. The values of
labels, SET and EQU symbols are not known during MPL processing. But, the
programmer can define macro-time symbols with the MPL processor function
'SET'.

SET Function

The MPL processor function SET permits you to define macro-time symbols.
SET takes two arguments: a valid identifier, and a numeric expression.

The syntax of the SET function is:

%SET (identifier,expression)

SET assigns the value of the numeric expression to the identifier.

The SET function affects the MPL processor symbol table only. Symbols
defined by SET can be redefined with a second SET function call, or defined as
a macro with DEFINE.

Source text
%SET (CNT, 3)
%SET (OFS, 16)
MOV R1,#%CNT+%OFS
%SET (OFS, %OFS + 10)
OFS = %OFS

Output text
MOV R1,#3+16
OFS = 26

The SET symbol may be used in the expression that defines its own value:

Source text
%SET (CNT, 10) %' define variable CNT'
%SET (OFS, 20) %' define variable OFS'

% 'change values for CNT and OFS'
%SET (CNT, %CNT+%OFS) %' CNT = 30'
%SET (OFS, %OFS * 2) %' OFS = 40'
MOV R2,#%CNT + %OFS %' 70'
MOV R5,#%CNT %' 30'

A51 Assembler / A251 Assembler 99

† New features in the A251 assembler and the MCS 251 architecture

6

Output text
MOV R2,#30 + 40
MOV R5,#30

EVAL Function

The MPL processor function EVAL accepts an expression as an argument and
returns the decimal character representation of it's result.

The syntax of the EVAL function is:

%EVAL (expression)

The expression arguments must be a legal expression with already defined macro
identifiers, if any.

Source text
%SET (CNT, 10) %' define variable CNT'
%SET (OFS, 20) %' define variable OFS'

MOV R15,#%EVAL (%CNT+1)
MOV WR14,#%EVAL (14+15*200)
MOV R13,#%EVAL (-(%CNT + %OFS - 1))
MOV R2,#%EVAL (%OFS LE %CNT)
MOV R7,#%EVAL (%OFS GE %CNT)

Output text
MOV R15,#11
MOV WR14,#3014
MOV R13,#-29
MOV R2,#0
MOV R7,#1

Logical Expressions and String Comparison

The following MPL processor functions compare two balanced-text string
arguments and return a logical value based on that comparison. If the function
evaluates to 'TRUE,' then it returns '1'. If the function evaluates to 'FALSE,' then
it returns '0'. The list of string comparison functions below shows the syntax and
describes the type of comparison made for each. Both arguments to these
function may contain macro calls. (These MPL calls are expanded before the
comparison is made).

100 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

%EQS (arg1,arg2) True if both arguments are identical

%NES (arg1,arg2) True if arguments are different in any way

%LTS (arg1,arg2) True if first argument has a lower value than second
argument

%LES (arg1,arg2) True if first argument has a lower value then second
argument or if both arguments are identical

%GTS (arg1,arg2) True if first argument has a higher value than second
argument

%GES (arg1,arg2) True if first argument has a higher value than second
argument or if both arguments are identical

Example
%EQS (A251, A251) 0 (FALSE), the space after the comma is part of the

second argument
LT%S (A251,a251) 1 (TRUE), the lower case characters have a higher ASCII

value than upper case
%GTS (10,16) 0 (FALSE), these macros compare strings not numerical

values. ASCII '6' is greater than ASCII '1'
%GES (a251,a251) 0 (FALSE), the space at the end of the second argument

makes the second argument greater than the first
%*DEFINE (VAR1) (A251)
%*DEFINE (VAR2) (%VAR1)
%EQS (%VAR1,%VAR2)
%EQS(A251,A251)

1 (TRUE) expands to:

Conditional MPL Processing

Some MPL functions accept logical expressions as arguments. The MPL uses the
value 1 and 0 to determine TRUE or FALSE. If the value is one, then the
expression is TRUE. If the value is zero, then the expression is FALSE.

Typically, you will use either the relational operators (EQ, NE, LE, LT, GT, or
GE) or the string comparison functions (EQS, NES, LES, LTS, GTS, or GES) to
specify a logical value.

A51 Assembler / A251 Assembler 101

† New features in the A251 assembler and the MCS 251 architecture

6

IF Function

The IF MPL function evaluates a logical expression, and based on that
expression, expands or skips its text arguments. The syntax of the MPL
processor function IF is:

%IF (expression) THEN (balanced-text1) [ELSE (balanced-text2)] FI

IF first evaluates the expression, if it is TRUE, then balanced-text1 is expanded;
if it is FALSE and the optional ELSE clause is included, then balanced-text2 is
expanded. If it is FALSE and the ELSE clause is not included, the IF call returns
a null string. FI must be included to terminate the call.

IF calls can be nested; when they are, the ELSE clause refers to the most recent
IF call that is still open (not terminated by FI). FI terminates the most recent IF
call that is still open.

Source text
%*DEFINE (ADDSUB (op,p1,p2)) (
 %IF (%EQS (%op,ADD)) THEN (
 ADD %p1,%p2
)ELSE (%IF (%EQS (%op,SUB)) THEN (
 SUB %p1,%p2
) FI
) FI
)

%ADDSUB (ADD,R15,R3) %' generate ADD R15,R3'
%ADDSUB (SUB,R15,R9) %' generate SUB R15,R9'
%ADDSUB (MUL,R15,R4) %' generates nothing !'

Output text
ADD R15,R3
SUB R15,R9

WHILE Function

Often you may wish to perform macro operations until a certain condition is met.
The MPL processor function WHILE provides this facility.

The syntax for the MPL processor function WHILE is:

%WHILE (expression) (balanced-text)

102 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

WHILE first evaluates the expression. If it is TRUE, then the balanced-text is
expanded; otherwise, it is not. Once the balanced-text has been expanded, the
logical argument is retested and if it is still TRUE, then the balanced-text is
again expanded. This loop continues until the logical argument proves FALSE.

Since the MPL continues processing until expression evaluates to FALSE, the
balanced-text should modify the expression, or the WHILE may never terminate.

A call to the MPL processor function EXIT will always terminate a WHILE
function. EXIT is described later.

Source text
%SET (count, 5) %' initialize count to 5'
%WHILE (%count GT 0)
(ADD R15,R15 %SET (count, %count - 1)
)

Output text
ADD R15,R15
ADD R15,R15
ADD R15,R15
ADD R15,R15
ADD R15,R15

REPEAT Function

The MPL processor function REPEAT expands its balanced-text a specified
number of times. The syntax for the MPL processor function REPEAT is:

%REPEAT (expression) (balanced-test)

REPEAT uses the expression for a numerical value that specifies the number of
times the balanced-text will be expanded. The expression is evaluated once
when the macro is first called, then the specified number of iterations is
performed.

Source text
%REPEAT (5)
(-enter any key to shut down-
)

%REPEAT (5) (+%REPEAT (9) (-))+

A51 Assembler / A251 Assembler 103

† New features in the A251 assembler and the MCS 251 architecture

6

Output text
-enter any key to shut down-
-enter any key to shut down-
-enter any key to shut down-
-enter any key to shut down-
-enter any key to shut down-

EXIT Function

The EXIT MPL processor function terminates expansion of the most recently
called REPEAT, WHILE or user-defined macro function. It is most commonly
used to avoid infinite loops (example: a WHILE that never becomes FALSE, or a
recursive user-defined macro that never terminates). It allows several exit points
in the same macro.

The syntax for the MPL processor function EXIT is:

%EXIT

Source text
%SET (count, 0)

%WHILE (1)
(%IF (%count GT 5) THEN (%EXIT)
FI DW %count, -%count
%SET (count, %count + 1))

Output text
DW 0, -0
DW 1, -1
DW 2, -2
DW 3, -3
DW 4, -4
DW 5, -5

String Manipulation Functions

The purpose of the MPL is to manipulate character strings. Therefore, there are
several MPL functions that perform common character string manipulations.

104 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

LEN Function

The MPL processor function LEN returns the length of the character string
argument in hexadecimal: The character string is limited to 256 characters.

The syntax for the MPL processor function LEN is:

%LEN (balanced-text)

Source text
%LEN (A251) %' len = 4'
%LEN (A251,A251) %' comma counts also'
%LEN ()
%LEN (ABCDEFGHIJKLMNOPQRSTUVWXYZ)
%DEFINE (TEXT) (QUEEN)
%DEFINE (LENGTH) (%LEN (%TEXT))
LENGTH OF '%TEXT' = %LENGTH.

Output text
4
9
0
26
LENGTH OF 'QUEEN' = 5.

SUBSTR Function

The MPL processor function SUBSTR returns a substring of the given text
argument. The function takes three arguments: a character string to be divided
and two numeric arguments.

The syntax for the MPL processor function SUBSTR is:

%SUBSTR (balanced-text,expression1,expression2)

balanced-text is any text argument, possibly containing macro calls. Expression1
specifies the starting character of the substring. Expression2 specifies the
number of characters to be included in the substring.

If expression1 is zero or greater than the length of the argument string, then
SUBSTR returns the null string. The index of the first character of the balanced
text is one.

A51 Assembler / A251 Assembler 105

† New features in the A251 assembler and the MCS 251 architecture

6

If expression2 is zero, then SUBSTR returns the null string. If expression2 is
greater than the remaining length or the string, then all characters from the start
character to the end of the string are included.

Source text
%DEFINE (STRING) (abcdefgh)
%SUBSTR (%string, 1, 2)
%SUBSTR (%(1,2,3,4,5), 3, 20)

Output text
ab
2,3,4,5

MATCH Function

The MPL processor function MATCH searches a character string for a delimiter
character, and assigns the substrings on either side of the delimiter to the
identifiers.

The syntax for the MPL processor function MATCH is:

%MATCH (identifier1 delimiter identifier2) (balanced-text)

Identifier1 and identifier2 must be valid macro identifiers. Delimiter is the first
character to follow identifier1. Typically, a space or comma is used, but any
character that is not a macro identifier character may be used. Balanced-text is
the text searched by the MATCH function. It may contain macro calls.

MATCH searches the balanced-text string for the specified delimiter. When the
delimiter is found, then all characters to the left are assigned to identifier1 and
all characters to the right are assigned to identifier2. If the delimiter is not
found, the entire balanced-text string is assigned to identifier1 and the null string
is assigned to identifier2.

Source text
%DEFINE (text) (-1,-2,-3,-4,-5)
%MATCH (next,list) (%text)
%WHILE (%LEN (%next) NE 0)
(MOV R8,#%next
 MOV @WR2,R8 %MATCH (next,list)(%list)
 INC WR2,#1
)

106 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

Output text
MOV R8,#-1
MOV @WR2,R8
INC WR2,#1
MOV R8,#-2
MOV @WR2,R8
INC WR2,#1
MOV R8,#-3
MOV @WR2,R8
INC WR2,#1
MOV R8,#-4
MOV @WR2,R8
INC WR2,#1
MOV R8,#-5
MOV @WR2,R8
INC WR2,#1

Console I/O Functions

There are two MPL processor functions that perform console I/O: IN and OUT.
Their names describe the function each performs. IN outputs a character '>' as a
prompt, and returns the line typed at the console. OUT outputs a string to the
console; a call to OUT is replaced by the null string.

The syntax for the MPL processor functions IN and OUT is:

%IN
%OUT (balanced-text)

Source text
%OUT (enter baud rate)
%set (BAUD_RATE,%in)
BAUD_RATE = %BAUD_RATE

Output text
<19200 was entered at the console>
BAUD_RATE = 19200

A51 Assembler / A251 Assembler 107

† New features in the A251 assembler and the MCS 251 architecture

6

Advanced Macro Processing

The MPL definition function associates an identifier with a functional string.
The macro may or may not have an associated pattern consisting of parameters
and/or delimiters. Also optionally present are local symbols. The syntax for a
macro definition is:

%DEFINE (macro_id define_pattern) [LOCAL id_list] (balanced_text)

The define_pattern is a balanced string which is further analyzed by the MPL
processor as follows:

define_pattern = { [parm_id] [delimiter_specifier] }

Delimiter_specifier is one of the following:

′ some string not containing non-literal id-continuation. logical blank or
character @.

′ @delimiter_id

The macro call must have a call pattern which corresponds to the macro define
pattern. Regardless of the type of delimiter used to define a macro, once it has
been defined, only delimiters used in the definition can be used in the macro call.
Macros defined with parentheses and commas require parentheses and commas
in the macro call. Macros defined with spaces or any other delimiter require that
delimiter when called.

The define pattern may have three kinds of delimiters: implied blank delimiters,
identifier delimiters and literal delimiters.

Literal Delimiters

The delimiters used in user-defined macros (parentheses and commas) are literal
delimiters. A literal delimiter can be any character except the metacharacter.

When you define a macro using a literal delimiter, you must use exactly that
delimiter when you call the macro. If the specified delimiter is not used as it
appears in the definition, a macro error occurs.

108 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

When defining a macro, the delimiter string must be literalized, if the delimiter
meets any of the following conditions:

′ more than one character,

′ a macro identifier character (A-Z, 0-9, _, or ?),

′ a commercial at (@), a space, tab, carriage return, or linefeed.

Use the escape function (%n) or the bracket function (%()) to literalize the
delimiter string.

This is the simple form shown earlier:

Before Macro Expansion After Macro Expansion

%*DEFINE(MAC(A,B))(%A %B) null string

%MAC(4,5) 4 5

In the following example brackets are used instead of parentheses. The
commercial at symbol separates parameters:

%*DEFINE (MOV[A%(@)B]) (MOV %A,%B) →→→→ null string
%MOV[P0@P1] →→→→ MOV P0,P1

In the next two examples, delimiters that could be id delimiters have been
defined as literal delimiter (the differences are noted):

%*DEFINE(ADD (R10 AND B)) (ADD R10,%B) →→→→ null string
%ADD (R10 AND #27H) →→→→ ADD R10,#27H

Spaces around AND are considered as part of the argument string.

Blank Delimiters

Blank delimiters are the easiest to use. Blank delimiter is one or more spaces,
tabs or new lines (a carriage-return/linefeed pair) in any order. To define a
macro that uses the blank delimiter, simply place one or more spaces, tabs, or
new lines surrounding the parameter list.

When the macro defined with the blank delimiter is called, each delimiter will
match a series of spaces, tabs, or new lines. Each parameter in the call begins
with the first non-blank character, and ends when a blank character is found.

A51 Assembler / A251 Assembler 109

† New features in the A251 assembler and the MCS 251 architecture

6

Source text
%*DEFINE (X1 X2 X3) (P2=%X2, P3=%X3)
%X1 assembler A251

Output text
P2=assembler, P3=A251

Identifier Delimiters

Identifier delimiters are legal macro identifiers designated as delimiters. To
define a macro that uses an identifier delimiter, you must prefix the delimiter
with the @ symbol. You must separate the identifier delimiter from the macro
identifiers (formal parameters or macro name) by a blank character.

When calling a macro defined with identifier delimiters, a blank delimiter is
required to precede the identifier delimiter, but none is required to follow the
identifier delimiter.

Source text
%*DEFINE (ADD X1 @TO X2 @STORE X3)(
 MOV R1,%X1
 MOV R2,%X2
 ADD R1,R2
 MOV %X3,R1
)

%ADD VAR1 TO VAR2 STORE VAR3

Output text
MOV R1,VAR1
MOV R2,VAR2
ADD R1,R2
MOV VAR3,R1

Literal and Normal Mode

In normal mode, the MPL processor scans for the metacharacter. If it is found,
parameters are substituted and macros are expanded. This is the usual operation
of the MPL processor.

When the literal character (*) is placed in a DEFINE function, the MPL
processor shifts to literal mode while expanding the macro. The effect is similar

110 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

to surrounding the entire call with the bracket function. Parameters to the
literalized call are expanded, the escape, comment, and bracket functions are
also expanded, but no further processing is performed. If there are any calls to
other macros, they are not expanded.

If there are no parameters in the macro being defined, the DEFINE function can
be called without literal character. If the macro uses parameters, the MPL
processor will attempt to evaluate the formal parameters in the macro-body as
parameterless macro calls.

The following example illustrates the difference between defining a macro in
literal mode and normal mode:

%SET (TOM, 1)
%*DEFINE (AB) (%EVAL (%TOM))
%DEFINE (CD) (%EVAL (%TOM))

When AB and CD are defined, TOM is equal to 1. The macro body of AB has
not been evaluated due to the literal character, but the macro body of CD has
been completely evaluated, since the literal character is not used in the
definition. Changing the value of TOM has no effect on CD, but it changes the
value of AB:

%SET (TOM,2) →→→→ null string
%AB →→→→ 2
%CD →→→→ 1
%*CD →→→→ 1
%*AB →→→→ %EVAL (%TOM)

A51 Assembler / A251 Assembler 111

† New features in the A251 assembler and the MCS 251 architecture

6

MACRO Errors

The MPL processor will output error messages, if errors occur in the MPL
processing phase. The errors are displayed like other assembly errors in the
listing file which is generated by the assembler anyway. The following describes
the error messages generated by the MPL processor.

Number Error Message and Description

200 PREMATURE END OF FILE

The end of the source module was reached while processing some macro call, which
requires more input from the source file.

201 '<token>' IDENTIFIER EXPECTED

The MPL processor expected an identifier while processing some macro. None was
found. The unexpected token is displayed with this error message.

202 MPL FUNCTION '<name>': '<character>' EXPECTED

The context of the MPL processor language requires a specific character from the
input given by <character> while processing the built-in function given by <name>.

203 <string>: UNBALANCED PARENTHESES

A balanced string requires the same number of right parentheses and left parentheses.

204 EXPECTED '<token>'

The syntax requires a specific token to follow, for example THEN after the balanced
text argument to IF.

205 INCOMPLETE MACRO DEFINITION

The macro definition has not been completely processed due to premature end of input
file.

206 FUNCTION 'MATCH': ILLEGAL CALL PATTERN

The built-in function MATCH was called with an illegal call pattern. The call pattern
must consist of some formal name followed by a delimiter specification and another
formal name.

207 FUNCTION 'EXIT' IN BAD CONTEXT

The built-in function EXIT is allowed only in the loop control constructs WHILE and
REPEAT.

208 ILLEGAL METACHARACTER '<character>'

The first character of the balanced text argument to METACHAR is taken to be the
new value of the metacharacter. The characters @, (,), *, blank, tab, and identifier-
characters are not allowed to be the metacharacter.

209 CALL PATTERN - DELIMITER '<delimiter>' NOT FOUND

The call pattern of some macro does not conform to the define pattern of that macro.
The delimiters of the macro call should be checked for conformance.

210 CALL TO UNDEFINED MACRO '<name>'

The macro call specifies the name of an undefined macro.

112 Chapter 6. Macro Processing Language

† New features in the A251 assembler and the MCS 251 architecture

6

Number Error Message and Description

211 INVALID MPL COMMAND '%<character>'

The character following the metacharacter does not form a valid MPL command.

212 INVALID DIGIT '<character>' IN NUMBER

A number of an expression contains an invalid digit.

213 UNCLOSED STRING OR CHARACTER CONSTANT

214 INVALID STRING OR CHARACTER CONSTANT

The string representing a number in an expression is invalid. The string must be either
one or two characters long. A character constant must not be longer than one character.
Strings or character constants must be enclosed by single or double quotes.

215 UNKNOWN EXPRESSION IDENTIFIER

The identifier within some expression is not an operator or a number.

216 <character>: INVALID EXPRESSION TOKEN

The given character does not form a valid operator or an identifier operator.

217 DIV/MOD BY ZERO

A division or modulo by zero error occurred while evaluating an expression.

218 EVAL: SYNTAX ERROR IN EXPRESSION

The expression to be evaluated contains a syntax error, for example two consecutive
number, not separated by an operator.

219 CAN'T OPEN FILE '<file>'

The file specified in the INCLUDE directive could not be opened.

220 '<file>' IS NOT A DISK FILE

The file name given in the INCLUDE directive does not specify a disk file. Files other
than disk files are not allowed (example: CON).

221 ERROR IN INCLUDE DIRECTIVE

The INCLUDE directive is ill-formed. The argument to INCLUDE must be the name
of some file, enclosed in parentheses.

A51 Assembler / A251 Assembler 113

† New features in the A251 assembler and the MCS 251 architecture

7

Chapter 7. Invocation and Controls
This part explains how to use A251 to assemble 8051 assembly source files and
discusses the assembler controls that may be specified on the command line and
within the source file.

Using the controls described in this part, you can specify which operations are
performed by A251. For example, you can direct A251 to generate a listing file,
produce cross reference information, and control the amount of information
included in the object file. You can also conditionally assemble sections of code
using the conditional assembly controls.

Running A251

The A251 assembler is invoked by typing A251 at the DOS prompt. The
command line must contain the name of an 8051 assembly source file to be
assembled as well as any command–line controls that are required. The format
for the A251 command line is:

A251 sourcefile ! controls… "

where

sourcefile is the name of the source program you want to assemble.
A251assembler

controls are used to direct the operation of the assembler. Refer to
“Assembler Controls” on page 115 for more information.

The following command line example invokes A251 and specifies the source file
SAMPLE.A51 and uses the controls DEBUG, XREF, and PAGEWIDTH.

A251 SAMPLE.A51 DEBUG XREF PAGEWIDTH(132)

A251 displays the following information upon successful invocation and
assembly.

DOS MACRO ASSEMBLER A251 V1.00

ASSEMBLY COMPLETE, NO ERRORS FOUND

114 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

Command Files

Command files are ASCII text files that contain information that you would
normally type on the DOS invocation line. Command files can include the
name of the source file to assemble as well as any assembler controls.

A251 allows you to specify a command file on the DOS invocation line using an
at sign (@).

Example
A251 @CMDFIL

The contents of the file CMDFIL will be interpreted as one long input command
line.

DOS ERRORLEVEL

After assembly, the number of errors and warnings detected is output to the
screen. A251 then sets the DOS ERRORLEVEL to indicate the status of the
assembly. Values are listed in the following table:

ERROR LEVEL Meaning

0 No ERRORS or WARNINGS

1 WARNINGS only

2 ERRORS and possibly also WARNINGS

3 FATAL ERRORS

You can access the ERRORLEVEL variable in DOS batch files for conditional
inquiries in order to terminate the batch processing when an error occurs. Refer
to your DOS User’s Guide for more information about ERRORLEVEL or batch
files.

Output Files

A251 generates a number of output files during assembly. By default, each of
these shares the same basename as the source file. However, each has a
different file extension. The following table lists the files and gives a brief
description of each.

A51 Assembler / A251 Assembler 115

† New features in the A251 assembler and the MCS 251 architecture

7

File Extension Description

basename.LST Files with this extension are listing files that contain the formatted source
text along with any errors detected by the assembler. Listing files may
optionally contain symbols used and the generated assembly code. Refer
to “PRINT / NOPRINT” on page 141 for more information.

basename.OBJ Files with this extension are object modules that contain relocatable object
code. Object modules can be linked into an absolute object module by the
L51 Linker/Locator. Refer to “OBJECT / NOOBJECT” on page 138 for
more information.

Assembler Controls

A251 provides a number of controls that you can use to direct the operation of
the assembler. Controls are composed of one or more letters or digits and, unless
otherwise indicated, can be specified after the filename on the invocation line or
in a control line within the source file. Control lines are prefixed by the dollar
sign ($).

Example
A251 TESTFILE.A51 MPL DEBUG XREF

or

$MPL
$DEBUG
$XREF

or

$MPL DEBUG XREF

In the above example, MPL, DEBUG, and XREF are all control commands and
TESTFILE.A51 is the source file that will be assembled.

A251 has two classes of controls: primary and general. The primary controls are
set in the invocation line or the primary control lines and remain in effect
throughout the assembly. For this reason, primary controls may be used only in
the invocation line or in the control line at the beginning of the program. Only
other control lines (that do not contain the INCLUDE control) may precede a
line containing a primary control. The INCLUDE control terminates of primary
controls.

116 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

If a primary control is specified in the invocation line and in the primary control
lines, the first time counts. This enables the programmer to override primary
controls via the invocation line.

The general controls are used to control the immediate action of the assembler.
Typically their status is set and modified during the assembly. Control lines
containing only general controls may be placed anywhere in your source code.

The table below lists all of the controls, their abbreviations, their default values,
and a brief description of each.

Name / Abbreviation Meaning

DATA(date) / DA Places a date string in header (9 characters maximum).

CASE Enable case sensitive mode for symbol names.

DEBUG / DB Outputs debug symbol information to object file.

EJECT / EJ ‡ Continue listing on next page.

ERRORPRINT[(file)] / EP Designates a file to receive error messages in addition to the
listing.

GEN / GE ‡ Generates a full listing of macro expansions in the listing file.

NOGEN / NOGE ‡ List only the original source text in listing file.

INCLUDE(file) / IC ‡ Designates a file to be included as part of the program.

LINK ‡ Place Linker/Locator controls in the Assembler source code.

LIST, NOLIST / LI, NOLI ‡ Print or do not print the assembler source in the listing file.

MODBIN / MB Select MCS 251 binary mode (default).

MODSRC / MS Select MCS 251 source mode.

MPL Enable Macro Processing Language.

NOAMAKE Disable AutoMAKE information.

NOLINES Do not generate LINE number information.

NOMACRO / NOMR Disable Standard Macros

NOMOD51 / NOMO Do not recognize the 8051-specific predefined special register.

NOMOD251 / NO251 Disable the additional MCS 251 instructions.

NOOBLECT / NOOJ Designates that no object file will be created.

NOREGISTERBANK/ NORB Indicates that no banks are used.

NOSYMBOLS / NOSB No symbol table is listed.

NOSYMLIST,NO SL ‡ Do not list the following symbol definitions in the symbol table.

OBJECT[(file)] / OJ Designate file to receive object code.

PAGELENGTH(n) / PL Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) / PW Sets maximum number of characters in each line of listing file.

PRINT[(file)] / PR Designates file to receive source listing.

NOPRINT / NOPR Designates that no listing file will be created.

A51 Assembler / A251 Assembler 117

† New features in the A251 assembler and the MCS 251 architecture

7

Name / Abbreviation Meaning

REGISTERBANK(num,...) Indicates one or more banks used in program module.

REGUSE ‡ Defines register usage of assembler functions for the C optimizer.

RESTORE / RS ‡ Restores control setting from SAVE stack.

SAVE / SA ‡ Stores current control setting for GEN, LIST and SYMLIST.

SYMLIST, SL ‡ List the following symbol definitions in the symbol table.

TITLE(string) / TT Places a string in all subsequent page headers.

XREF / XR Creates a cross reference listing of all symbols used in program.

‡ — General controls

NOTE
Some controls like EJECT and SAVE cannot be specified on the command line.
The syntax for each control is the same when specified on the command line or
when specified within the source file. A251 will generate a fatal error for
controls that are improperly specified.

118 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

COND / NOCOND

Abbreviation: None.

Arguments: None.

Default: COND

Control Class: General

Description: The COND control directs A251 to include unassembled
parts of a conditional IF–ELSEIF–ENDIF construct in the
listing file. Unassembled code is listed without line
numbers.

The NOCOND control prevents unassembled portions of an
IF–ELSE–ENDIF block from appearing in the listing file.

Examples: A251 SAMPLE.A51 COND

$COND

A251 SAMPLE.A51 NOCOND

$NOCOND

A51 Assembler / A251 Assembler 119

† New features in the A251 assembler and the MCS 251 architecture

7

DATE

Abbreviation: DA

Arguments: A string enclosed within parentheses.

Default: The date obtained from the operating system.

Control Class: Primary

Description: A251 includes the current date in the header of each page in
the listing file. The DATE control allows you to specify the
date string that is included in the header. The string must
immediately follow the DATE control and must be enclosed
within parentheses. Only the first 8 characters of the date
string are used. Additional characters are ignored.

Example: A251 SAMPLE.A51 DATE(19JAN92)

$DATE(10/28/91)

120 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

CASE †

Abbreviation: CA

Arguments: None.

Default: No case sensitivity.

Control Class: Primary

Description: The assembler is directed to operate in case sensitive mode
(CASE) or case insensitive mode. In case insensitive mode
the assembler maps lower case input characters to upper
case. CASE becomes meaningful if modules generated by
the assembler are combined with modules generated from
the C compiler. Identifiers exported from C modules appear
always as written, the corresponding names in the assembler
module must therefore put into the object module as written,
preserving case sensitivity.

Example: $CASE

A251 SAMPLE.A51 CASE

A51 Assembler / A251 Assembler 121

† New features in the A251 assembler and the MCS 251 architecture

7

DEBUG

Abbreviation: DB

Arguments: None.

Default: No debugging information is generated.

Control Class: Primary

Description: The DEBUG control instructs A251 to include debugging
information in the object file. This information is used
when testing the program with an emulator or simulator.

The DEBUG control also includes line number information
for source level debugging. This line number information
can be disabled with the NOLINES control.

Examples: A251 SAMPLE.A51 DEBUG

$DEBUG

122 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

EJECT

Abbreviation: EJ

Arguments: None

Default: None

Control Class: General

Description: The EJECT control inserts a form feed into the listing file
after the line containing the EJECT control statement. This
control is ignored if NOLIST or NOPRINT was previously
specified.

Example: $EJECT

A51 Assembler / A251 Assembler 123

† New features in the A251 assembler and the MCS 251 architecture

7

ERRORPRINT

Abbreviation: EP

Arguments: An optional filename enclosed within parentheses

Default: No error messages are output to the console.

Control Class: Primary

Description: The ERRORPRINT control directs A251 to output all error
messages either to the console or to a specified file. If no
filename is specified with the ERRORPRINT control, all
error messages are output to the console.

Examples: A251 SAMPLE.A51 ERRORPRINT(SAMPLE.ERR)

A251 SAMPLE2.A51 ERRORPRINT

$EP

124 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

GEN / NOGEN

Abbreviation: GE / NOGE

Arguments: None

Default: NOGEN

Control Class: General

Description: The GEN control directs A251 to expand or list all assembly
instructions contained in a macro.

The NOGEN control prevents the A251 assembler from
including macro expansion text in the listing file. Only the
macro name is listed.

Examples: A251 SAMPLE.A51 GEN

$GEN

A251 SAMPLE.A51 NOGEN

$NOGEN

A51 Assembler / A251 Assembler 125

† New features in the A251 assembler and the MCS 251 architecture

7

INCLUDE

Abbreviation: IC

Arguments: A filename enclosed within parentheses.

Default: None.

Control Class: General

Description: The INCLUDE control directs A251 to include the contents
of the specified file in the assembly of the program
immediately following the control line. INCLUDE files
may be nested up to 9 deep.

The INCLUDE control is usually used to include special
function register definition files for 8051 and MCS 251
derivatives as well as to include declarations for external
routines, variables, and macros. Files containing assembly
language code may also be included.

Example: $INCLUDE (REG252.DCL)

126 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

LINK †

Abbreviation: LI

Arguments: Linker/Locator control directives enclosed in parentheses.

Default: None

Control Class: General

Description: The LINK control allows you to include Linker/Locator
control directives into the assembler source. The control
directives specified within the assembler source will be pass
to the Linker/Locator as they would be specified in the
invocation line of the linker/locator. The LINK control is
useful to correct directly in the assembler source the overlay
analysis of your application, if your program contains
indirect function calls.

For more information about Linker/Locator controls refer to
the 8051 Utilities User’s Guide.

The LINK control cannot be specified in the A251
invocation line.

Example: $LINK (ADDCALL (MYFUNC ! MYFUNC2)

A51 Assembler / A251 Assembler 127

† New features in the A251 assembler and the MCS 251 architecture

7

LIST / NOLIST

Abbreviation: LI / NOLI

Arguments: None

Default: LIST

Control Class: General

Description: The LIST control directs A251 to include the program
source text in the generated listing file.

The NOLIST control prevents subsequent lines of your
assembly program from appearing in the generated listing
file. If a line that would normally not be listed causes an
assembler error, that line will be listed along with the error
message.

Examples: A251 SAMPLE.A51 LI

$LIST

A251 SAMPLE.A51 NOLIST

$NOLI

128 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

MACRO / NOMACRO

Abbreviation: NOMR

Arguments: None

Default: MACRO

Control Class: Primary

Description: The MACRO control instructs the A251 assembler to
recognize and process macro definitions and invocations.

The NOMACRO control disables the macro processor in
A251. Macros will not be expanded.

Examples: A251 SAMPLE.A51 NOMACRO

$NOMACRO

A51 Assembler / A251 Assembler 129

† New features in the A251 assembler and the MCS 251 architecture

7

MODBIN †

Abbreviation: MB

Arguments: None

Default: MODBIN

Control Class: Primary

Description: The MODBIN control instructs the A251 assembler to
generate code for the MCS 251 architecture using the
BINARY mode of this CPU.

See also: MODSRC, NOMOD251

Examples: A251 SAMPLE.A51 MODBIN

$MODBIN

130 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

MODSRC †

Abbreviation: MS

Arguments: None

Default: MODBIN

Control Class: Primary

Description: The MODSRC control instructs the A251 assembler to
generate code for the MCS 251 architecture using the
SOURCE mode of this CPU.

See also: MODBIN, NOMOD251

Examples: A251 SAMPLE.A51 MODSRC

$MODSRC

A51 Assembler / A251 Assembler 131

† New features in the A251 assembler and the MCS 251 architecture

7

MPL

Abbreviation: None

Arguments: None

Default: The Macro Processing Language is disabled.

Control Class: Primary.

Description: The MPL control enables the Macro Processing Language.
The MPL language is compatible to the Intel ASM51.
Refer to “Chapter 6. Macro Processing Language” on page
87 for more information about the MPL processor.

Examples: A251 SAMPLE.A51 MPL

$MPL

132 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

NOAMAKE

Abbreviation: NOAM

Arguments: None.

Default: Generate AutoMAKE information.

Control Class: Primary

Description: NOAMAKE disables the project information records of the
A251 Macro Assembler for use with the automatic MAKE
utility AutoMAKE. This option disables also the register
information given with the REGUSE directive. If
NOAMAKE is used, the generated object files can be used
with older program versions of the 8051 development tool
chain.

Example: A251 SAMPLE.A51 NOAMAKE

$ NOAMAKE

A51 Assembler / A251 Assembler 133

† New features in the A251 assembler and the MCS 251 architecture

7

NOLINES

Abbreviation: NOLI

Arguments: None.

Default: Line numbers for source level debugging are generated
when the DEBUG control is used.

Control Class: Primary

Description: The NOLINES control disables the line number information
for source level debugging. This control is useful when
A251 should be used in connection with old debugging tools
or emulators.

Examples: A251 SAMPLE.A51 NOLINES

$NOLINES

134 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

NOMACRO

Abbreviation: None.

Arguments: None.

Default: Standard Macros are fully expanded.

Control Class: Primary

Description: The NOMACRO control disables the standard macro
facility of A251. Standard macros are not expanded.

Examples: A251 SAMPLE.A51 NOMACRO

$NOMACRO

A51 Assembler / A251 Assembler 135

† New features in the A251 assembler and the MCS 251 architecture

7

NOMOD51

Abbreviation: NOMO

Arguments: None.

Default: In A51 all special function registers of the 8051 CPU are
predefined. A251 does not define CPU special function
registers at all.

Control Class: Primary

Description: The NOMOD51 control prevents the A51 assembler from
implicitly defining symbols for the default 8051 special
function registers. This is necessary when you want to
include a definition file to declare symbols for the special
function registers of a different 8051 derivative.

The A251 assembler supports the NOMOD51 control only
for source compatibility to the A51. However the 8051
special function registers are not predefined in A251.

Examples: A251 SAMPLE.A51 NOMO

$NOMOD51

136 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

NOMOD251 †

Abbreviation: NO251

Arguments: None.

Default: Support the additional MCS 251 instructions.

Control Class: Primary

Description: The NOMOD251 control disables the enhance MCS 251
instruction set. Only the original 8051 instructions are
supported. With this control the A251 can be used to
generate code for the 8051 architecture only.

See also: MODBIN, MODSRC

Examples: A251 SAMPLE.A51 NO251

$NOMOD251

A51 Assembler / A251 Assembler 137

† New features in the A251 assembler and the MCS 251 architecture

7

NOSYMBOLS

Abbreviation: SB / NOSB

Arguments: None

Default: A251 generates a table of all symbols used in and by the
assembly program module. This symbol table is included in
the generated listing file.

Control Class: Primary

Description: The NOSYMBOLS control prevents A251 from generating
a symbol table in the listing file.

Examples: A251 SAMPLE.A51 SYMBOLS

$SB

A251 SAMPLE.A51 NOSB

$NOSYMBOLS

138 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

OBJECT / NOOBJECT

Abbreviation: OJ / NOOJ

Arguments: An optional filename enclosed within parentheses.

Default: OBJECT (basename.OBJ)

Control Class: Primary

Description: The OBJECT control specifies that the A251 assembler
generate an object file. The default name for the object file
is basename.OBJ, however, an alternate filename may be
specified in parentheses immediately following the
OBJECT control statement.

The NOOBJECT control prevents A251 from generating an
object file.

Examples: A251 SAMPLE.A51 OBJECT (OBJDIR\SAMPLE.OBJ)

OJ(OBJ\SAMPLE.OBJ)

A251 SAMPLE.A51 NOOJ

$NOOBJECT

A51 Assembler / A251 Assembler 139

† New features in the A251 assembler and the MCS 251 architecture

7

PAGELENGTH

Abbreviation: PL

Arguments: A number between 10 and 65535 enclosed within
parentheses.

Default: PAGELENGTH (60)

Description: The PAGELENGTH control specifies the number of lines
printed per page in the listing file. The number must be a
decimal value between 10 and 65535. The default is 60.

Example: A251 SAMPLE.A51 PAGELENGTH(132)

$PL (66)

140 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

PAGEWIDTH

Abbreviation: PW

Arguments: A number between 78 and 132 enclosed within parentheses.

Default: PAGEWIDTH (120)

Control Class: Primary

Description: The PAGEWIDTH control specifies the maximum number
of characters in a line in the listing file. Lines that are
longer than the specified width are automatically wrapped
around to the next line. The default number of characters
per line is 120.

Example: A251 SAMPLE.A51 PW(79)

$PW(132)

A51 Assembler / A251 Assembler 141

† New features in the A251 assembler and the MCS 251 architecture

7

PRINT / NOPRINT

Abbreviation: PR / NOPR

Arguments: An optional filename enclosed within parentheses.

Default: PRINT(basename.LST)

Control Class: Primary

Description: The PRINT control directs the A251 assembler to generate
a listing file. The default name for the listing file is
basename.LST, however, an alternate filename may be
specified in parentheses immediately following the PRINT
control statement.

The NOPRINT control prevents A251 from generating a
listing file.

Examples: A251 SAMPLE.A51 PRINT

A251TESTPRG.A51 PR(TESTPRG1.LST)

$PRINT(LPT1)

A251 SAMPLE.A51 NOPRINT

$NOPR

142 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

REGISTERBANK / NOREGISTERBANK

Abbreviation: RB / NORB

Arguments: Register bank numbers separated by commas and enclosed
within parentheses; e.g., REGISTERBANK (1,2,3).

Default: REGISTERBANK (0)

Control Class: Primary

Description: The REGISTERBANK control specifies the register banks
used in the source module. This information is stored in the
generated object file for further processing by the L251
Linker/Locator.

The NOREGISTERBANK control specifies that A251
reserves no memory for the register bank.

Examples: A251 RBUSER.A51 REGISTERBANK(0,1,2)

$RB(0,3)

A251 SAMPLE.A51 NOREGISTERBANK

$NORB

A51 Assembler / A251 Assembler 143

† New features in the A251 assembler and the MCS 251 architecture

7

REGUSE

Abbreviation: RU

Arguments: Name of a PUBLIC symbol and a register list enclosed in
parentheses.

Default: Not applicable.

Control Class: General

Description: The REGUSE control specifies the registers modified
during a function execution. The REGUSE control can be
used in combination with the C51 or C251 C compiler and
allows the global register optimization also for functions
written in assembler language. For more information about
global register optimization refer to the C51 Compiler
User’s Guide or the C251 Compiler User’s Guide.

The REGUSE cannot be specified on the A251 invocation
line.

Examples: $REGUSE MYFUNC (ACC, B, R0 - R7)

$REGUSE PROCA (DPL, DPH)

$REGUSE PUTCHAR (R6,R7, CY, ACC)

144 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

RESTORE

Abbreviation: RS

Arguments: None.

Default: None.

Control Class: General

Description: The RESTORE control fetches and restores the values of
the GEN and LIST controls that were stored by the last
SAVE control statement.

See Also: SAVE

Example: .
.
.
$SAVE
$NOLIST
.
.
.
$RESTORE
.
.
.

A51 Assembler / A251 Assembler 145

† New features in the A251 assembler and the MCS 251 architecture

7

SAVE

Abbreviation: SA

Arguments: None

Default: None

Control Class: General

Description: The SAVE control stores the current settings of the LIST
and GEN controls. Subsequent controls can modify the
LIST and GEN settings.

This control allows these settings to be saved, altered for a
number of program lines, and restored using the RESTORE
control. The SAVE control can be nested up to nine times.

See Also: RESTORE

Example: .
.
.
$SAVE
$INCLUDE(SAMPLE.INC)
$RESTORE
.
.
.

146 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

SYMLIST / NOSYMLIST

Abbreviation: SL/NOSL

Arguments: None.

Default: SYMLIST

Control Class: General

Description: The SYMLIST control enables the listing of symbol
definitions in the symbol table.

The NOSYMLIST control prevents the A251 assembler
from listing of symbol definitions in the symbol table. The
NOSYMLIST control is useful in special function register
definition files.

Examples: A251 SAMPLE.A51 NOMO

$NOMOD51

A51 Assembler / A251 Assembler 147

† New features in the A251 assembler and the MCS 251 architecture

7

TITLE

Abbreviation: TT

Arguments: A string enclosed within parentheses.

Default: The basename of the source file excluding the extension.

Control Class: General

Description: The TITLE control allows you to specify the title to use in
the header line of the listing file. The text to used for the
title must immediately follow the TITLE control and must
be enclosed in parentheses. A maximum of 60 characters
may be specified for the title.

Example: A251 SAMPLE.A51 TITLE(Oven Controller Version 3)

$TT(Race Car Controller)

148 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

XREF

Abbreviation: XR

Arguments: None.

Default: No error references are listed.

Description: The XREF control directs the A251 assembler to generate a
cross reference table of the symbols used in the source
module. The alphabetized cross reference table will be
included in the generated listing file.

Example: A251 SAMPLE.A51 XREF

$XREF

A51 Assembler / A251 Assembler 149

† New features in the A251 assembler and the MCS 251 architecture

7

Directives for Conditional Assembly

The directives for conditional assembly belong to the class of general controls.
Conditional assembly can be used to implement different program versions of
different memory models with one source file. Therefore only one source
module must be maintained to satisfy several applications

Text blocks to be conditionally assembled are enclosed by IF, ELSEIF, ELSE
and ENDIF.

The SET and RESET directives may be used in the invocation line of the
assembler. The remaining instructions for conditional assembly are only
allowed within the source file and cannot be part of the assembler invocation
line.

IF blocks may be nested to a maximum of ten. If a block is not translated the
nested conditional blocks which are part of this block also skipped.

Conditional Assembly Controls

Conditional assembly controls allow you to write 8051 assembly programs with
sections that can be included or excluded from the assembly based on the value
of a constant expression. Blocks that are to be conditionally assembled are
enclosed by IF, ELSEIF, ELSE, and ENDIF control statements.

The conditional control statements IF, ELSE, ELSEIF, and ENDIF can be
specified only in the source program. They are not allowed on the invocation
line. Additionally, these controls can be specified both with and without the
leading dollar sign ($).

When prefixed with a dollar sign, the conditional control statements can only
access symbols defined by the SET and RESET controls.

When specified without a dollar sign, the conditional control statements can
access all symbols except those defined by the SET and RESET controls. These
control statements can access parameters in a macro definition.

IF blocks may be nested up to 10 levels deep, however, if an IF, ELSEIF, or
ELSE block is not assembled, any IF blocks nested therein are also not
assembled.

150 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

The following table lists the conditional assembly control statements.

Control Meaning

IF Translate block if condition is true

ELSE Translate block if the condition of a previous IF is false.

ELSEIF Translate block if condition is true and a previous IF or ELSEIF is false.

ENDIF Marks end of a block.

RESET Set symbols checked by IF or ELSEIF to false.

SET Set symbols checked by IF or ELSEIF to true or to a specified value.

A51 Assembler / A251 Assembler 151

† New features in the A251 assembler and the MCS 251 architecture

7

SET

Abbreviation: None.

Arguments: A list of symbols with optional value assignments separated
by commas and enclosed within parentheses. For example:

SET (symbol != number" !, symbol != number" …")

Default: None.

Control Class: General

Description: The SET control assigns numeric values to the specified
symbols. Symbols that are specified with an equal sign (=)
and a numeric value are assigned the specified value.
Symbols that do not include an explicit value assignment are
assigned the value 0FFFFh.

These symbols can be used in IF and ELSEIF control
statements for conditional assembly. They are only used for
control of the assembler using the conditional assembly
controls. These symbols are administered separately and do
not interfere with the other code, bit, data and xdata
symbols.

Example: A251 SAMPLE.A51 SET(DEBUG1=1, DEBUG2=0, DEBUG3=1)

$SET (TESTCODE = 0)

$SET (DEBUGCODE, PRINTCODE)

152 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

RESET

Abbreviation: None.

Arguments: A list of symbols separated by commas and enclosed within
parentheses. For example:

RESET (symbol !, symbol …")

Default: None

Control Class: General

Description: The RESET control assigns a value of 0000h to the
specified symbols. These symbols can then be used in IF
and ELSEIF control statements for conditional assembly.
These symbols are only used for control of the assembler
using the conditional assembly controls. They are
administered separately and do not interfere with the other
code, bit, data and xdata symbols.

Example: A251 SAMPLE.A51 RESET(DEBUG1, DEBUG2, DEBUG3)

$RESET (TESTCODE)

$RESET (DEBUGCODE, PRINTCODE)

A51 Assembler / A251 Assembler 153

† New features in the A251 assembler and the MCS 251 architecture

7

IF

Abbreviation: None

Arguments: A numeric expression

Default: None

Control Class: General

Description: The IF control begins an IF–ELSE–ENDIF construct that
is used for conditional assembly of 8051 program code. The
specified numeric expression is evaluated and if it is non–
zero (TRUE) the IF block is assembled. If the expression is
zero (FALSE), the IF block is not assembled and the
subsequent blocks of the IF construct are evaluated.

IF blocks can be terminated by an ELSE, ELSEIF, or
ENDIF control statement.

Example: .
.
.
$IF (DEBUG_VAR = 3)
.
.
.
Version_3: MOV DPTR, #TABLE_3
.
.
.
$ ENDIF
.
.
.

154 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

ELSEIF

Abbreviation: None

Arguments: A numeric expression.

Default: None

Description: The ELSEIF control is used to introduce an alternative
program block after an IF or ELSEIF control. The
ELSEIF block is only assembled if the specified numeric
expression is non–zero (TRUE) and if previous IF and
ELSEIF conditions in the IF–ELSE–ENDIF construct
were FALSE. ELSEIF blocks are terminated by an
ELSEIF, ELSE, or ENDIF control.

Example: .
.
.
$IF SWITCH = 1 ; Assemble if switch is 1
.
.
.
$ELSEIF SWITCH = 2 ; Assemble if switch is 2
.
.
.
$ELSEIF SWITCH = 3 ; Assemble if switch is 3
.
.
.
$ENDIF
.
.
.

A51 Assembler / A251 Assembler 155

† New features in the A251 assembler and the MCS 251 architecture

7

ELSE

Abbreviation: None.

Arguments: None.

Default: None.

Control Class: General

Description: The ELSE control is used to introduce an alternative
program block after an IF or ELSEIF control. The ELSE
block is only assembled if previous IF and ELSEIF
conditions in the IF–ELSE–ENDIF construct were all
FALSE. ELSE blocks are terminated with an ENDIF
control.

Example: .
.
.
$IF (DEBUG) ; TRUE when DEBUG <> 1
.
.
.
$ELSEIF (TEST)
.
.
.
$ELSE
.
.
.
$ENDIF
.
.
.

156 Chapter 7. Invocation and Controls

† New features in the A251 assembler and the MCS 251 architecture

7

ENDIF

Abbreviation: None

Arguments: None

Default: None

Control Class: General

Description: The ENDIF control terminates an IF–ELSE–ENDIF
construct. When A251 encounters an ENDIF control
statement, it concludes processing the IF block and resumes
assembly at the point of the IF block. Since IF blocks can
be nested, this may involve continuing in another IF block.
The ENDIF control must be preceded by an IF, ELSEIF, or
ELSE control block.

Example: .
.
.
$IF TEST
.
.
.
$ENDIF
.
.
.

A51 Assembler / A251 Assembler 157

† New features in the A251 assembler and the MCS 251 architecture

8

Chapter 8. Error Messages
This chapter lists the error messages generated by A251. The following sections
include a brief description of the possible error messages along with a
description of the error and any corrective actions you can take to avoid or
eliminate the error.

Fatal errors terminate the assembly and generate a message that is displayed on
the console. Non–fatal errors generate a message in the assembly listing file but
do not terminate the assembly.

Fatal Errors

Fatal errors cause immediate termination of the assembly. These errors usually
occur as a result of an invalid command line. Fatal errors are also generated
when the assembler cannot access a specified source file or when the macros are
nested more than 9 deep.

Fatal errors produce a message that conforms to one of the following formats:

A251 FATAL ERROR –

 FILE: <file in which the error occurred>
 LINE: <line in which the error occurred
 ERROR: <corresponding error message>
A251 TERMINATED.

or

A251 FATAL ERROR –

 ERROR: <error message with description>
A251 TERMINATED.

where

FILE is the name of an input file that could not be opened.

LINE is the line where the error occurred

ERROR is the fatal error message text explained below.

158 Chapter 8. Error Messages

† New features in the A251 assembler and the MCS 251 architecture

8

Fatal Error Messages

ATTEMPT TO SHARE FILE

A file is used both for input and output (e.g. list file uses the same name as
the source file).

BAD NUMERIC CONSTANT

The numeric argument to the given control is illegal.

CAN’T ATTACH FILE

The given file can’t be opened for read access.

CAN’T CREATE FILE

The given file can’t be opened for write/update access.

CAN’T HAVE GENERAL CONTROL IN INVOCATION LINE

The given control is allowed in $control lines within the source file only (for
example the EJECT control). Some controls are allowed only in the source
text and not in the command line. Refer to “Chapter 7. Invocation and
Controls” on page 113 for more information about the A251 controls.

CAN’T REMOVE FILE

The given temporary file could not be removed for some reason.

CONFLICTING CONTROL

The given control conflicts with an earlier control (for example
$NOMOD251 MODSRC).

CONTROL LINE TOO LONG (500)

A $-control line has more than 500 characters.

DISK FILE REQUIRED

The given file does not represent a disk file.

ERRORPRINT– AND LIST–FILE CANNOT BE THE SAME

It is illegal to direct the listing file output and the errorprint output to the
console at the same time.

EXPECTED DELIMITER ‘(‘ AFTER CONTROL

The given control requires a brace enclosed argument

EXPECTED DELIMITER ‘)‘ AFTER ARGUMENT

The given control requires a brace enclosed argument

FILE DOES NOT EXIST

The given file does not exist.

A51 Assembler / A251 Assembler 159

† New features in the A251 assembler and the MCS 251 architecture

8

FILE IS READ ONLY

The given file does not permit write/update access.

FILE WRITE ERROR

The given file could not be written to (check free space)

IDENTIFIER EXPECTED

The given control requires an identifier as it’s argument, for example SET
(VAR1=1234H).

ILLEGAL FILE NAME, VOLUME OR DIRECTORY NAME

The name of the file is invalid or designates an invalid file.

INVOCATION LINE TOO LONG

The invocation line is longer than 500 characters.

LIMIT EXCEEDED: BALANCED TEXT LENGTH

The maximum length of a balanced text string is 65000 characters.

LIMIT EXCEEDED: INCLUDE OR MACRO NESTING

The maximum nesting level for MPL-macros is 50. The maximum nesting
level of standard macros plus include files is 10.

LIMIT EXCEEDED: MACRO DEFINITION LENGTH

The maximum definition length of a standard macro is 20000 characters.
MPL macros are limited to 65000 characters.

LIMIT EXCEEDED: MORE THAN 16000 SYMBOLS

The number of symbols (labels, equ/set symbols, externals, segment-symbols)
must not exceed 16000 per source file.

LIMIT EXCEEDED: SOURCE LINE LENGTH (500)

A single source line must not exceed the 500 characters per line limit.

LIMIT EXCEEDED: TOO MANY EXTERNALS (65535)

The number of external symbols must not exceed 65535 per source module.

LIMIT EXCEEDED: TOO MANY EXTERNALS (65535)

The number of externals must not exceed 65535 per source module.

LIMIT EXCEEDED: TOO MANY SEGMENTS (65535)

The number of segments must not exceed 65535 per source module.

NON-NULL ARGUMENT EXPECTED

The argument to the given control must not be null (for example $PRINT()).

OUT OF MEMORY

The assembler has run out of memory. Remove unnecessary drivers from
your system configuration.

160 Chapter 8. Error Messages

† New features in the A251 assembler and the MCS 251 architecture

8

OUT OF RANGE NUMERIC VALUE

The numeric argument to the given control is out of range (for example
$PAGEWIDTH(3000)).

UNKNOWN CONTROL

The given control is undefined.

Non–Fatal Errors

Non–fatal errors usually occur within the source program and are typically
syntax errors. When one of these errors is encountered, the assembler attempts
to recover and continue processing the input file. As more errors are
encountered, the assembler will produce additional error messages. The error
messages that are generated are included in the listing file.

Non–fatal errors produce a message using the following format:

*** ERROR number IN line (file, LINE line): error message

or

*** WARNING number IN line (file, LINE line): warning message

where

number is the error number.

line corresponds to the logical line number in the source file.

file corresponds to the source or include file which contains the
error.

LINE corresponds to the physical line number in <file>.

error message is descriptive text and depends on the type of error
encountered.

The logical line number in the source file is counted including the lines of all
include files and may therefore differ from the physical line number. For that
reason, the physical line number and the associated source or include file is also
given in error and warning messages.

A51 Assembler / A251 Assembler 161

† New features in the A251 assembler and the MCS 251 architecture

8

Example
 11 MOV R0,# 25 * | 10
*** --^
*** ERROR #4 IN 11 (TEST.A51, LINE 11), ILLEGAL CHARACTER

The caret character (^) is used to indicate the position of the incorrect character
or to identify the point at which the error was detected. It is possible that the
position indicated is due to a previous error. If a source line contains more than
one error, the additional position indicators are displayed on subsequent lines.

The following table lists the non–fatal error messages that are generated by
A251. These messages are listed by error number along with the error message
and a brief description of possible causes and corrections.

NOTE
Errors marked by † are MCS 251 specific and are not generated by the A51
assembler.

Number Non–Fatal Error Message and Description

1 ILLEGAL CHARACTER IN NUMERIC CONSTANT

This error indicates that an invalid character was found in a numeric constant.
Numeric constants must begin with a decimal digit and are delimited by the
first non–numeric character (with the exception of the dollar sign). The base of
the number decides which characters are valid.

• Base 2: 0, 1 and the base indicator B
• Base 8: 0–7 and the base indicator O or Q
• Base 10: 0–9 and the base indicator D or no indicator
• Base 16: 0–9, A–F and the base indicator H
• Base 16: 0xhhhh, 0–9, and A–F

2 MISSING STRING TERMINATOR

The ending string terminator was missing. The string was terminated with a
carriage return.

3 ILLEGAL CHARACTER

The assembler has detected a character which is not in the set of valid
characters for the 51/251 assembler language (for example `).

4 BAD INDIRECT REGISTER IDENTIFIER

This error occurs if combined registers are entered incorrectly; e.g.,

@R7, @R3, @PC+A, @DPTR+A.

5 ILLEGAL USE OF A RESERVED WORD

This error indicates that a reserved word is used for a label.

162 Chapter 8. Error Messages

† New features in the A251 assembler and the MCS 251 architecture

8

Number Non–Fatal Error Message and Description

6 DEFINITION STATEMENT EXPECTED

The first symbol in the line must be part of a definition. For example:

VAR1 EQU 12

7 LABEL NOT PERMITTED

A label was detected in an invalid context.

8 ATTEMPT TO DEFINE AN ALREADY DEFINED LABEL

A label was defined more than once. Labels may be defined only once in the
source program.

9 SYNTAX ERROR

A51/A251 encountered an error processing the line at the specified token.

10 ATTEMPT TO DEFINE AN ALREADY DEFINED SYMBOL

An attempt was made to define a symbol more than once. The subsequent
definition was ignored.

11 STRING CONTAINS ZERO OR MORE THAN TWO CHARACTERS

Strings used in an expression can be a maximum of two characters long (16
bits).

12 ILLEGAL OPERAND

An operand was expected but was not found in an arithmetic expression. The
expression is illegal.

13 ')' EXPECTED

A right parenthesis is expected. This usually indicates an error in the definition
of external symbols.

14 BAD RELOCATABLE EXPRESSION

A relocatable expression may contain only one relocatable symbol which may
be a segment symbol, external symbol, or a symbol belonging to a relocatable
segment. Mathematical operations cannot be carried out on more than one
relocatable symbol.

15 MISSING FACTOR

A constant or a symbolic value is expected after an operator.

16 DIVIDE BY ZERO ERROR

A division by zero was attempted while calculating an expression. The value
calculated is undefined.

A51 Assembler / A251 Assembler 163

† New features in the A251 assembler and the MCS 251 architecture

8

Number Non–Fatal Error Message and Description

17 INVALID BASE IN BIT ADDRESS EXPRESSION

This error indicates that the byte base in the bit address is invalid. This
occurs if the base is outside of the range 20h–2Fh or if it lies between 80h and
0FFh and is not evenly divisible by 8. For the 251 chip, the byte base address
must be in range 20H-0FFH with no restrictions. Note that with symbolic
operands, the operand specifies an absolute bit segment or an addressable
data segment.

18 OUT OF RANGE OR NON–TYPELESS BIT–OFFSET

The input of the offset (base.offset) in a bit address must be a typeless
absolute expression with a value between 0 and 7.

19 INVALID REGISTER FOR EQU/SET

The registers R0–R7, A and C may be used in SET or EQU directives. No
other registers are allowed.

20 INVALID SIMPLE RELOCATABLE EXPRESSION

A simple relocatable expression is intended to represent an address in a
relocatable segment. External symbols as well as segment symbols are not
allowed. The expression however may contain more symbols of the same
segment. Simple relocatable expressions are allowed in the instructions ORG,
EQU, SET, CODE, XDATA, IDATA, BIT, DATA, DB and DW.

21 EXPRESSION WITH FORWARD REFERENCE NOT PERMITTED

Expressions in EQU and SET directives may not contain forward references.

22 EXPRESSION TYPE DOES NOT MATCH INSTRUCTION

The expression does not conform to the 8051/251 conventions. A #, /Bit,
register, or numeric expression was expected.

23 NUMERIC EXPRESSION EXPECTED

A numeric expression is expected. The expression of another type is found.

24 SEGMENT–TYPE EXPECTED

The segment type of a definition was missing or invalid.

25 RELOCATION–TYPE EXPECTED

An invalid relocation type for a segment definition was encountered. One of
the following is valid: UNIT, PAGE, INPAGE, INBLOCK and
BITADDRESSABLE (for A251: same as before plus INSEG and
EBITADDRESSABLE).

164 Chapter 8. Error Messages

† New features in the A251 assembler and the MCS 251 architecture

8

Number Non–Fatal Error Message and Description

26 INVALID RELOCATION–TYPE

The types PAGE and INPAGE are only allowed for the CODE/ECODE and
XDATA segments. INBLOCK/INSEG is only allowed for the CODE/ECODE
segments and BITADDRESSABLE is only for the DATA segment (maximum
length 16 Bytes). EBITADDRESSABLE is allowed for DATA segments
(maximum length 96 Bytes). The type UNIT is the default for all segment
types if no input is entered.

27 LOCATION COUNTER MAY NOT POINT BELOW SEGMENT–BASE

An ORG directive used in a segment defined by the AT address directive may
not specify an offset that lies below the segment base. The following example
is, therefore, invalid:

CSEG AT 1000H
ORG 800H

28 ABSOLUTE EXPRESSION REQUIRED

The expression in a DS or DBIT instruction must be an absolute typeless
expression. Relocatable expressions are not allowed.

29 SEGMENT–LIMIT EXCEEDED

The maximum limit of a segment was exceeded. This limit depends on the
segment and relocation type. Segments with the attribute DATA should not
exceed 128 bytes. BITADDRESSABLE segments should not exceed 16 bytes
and INPAGE segments should not exceed 2 KBytes.

30 SEGMENT–SYMBOL EXPECTED

The operand to an RSEG directive must be a segment symbol.

31 PUBLIC–ATTRIBUTE NOT PERMITTED

The PUBLIC attribute is not allowed on the specified symbol.

32 ATTEMPT TO RESPECIFY MODULE NAME

An attempt was made to redefine the name of the module by using a second
NAME directive. The NAME directive may only appear once in a program.

33 CONFLICTING ATTRIBUTES

A symbol may not contain the attributes PUBLIC and EXTRN simultaneously.

34 ',' EXPECTED

A comma is expected in a list of expressions or symbols.

35 '(' EXPECTED

A left parenthesis is expected at the indicated position.

A51 Assembler / A251 Assembler 165

† New features in the A251 assembler and the MCS 251 architecture

8

Number Non–Fatal Error Message and Description

36 INVALID NUMBER FOR REGISTERBANK

The expression in a REGISTERBANK control must be an absolute typeless
number between 0 and 3.

37 OPERATION INVALID IN THIS SEGMENT

8051/251 instructions are allowed only within CODE/ECODE segments.

38 NUMBER OF OPERANDS DOES NOT MATCH INSTRUCTION

Either too few or too many operands were specified for the indicated
instruction. The instruction was ignored.

39 REGISTER–OPERAND EXPECTED

A register operand was expected but an operand of another type was found.

40 INVALID REGISTER

The specified register operand does not conform to the 8051/251 conventions.

41 MISSING ‘END’ STATEMENT

The last instruction in a source program must be the END directive. The
preceding source is assembled correctly and the object is valid.

42 INTERNAL ERROR (PASS-2), CONTACT TECHNICAL SUPPORT

This error occurs if a symbol in Pass 2 contains a value different than in Pass
1.

43 RESPECIFIED PRIMARY CONTROL, LINE IGNORED

A control was repeated or conflicts with a previous control. The control
statement was ignored.

44 MISPLACED PRIMARY CONTROL, LINE IGNORED

A primary control was misplaced. Primary controls may be entered in the
invocation line or at the beginning of the source file (as $ instruction). The
processing of primary controls in a source file ends when the first non
empty/non comment line containing anything but a primary control is
processed.

45 UNDEFINED SYMBOL (PASS–2)

The symbol is undefined.

46 CODE/ECODE–ADDRESS EXPECTED

An operand of memory type CODE/ECODE or a typeless expression is
expected.

166 Chapter 8. Error Messages

† New features in the A251 assembler and the MCS 251 architecture

8

Number Non–Fatal Error Message and Description

47 XDATA–ADDRESS EXPECTED

An operand of memory type XDATA or a typeless expression is expected.

48 DATA–ADDRESS EXPECTED

An operand of memory type DATA or a typeless expression is expected.

49 IDATA–ADDRESS EXPECTED

An operand of memory type 'IDATA' or a typeless expression is expected.

50 BIT–ADDRESS EXPECTED

An operand of memory type BIT or a typeless expression is expected.

51 TARGET OUT OF RANGE

The target of a conditional jump instruction is outside of the +127/–128 range
or the target of an AJMP or ACALL instruction is outside the 2 KByte memory
block.

52 VALUE HAS BEEN TRUNCATED TO 8 BITS

The result of the expression exceeds 255 decimal. Only the 8 low–order bits
are used for the byte operand.

53 MISSING 'USING' INFORMATION

The absolute register symbols AR0 through AR7 can be used only if a USING
registerbank directive was specified. This error indicates that the USING
directive is missing and the assembler cannot assign data addresses to the
register symbols.

54 MISPLACED CONDITIONAL CONTROL

An ELSEIF, ELSE, or ENDIF control must be preceded by an IF instruction.

55 BAD CONDITIONAL EXPRESSION

The expression to the IF or ELSEIF control is invalid. These expressions must
be absolute and may not contain relocatable symbols.

The $IF and $ELSEIF can only access symbols defined with the $SET and
$RESET controls. Both IF and ELSEIF allow access to all symbols of the
source program.

56 UNBALANCED IF–ENDIF–CONTROLS

Each IF block must be terminated with an ENDIF control. This is also true with
skipped nested IF blocks.

57 SAVE STACK UNDERFLOW

A $RESTORE control instruction is then valid only if a $SAVE control was
previously given.

A51 Assembler / A251 Assembler 167

† New features in the A251 assembler and the MCS 251 architecture

8

Number Non–Fatal Error Message and Description

58 SAVE STACK OVERFLOW

The context of the GEN, COND, and LIST controls may be stored by the
$SAVE control up to a maximum of 9 levels.

59 MACRO REDEFINITION

An attempt was made to define an already defined macro.

60 ERROR-60

Not generated by A51/251.

61 MACRO TERMINATED BY END OF FILE, MISSING ‘ENDM’

An attempt was made to define an already defined macro.

62 TOO MANY FORMAL PARAMETERS (16)

The number of formal parameters to a macro is limited to 16.

63 TOO MANY LOCALS (16)

The number of local symbols within a macro is limited to 16.

64 DUPLICATE LOCAL/FORMAL

The number of local or formal identifier must be distinct.

65 IDENTIFIER EXPECTED

While parsing a macro definition, an identifier was expected but something
different was found.

66 ‘EXITM’ INVALID OUTSIDE A MACRO

The EXITM (exit macro) keyword is illegal outside a macro definition.

67 EXPRESSION TOO COMPLEX

A too complex expression was encountered. This error occurs, if the number
of operands and operators in one expression exceeds 50.

68 UNKNOWN CONTROL OR BAD ARGUMENT(S)

The control given in a $-control line or the argument(s) to some control are
invalid.

69 MISPLACED ELSEIF/ELSE/ENDIF CONTROL

These controls require a preceding IF control.

70 LIMIT EXCEEDED: IF-NESTING (10)

IF controls may be nested up to a level of 10.

168 Chapter 8. Error Messages

† New features in the A251 assembler and the MCS 251 architecture

8

Number Non–Fatal Error Message and Description

71 NUMERIC VALUE OUT OF RANGE

The value of a numeric expression is out of range (for example $PAGEWIDTH
(2048) where only values in range 80 to 132 are allowed).

72 TOO MANY TOKENS IN SOURCE LINE

The number of tokens (identifiers, operators, punctuation characters and end
of line) exceeds 200. The source line is truncated at 200 tokens.

72 TOO MANY TOKENS IN SOURCE LINE

The number of tokens (identifiers, operators, punctuation characters and end
of line) exceeds 200. The source line is truncated at 200 tokens.

73 TEXT FOUND BEYOND END STATEMENT - IGNORED

Text following the END directive is not processed by the assembler.

74 REGISTER USAGE: UNDEFINED REGISTER NAME

A register name argument given to the REGUSE control does not represent
the name of a register.

75 ‘REGISTER USAGE’ REQUIRES A PUBLIC CODE SYMBOL

The register usage value must be assigned to a public symbol, which
represents a CODE symbol. For the A251, the name of a public procedure
(near of far) with memory type CODE/ECODE is also valid.

76 MULTIPLE REGISTER USES GIVEN TO ONE SYMBOL

The register usage value may be assigned to a symbol or procedure only
once.

77 INSTRUCTION NOT AVAILABLE †

The given instruction is not available in the current mode of operation.

78 ERROR 78

Not generated by A51/251.

79 INVALID ATTRIBUTE †

The OVERLAYABLE attribute given in a segment definition is not valid for
code and constant segments.

80 INVALID ABSOLUTE BASE/OFFS VALUE †

The absolute address given in a segment definition does not conform to the
memory type of the segment (for example DATA AT 0x1000).

A51 Assembler / A251 Assembler 169

† New features in the A251 assembler and the MCS 251 architecture

8

Number Non–Fatal Error Message and Description

81 EXPRESSION HAS DIFFERENT MEMORY SPACE †

The expression given in a symbol definition statement does not have the
memory space required by the directive, for example:

 VAR1 CODE EXPR

where ‘EXPR’ has a memory type other than CODE or NUMBER.

82 LABEL STATEMENT MUST BE WITHIN CODE/ECODE SEGMENT †

The LABEL statement is not allowed outside a CODE or ECODE segment.

83 TYPE INCOMPATIBLE WITH GIVEN MEMORY SPACE †

The type given in an external declaration is not compatible to the given
memory space. The following examples shows an invalid type since a bit can
never reside in code space:

 EXTRN CODE:BIT (bit0, bit1)

84 OPERATOR REQUIRES A CODE/ECODE ADDRESS †

The type override operators NEAR and FAR cannot be applied to addresses
with memory type other than CODE and ECODE.

85 INVALID OPERAND TYPE †

An expression contains invalid typed operands to some operator, for example
addition/unary minus on bit-type operands.

86 PROCEDURES CAN’T BE NESTED †

A251 does not support nested procedures.

87 UNCLOSED PROCEDURE †

A251 detected an unclosed procedure after scanning the source file.

88 VALUE HAS BEEN TRUNCATED TO 16 BITS †

The displacement value given in a register expression (WRn+disp16,
DRk+disp16) has been truncated to 16 bits.

89 ERROR-89 †

Not generated by A51/251.

90 ‘FAR’ RETURN IN ‘NEAR’ PROCEDURE †

The return far instruction (ERET) was encountered in a procedure of type
NEAR (the code may not work).

170 Chapter 8. Error Messages

† New features in the A251 assembler and the MCS 251 architecture

8

Number Non–Fatal Error Message and Description

91 TYPE MISMATCH †

The operand type of an instruction operand does not match the requested type
of the instruction, for example:

MOV WR10,Byte_Memory_Operand. ; Word/Byte mismatch

Use a type override to avoid the warning as shown:

MOV WR10,WORD Byte_Memory_Operand

92 MCS 251 INSTRUCTION IN NON 251 MODE †

The assembler encountered an MCS 251 instruction in $NOMOD251 mode of
operation. $NOMOD251 limits the instructions to the set for the MCS 51
family of controllers.

93 ERROR-93

Not generated by A51/251.

94 VALUE DOES NOT MATCH INSTRUCTION †

The short value given in a INC/DEC Rn,#short is not one of 1,2,4.

95 ILLEGAL MEMORY CLASS SPECIFIER †

The memory class specifier in a segment definition statement does not
correspond to one of the predefined memory class names (CODE, ECODE,
BIT, EBIT ...).

96 ACCESS TO MISALIGNED ADDRESS †

A word instruction accesses a misaligned (odd) address. This warning is
generated only if the $WORDALIGN control was given.

97 ‘FAR’ REFERENCE TO ‘NEAR’ LABEL †

An ECALL/AJMP instruction to some label of type NEAR has been detected.

98 ‘NEAR’ REFERENCE TO ‘FAR’ LABEL †

An ACALL/AJMP/SJMP or conditional jump instruction to some label of type
FAR has been detected.

150 PREMATURE END OF FILE ENCOUNTERED

The MPL macro processor encountered the end of the source file while
parsing a macro definition.

151 <name>: IDENTIFIER EXPECTED

The macro or function given by <name> in the error message expected an
identifier but found something else.

A51 Assembler / A251 Assembler 171

† New features in the A251 assembler and the MCS 251 architecture

8

Number Non–Fatal Error Message and Description

152 MPL FUNCTION <name>: <character> EXPECTED

The MPL function <name> expected a specific character in the input stream
but found some other character.

153 <name>: UNBALANCED PARENTHESIS

While scanning balanced text, the macro processor expected a ‘)’ character,
but found some other character.

154 EXPECTED <identifier>

The macro processor expected some specific identifier (for example ELSE) but
found some other text.

155 ERROR-155

Not generated by A51/251.

156 FUNCTION ‘MATCH’: ILLEGAL CALL PATTERN

The call pattern to the MPL function match must be a formal parameter
followed by a delimiter followed by another formal parameter.

157 FUNCTION ‘EXIT’ IN BAD CONTEXT

The EXIT function must not appear outside a macro expansion, %REPEAT or
%WHILE.

158 ILLEGAL METACHARACTER <character>

The metacharacter may not be @, (,), *, TAB, EOL, A-Z,a-z, 0-9, _ and ?.

159 CALL PATTERN - DELIMITER <delimiter> NOT FOUND

The actual parameters in a macro call do not match the call pattern defined in
the macro definition of that macro.

160 CALL TO UNDEFINED MACRO <macroname>

An attempt to activate an undefined macro has been encountered .

161 ERROR-161

Not generated by A51/251.

162 INVALID DIGIT ‘character’ IN NUMBER

An ill formed number has been encountered. For numbers, the rules are
equal to the numbers in the assembler language with the exception of $ signs,
which are not supported within the MPL.

163 UNCLOSED STRING OR CHARACTER CONSTANT

A string or character constant is terminated by an end of line character instead
of the closing character.

172 Chapter 8. Error Messages

† New features in the A251 assembler and the MCS 251 architecture

8

Number Non–Fatal Error Message and Description

164 INVALID STRING OR CHARACTER CONSTANT

A string or character constant may contain one or two characters.

165 EVAL: UNKNOWN EXPRESSION IDENTIFIER

An MPL expression contains an unknown identifier.

166 <token>: INVALID EXPRESSION TOKEN

An MPL expression contains a token which neither represents an operator nor
an operand.

167 <function>: DIV/MOD BY ZERO

The evaluation of an expression within the MPL function <function> yields a
division or modulus by zero.

168 EVAL: SYNTAX ERROR IN EXPRESSION

An expression is followed by one or more erroneous tokens.

169 CAN’T OPEN FILE <name of file>

The file given in an $INCLUDE directive cannot be opened.

170 <name of file>: IS NOT A DISK FILE

An attempt was made to open a file which is not a disk file (for example
$INCLUDE (CON).

171 ERROR IN INCLUDE DIRECTIVE

The argument to the INCLUDE directive must be the brace enclosed name of
the file, for example $INCLUDE (REG251.INC).

172 CAN’T REDEFINE PREDEFINED MACRO ‘SET’

The .predefined %SET macro can’t be redefined.

A51 Assembler / A251 Assembler 173

† New features in the A251 assembler and the MCS 251 architecture

A
Appendix A. 8051/251 Instruction Sets

This appendix lists the 8051 and MCS 251 microcontroller instruction sets. The
8051 and MCS 251 instructions are listed in alphabetical order and according to
their hexadecimal opcodes. The following terms are used in the descriptions.

Identifier Explanation

A Accumulator

AB Register Pair A & B

B Multiplication Register

C Carry Flag

DPTR Data pointer

PC Program Counter

Rn Register R0 - R7 of the currently selected Register Bank.

Rm † Register R0 - R15 of the currently selected Register File.

WRj † Register WR0 - WR30 of the currently selected Register File.

DRk † Register DR0 - DR28, DR56, DR60 of the currently selected Register File.

dir8 8-bit data address; Data RAM location (00:00 - 00:7F) or a SFR (S:80 - S:FF)

dir16 † 16-bit data address; Data RAM location (00:00 - 00:FFFF).

@Ri Data RAM location (00:00 - 00:FF) addressed indirectly through R1 or R0.

@WRj † Data RAM location (0 - 64K) addressed indirectly through WR0 - WR30.

@DRk † Data RAM location (0 - 16M) addressed indirectly through register DR60, DR56,
DR0 - DR28.

#data8 8-bit constant included in instruction.

#data16 16-bit constant included in instruction.

#short † constant 1, 2 or 4 included in instruction (251 only).

addr16 16-bit destination address. Used by LCALL & LJMP. A branch can be anywhere
within a 64KB segment of the program memory address space.

addr11 11-bit destination address. Used by ACALL & AJMP. The branch will be within the
same 2KByte block of program memory of the first byte of the following instruction.

rel Signed (two’s complement) 8-bit offset byte. Used by SJMP and conditional
jumps. Range is -128 .. +127 bytes relative to the first byte of the following
instruction.

bit8 Direct addressed bit in Data RAM Location (8051 compatible).

bit11 † Direct addressed bit in Data RAM or Special Function Register.

@Wrj+dis † Data RAM location (0 - 64K) addressed displaced through (WR0 - WR30) +
displacement value (251 only).

@DRk+dis † Data RAM location (0 - 16M) addressed displaced through (DR60, DR56, DR28 -
DR0) + displacement value (251 only).

174 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
ACALL Absolute Subroutine CALL CY

—
AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

ACALL addr11 Absolute Subroutine Call 2 2

ADD ADD destination, source
Addition

CY
X

AC
X

N
X

OV
X

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

ADD A,Rn Add register to accumulator 1 2

ADD A,dir8 Add direct byte to accumulator 2 2

ADD A,@Ri Add indirect RAM to accumulator 1 2

ADD A,#data8 Add immediate data to accumulator 2 2

ADD Rm,Rm † Add byte register to byte register 3 2

ADD WRj,WRj † Add word register to word register 3 2

ADD DRk,DRk † Add double word register to dword register 3 2

ADD Rm,#data8 † Add 8 bit data to byte register 4 3

ADD Wrj,#data16 † Add 16 bit data to word register 5 4

ADD Drk,#data16 † Add 16 bit unsigned data to dword register 5 4

ADD Rm,dir8 † Add direct address to byte register 4 3

ADD WRj,dir8 † Add direct address to word register 4 3

ADD Rm,dir16 † Add direct address (64K) to byte register 5 4

ADD WRj,dir16 † Add direct address (64K) to word register 5 4

ADD Rm,@WRj † Add indirect address (64K) to byte register 4 3

ADD Rm,@DRk † Add indirect address (16M) to byte register 4 3

ADDC ADDC destination, source
Addition with Carry

CY
X

AC
X

N
X

OV
X

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

ADDC A,Rn Add register to accumulator with carry flag 1 2

ADDC A,dir8 Add direct byte to accumulator with carry flag 2 2

ADDC A,@Ri Add indirect RAM to accumulator with carry
flag

1 2

ADDC A,#data8 Add immediate data to accumulator with carry
flag

2 2

A51 Assembler / A251 Assembler 175

† New features in the A251 assembler and the MCS 251 architecture

AAJMP Absolute JUMP CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

AJMP addr11 Absolute Jump 2 2

ANL ANL destination, source
Logical AND

CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

ANL A,Rn AND register to accumulator 1 2

ANL A,dir8 AND direct byte to accumulator 2 2

ANL A,@Ri AND indirect RAM to accumulator 1 2

ANL A,#data8 AND immediate data to accumulator 2 2

ANL dir,A AND accumulator to direct byte 2 2

ANL dir,#data8 AND immediate data to direct byte 3 3

ANL Rm,Rm † AND byte register to byte register 3 2

ANL WRj,WRj † AND word register to word register 3 2

ANL Rm,#data8 † AND 8 bit data to byte register 4 3

ANL Wrj,#data16 † AND 16 bit data to word register 5 4

ANL Rm,dir8 † AND direct address to byte register 4 3

ANL Wrj,dir8 † AND direct address to word register 4 3

ANL Rm,dir16 † AND direct address (64K) to byte register 5 4

ANL Wrj,dir16 † AND direct address (64K) to word register 5 4

ANL Rm,@WRj † AND indirect address (64K) to byte register 4 3

ANL Rm,@DRk † AND indirect address (16M) to byte register 4 3

ANL ANL destination, source
Logical AND for bit variables

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

ANL C,bit8 AND direct bit to carry; from BIT space 2 2

ANL C,bit11 † AND direct bit to carry; from EBIT space 4 3

176 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
ANL/ ANL/ destination, source

Logical AND for bit variables
CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

ANL C,/bit8 AND complement of direct bit to carry; BIT
space

2 2

ANL C,/bit11 † AND complement of dir bit to carry; EBIT
space

4 3

CJNE COMPARE destination, source and
jump if not equal

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

CJNE A,dir8,rel Compare dir byte to acc. and jump if not equal 3 3

CJNE A,#data8,rel Compare imm. data to acc. and jump if not
equal

3 3

CJNE Rn,#data8,rel Compare imm. data to reg and jump if not
equal

3 4

CJNE @Ri,#data8,rel Compare imm. data to indir and jump if not
equal

3 4

CLR CLEAR Operand CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

CLR bit11 † Clear accumulator 1 1

CLR CLEAR Bit Operand CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

CLR C Clear carry 1 1

CLR bit8 Clear direct bit from BIT space 2 2

CLR bit11 † Clear direct bit from EBIT space 4 3

A51 Assembler / A251 Assembler 177

† New features in the A251 assembler and the MCS 251 architecture

A
CMP COMPARE Operands CY

X
AC
X

N
X

OV
X

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

CMP Rm,Rm † Compare registers 3 2

CMP WRj,WRj † Compare word registers 3 2

CMP DRk,DRk † Compare double word registers 3 2

CMP Rm,#data8 † Compare register with immediate data 4 3

CMP Wrj,#data16 † Compare word register with immediate data 5 4

CMP Drk,#00 † Compare dword reg with zero extended data 5 4

CMP Drk,#ff † Compare dword reg with one extended data 5 4

CMP Rm,dir8 † Compare register with direct byte 4 3

CMP WRj,dir8 † Compare word register with direct word 4 3

CMP Rm,dir16 † Compar register with direct byte (64K) 5 4

CMP WRj,dir16 † Compare word register with direct byte (64K) 5 4

CMP Rm,@WRj † Compare register with indirect address (64K) 4 3

CMP Rm,@DRk † Compare register with indirect address (16M) 4 3

CPL COMPLEMENT Operand CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

CPL A Complement accumulator 1 1

CPL COMPLEMENT Bit Operand CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

CPL C Complement carry 1 1

CPL bit8 Complement direct bit from BIT space 2 2

CPL bit11 † Complement direct bit from EBIT space 4 3

178 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
DA DECIMAL ADJUST Accumulator

for Addition
CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

DA A Decimal adjust accumulator 1 1

DEC DECREMENT Operand with a
constant

CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

DEC A Decrement accumulator 1 1

DEC Rn Decrement register 1 2

DEC dir Decrement dir byte 2 2

DEC @Ri Decrement indir RAM 1 2

DEC Rm,#short † Decrement byte register with 1, 2 or 4 3 2

DEC WRj,#short † Decrement word register with 1, 2 or 4 3 2

DEC DRk,#short † Decrement double word register with 1, 2 or 4 3 2

DIV DIVIDE Operands CY
0

AC
—

N
X

OV
X

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

DIV AB Divide A by B 1 1

DIV Rm,Rm † Divide byte register by byte register 3 2

DIV WRj,WRj † Divide word register by word register 3 2

DJNZ DECREMENT Operand and Jump if
Not Zero

CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

DJNZ Rn,rel Decrement register and jump if not zero 3 3

DJNZ dir8,rel Decrement direct byte and jump if not zero 3 3

A51 Assembler / A251 Assembler 179

† New features in the A251 assembler and the MCS 251 architecture

A
ECALL Extended Subroutine CALL CY

—
AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

ECALL addr24 Extended subroutine call 5 4

ECALL DRk Extended subroutine call 3 2

EJMP Extended JUMP CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

EJMP addr24 Extended jump 5 4

EJMP DRk Extended jump 3 2

ERET RETURN from extended
Subroutine

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

ERET DRk Return from subroutine 1 1

INC INCREMENT Operand with a
constant

CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

INC A Increment accumulator 1 1

INC Rn Increment register 1 2

INC dir Increment direct byte 2 2

INC @Ri Increment indirect RAM 1 2

INC Rm,#short † Increment byte register with 1, 2 or 4 3 2

INC WRj,#short † Increment word register with 1, 2 or 4 3 2

INC Drk,#short † Increment double word register with 1, 2 or 4 3 2

INC DPTR Increment Data Pointer 1 1

180 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
JB JUMP if Bit is set CY

—
AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JB bit8,rel Jump if dir bit (from BIT space) is set 3 3

JB bit11,rel † Jump if dir bit (from EBIT space) is set 5 4

JBC JUMP if Bit is set and clear bit CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JBC bit8,rel Jump if dir bit (BIT space) is set and clear bit 3 3

JBC bit11,rel † Jump if dir bit (EBIT space) is set and clear bit 5 4

JC JUMP if Carry is set CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JC rel Jump if carry is set 2 2

JE JUMP if equal CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JE rel † Jump if equal 3 2

JG JUMP if greater than CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JG rel † Jump if greater than 3 2

A51 Assembler / A251 Assembler 181

† New features in the A251 assembler and the MCS 251 architecture

A
JLE JUMP if less than or equal CY

—
AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JLE rel † Jump if less than or qual 3 2

JMP JUMP indir relative to DPTR CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JMP @A+DPTR Jump indir relative to DPTR 1 1

JNB JUMP if Bit is Not set CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JNB bit8,rel Jump if dir bit (from BIT space) is not set 3 3

JNB bit11,rel † Jump if dir bit (from EBIT space) is not set 5 4

JNC JUMP if Carry is Not set CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JNC rel Jump if carry is not set 2 2

JNE JUMP if Not Equal CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JNE rel † Jump if not equal 3 2

182 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
JNZ JUMP if Accumulator is Not Zero CY

—
AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JNZ rel Jump if accumulator is not zero 2 2

JSG JUMP if greater than (Signed) CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JSG rel † Jump if greater than (signed) 3 2

JSGE JUMP if greater than or Equal
(Signed)

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JSGE rel † Jump if greater than or equal (signed) 3 2

JSL JUMP if Less than (Signed) CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JSL rel † Jump if less than (signed) 3 2

JSLE JUMP if Less than or Equal
(Signed)

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JSLE rel † Jump if less than or equal (signed) 3 2

A51 Assembler / A251 Assembler 183

† New features in the A251 assembler and the MCS 251 architecture

A
JZ JUMP if Accumulator is Zero CY

—
AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

JZ rel Jump if accumulator is zero 2 2

LCALL Long Subroutine CALL CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

LCALL @WRj † Long Subroutine Call indirect via word register 3 2

LCALL addr16 Long Subroutine Call 3 3

LJMP Long JUMP CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

LJMP @WRj † Long Jump indirect via word register 3 2

LJMP addr16 Long Jump 3 3

MOV MOV destination, source
Move data

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

MOV A,Rn Move register to accumulator 1 2

MOV A,dir8 Move direct byte to accumulator 2 2

MOV A,@Ri Move indirect RAM to accumulator 1 2

MOV A,#data8 Move immediate data to accumulator 2 2

MOV Rn,A Move accumulator to register 1 2

MOV Rn,dir8 Move direct byte to register 2 3

MOV Rn,#data8 Move immediate data to register 2 3

MOV dir8,A Move accumulator to direct byte 2 2

MOV dir8,Rn Move register to direct byte 2 3

MOV dir8,dir8 Move direct byte to direct byte 3 3

MOV dir8,@Ri Move indirect RAM to direct byte 2 3

184 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
MOV MOV destination, source

Move data
CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

MOV dir8,#data8 Move immediate data to direct byte 3 3

MOV @Ri,A Move accumulator to indirect RAM 1 2

MOV @Ri,dir8 Move direct byte to indirect RAM 2 3

MOV @Ri,#data8 Move immediate data to indirect RAM 2 3

MOV DPTR,#data16 Load Data Pointer with 16-bit constant 3 3

MOV Rm,Rm † Move byte register to byte register 3 2

MOV WRj,WRj † Move word register to word register 3 2

MOV DRk,DRk † Move dword register to dword register 3 2

MOV Rm,#data8 † Move 8 bit data to byte register 4 3

MOV WRj,#data16 † Move 16 bit data to word register 5 4

MOV DRk,#0data16 † Move 16 bit zero extended data to dword reg. 5 4

MOV DRk,#1data16 † Move 16 bit one extended data to dword reg. 5 4

MOV Rm,dir8 † Move dir address to byte register 4 3

MOV WRj,dir8 † Move direct address to word register 4 3

MOV DRk,dir8 † Move direct address to dword register 4 3

MOV Rm,dir16 † Move direct address (64K) to byte register 5 4

MOV WRj,dir16 † Move direct address (64K) to word register 5 4

MOV DRk,dir16 † Move direct address (64K) to dword register 5 4

MOV Rm,@WRj † Move indirect address (64K) to byte register 4 3

MOV Rm,@DRk † Move indirect address (16M) to byte register 4 3

MOV WRj,@WRj † Move indirect address (64K) to word register 4 3

MOV WRj,@DRk † Move indirect address (16M) to word register 4 3

MOV dir8,Rm † Move byte register to direct address 4 3

MOV dir8,WRj † Move word register to direct address 4 3

MOV dir8,DRk † Move dword register to direct address 4 3

MOV dir16,Rm † Move byte register to direct address (64K) 5 4

MOV dir16,WRj † Move word register to direct address (64K) 5 4

MOV dir16,DRk † Move dword register to direct address (64K) 5 4

MOV @WRj,Rm † Move byte register to direct address (64K) 4 3

MOV @DRk,Rm † Move byte register to indirect address (16M) 4 3

MOV @WRj,WRj † Move word register to indirect address (64K) 4 3

MOV @DRk,WRj † Move word register to indirect address (16M) 4 3

MOV Rm,@WRj+dis † Move displacement address (64K) to byte reg. 5 4

MOV WRj,@WRj+dis
†

Move displacement address (64K) to word
reg.

5 4

MOV Rm,@DRk+dis † Move displacement address (16M) to byte reg. 5 4

A51 Assembler / A251 Assembler 185

† New features in the A251 assembler and the MCS 251 architecture

A
MOV MOV destination, source

Move data
CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

MOV WRj,@DRk+dis † Move displacement address (16M) to word
reg.

5 4

MOV @WRj+dis,Rm † Move byte reg. to displacement address (64K) 5 4

MOV @WRj+dis,WRj
†

Move word reg. to displacement address
(64K)

5 4

MOV @DRk+dis,Rm † Move byte reg. to displacement address (16M) 5 4

MOV @DRk+dis,WRj † Move word reg. to displacement address
(16M)

5 4

MOV C,bit8 Move dir bit to carry 2 2

MOV C,bit11 † Move dir bit from 8 bit address location to
carry

2 2

MOV bit8,C Move carry to dir bit 2 2

MOV bit11,C † Move carry to dir bit from 16 bit address
location

5 4

MOVC MOV destination, source
Move Code byte

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

MOVC A,@A+DPTR Move code byte relative to DPTR to
accumulator

1 1

MOVC A,@A+PC Move code byte relative to PC to accumulator 1 1

MOVH MOVH destination, source
Move data to high word of DR

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

MOVH DRk,#data16 † Move 16-bit imm. data to high word of dword
reg.

3 2

186 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
MOVS MOVS destination, source

Move byte to word (signed ext.)
CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

MOVS WRj,Rm † Move byte register to word register 3 2

MOVX MOV destination, source
External RAM access

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

MOVX A,@Ri Move xdata RAM (8 bit address) to
accumulator

1 2

MOVX A,@DPTR Move xdata RAM (16 bit address) to
accumulator

1 1

MOVX @Ri,A Move accumulator to xdata RAM (8 bit
address)

1 2

MOVX @DPTR,A Move accumulator to xdata RAM (16 bit
address)

1 1

MOVZ MOV destination, source
Move byte to word (zero ext.)

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

MOVZ WRj,Rm † Move byte reg. to word reg. (zero extended) 3 2

MUL MULTIPLY Operands CY
0

AC
—

N
X

OV
X

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

MUL AB Multiply A and B 1 1

MUL Rm,Rm † Multiply byte register with byte register 3 2

MUL WRj,WRj † Multiply word register with word register 3 2

A51 Assembler / A251 Assembler 187

† New features in the A251 assembler and the MCS 251 architecture

A
NOP No Operation CY

—
AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

NOP No operation 1 1

ORL ORL destination, source
Logical OR

CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

ORL A,Rn OR register to accumulator 1 2

ORL A,dir8 OR dir byte to accumulator 2 2

ORL A,@Ri OR indir RAM to accumulator 1 2

ORL A,#data8 OR immediate data to accumulator 2 2

ORL dir,A OR accumulator to dir byte 2 2

ORL dir,#data8 OR immediate data to dir byte 3 3

ORL Rm,Rm † OR byte register to byte register 3 2

ORL WRj,WRj † OR word register to word register 3 2

ORL Rm,#data8 † OR 8 bit data to byte register 4 3

ORL WRj,#data16 † OR 16 bit data to word register 5 4

ORL Rm,dir8 † OR dir address to byte register 4 3

ORL WRj,dir8 † OR dir address to word register 4 3

ORL Rm,dir16 † OR dir address (64K) to byte register 5 4

ORL WRj,dir16 † OR dir address (64K) to word register 5 4

ORL Rm,@WRj † OR indir address (64K) to byte register 4 3

ORL Rm,@DRk † OR indir address (16M) to byte register 4 3

ORL ORL destination, source
Logical OR for bit variables

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

ORL C,bit8 OR direct bit to carry; from BIT space 2 2

ORL C,bit11 † OR direct bit to carry; from EBIT space 4 3

188 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
ORL/ ORL/ destination, source

Logical OR with Complement
CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

ORL C,/bit8 OR complement of direct bit to carry; BIT
space

2 2

ORL C,/bit11 † OR complement of dir bit to carry; EBIT space 4 3

POP POP Operand from Stack CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

POP Rm † Pop byte register from stack 3 2

POP WRj † Pop word register from stack 3 2

POP DRk † Pop double word register from stack 3 2

POP dir8 Pop direct byte from stack 2 2

PUSH PUSH Operand onto Stack CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

PUSH Rm † Push byte register onto stack 3 2

PUSH WRj † Push word register onto stack 3 2

PUSH DRk † Push double word register onto stack 3 2

PUSH dir8 Push direct byte onto stack 2 2

PUSH #data8 † Push immediate data onto stack 4 3

PUSH #data16 † Push immediate data (16 bit) onto stack 5 4

RET RETURN from Subroutine CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

RET Return from subroutine 1 1

A51 Assembler / A251 Assembler 189

† New features in the A251 assembler and the MCS 251 architecture

A
RETI RETURN from Interrupt CY

—
AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

RETI Return from interrupt 1 1

RL ROTATE Accumulator Left CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

RL A Rotate accumulator left 1 1

RLC ROTATE Accumulator Left through
the Carry

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

RLC A Rotate accumulator left through the carry 1 1

RR ROTATE Accumulator Right CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

RR A Rotate accumulator right 1 1

RRC ROTATE Accumulator Right
through the Carry

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

RRC A Rotate accumulator right through the carry 1 1

190 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
SETB SET Bit Operand CY

—
AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

SETB C Set carry 1 1

SETB bit8 Set direct bit from BIT space 2 2

SETB bit11 † Set direct bit from EBIT space 5 4

SJMP Short JUMP CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

SJMP rel Short jump (relative address) 2 2

SLL SHIFT Register Left CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

SLL Rm † Shift byte register left 3 2

SLL WRj † Shift word register left 3 2

SRA SHIFT Register Right (arithmet.)
sign extended

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

SRA Rm † Shift byte register right; sign extended 3 2

SRA WRj † Shift word register right; sign extended 3 2

SRL SHIFT Register Right (logic) zero
extended

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

SRL Rm † Shift byte register right; zero extended 3 2

A51 Assembler / A251 Assembler 191

† New features in the A251 assembler and the MCS 251 architecture

A
SRL SHIFT Register Right (logic) zero

extended
CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

SRL WRj † Shift word register right; zero extended 3 2

SUB SUB destination, source
Subtraction

CY
X

AC
X

N
X

OV
X

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

SUB Rm,Rm † Subtract byte register from byte register 3 2

SUB WRj,WRj † Subtract word register from word register 3 2

SUB DRk,DRk † Subtract dword register from dregister 3 2

SUB Rm,#data † Subtract 8 bit data from byte register 4 3

SUB Wrj,#data16 † Subtract 16 bit data from word register 5 4

SUB Drk,#data16 † Subtract 16 bit unsigned data from dword reg. 5 4

SUB Rm,dir † Subtract direct address from byte register 4 3

SUB Wrj,dir † Subtract direct address from word register 4 3

SUB Rm,dir16 † Subtract direct address (64K) from byte
register

5 4

SUB Wrj,dir16 † Subtract direct address (64K) from word
register

5 4

SUB Rm,@WRj † Subtract indirect address (64K) from byte reg. 4 3

SUB Rm,@DRk † Subtract indirect address (16M) from byte reg. 4 3

SUBB SUBB destination, source
Subtraction with Borrow

CY
X

AC
X

N
X

OV
X

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

SUBB A,Rn Subtract register from accumulator with
borrow

1 2

SUBB A,dir8 Subtract direct byte from accumulator with
borrow

2 2

SUBB A,@Ri Subtract indirect byte from accumulator with
borrow

1 2

SUBB A,#data8 Subtract immediate data from accumulator
with borrow

2 2

192 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
SWAP SWAP Nibbles within the

Accumulator
CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

SWAP A Swap nibbles within the accumulator 1 1

TRAP JUMP to the Trap Interrupt CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

TRAP Trap † Jumps to the trap interrupt vector 2 1

XCH EXCHANGE Operands CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

XCH A,Rn Exchange register with accumulator 2 2

XCH A,dir8 Exchange direct byte with accumulator 2 2

XCH A,@Ri Exchange indirect byte with accumulator 1 2

XCHD EXCHANGE Digit CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source †

XCHD A,@Ri Exchange low-order digit in indir. RAM with
accumulator

1 2

XRL EXCL.-OR destination, source
Logical Exclusive-OR

CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

XRL A,Rn Exclusive-OR register to accumulator 1 2

XRL A,dir8 Exclusive-OR direct byte to accumulator 2 2

XRL A,@Ri Exclusive-OR indirect byte to accumulator 1 2

A51 Assembler / A251 Assembler 193

† New features in the A251 assembler and the MCS 251 architecture

A
XRL EXCL.-OR destination, source

Logical Exclusive-OR
CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source †

XRL A,#data8 Exclusive-OR immediate data to accumulator 2 2

XRL dir8,A Exclusive-OR accumulator to direct byte 2 2

XRL dir8,#data8 Exclusive-OR immediate data to direct byte 3 3

XRL Rm,Rm † Exclusive-OR byte register to byte register 3 2

XRL WRj,WRj † Exclusive-OR word register to word register 3 2

XRL Rm,#data8 † Exclusive-OR 8 bit data to byte register 4 3

XRL WRj,#data16 † Exclusive-OR 16 bit data to word register 5 4

XRL Rm,dir8 † Exclusive-OR direct address to byte register 4 3

XRL WRj,dir8 † Exclusive-OR direct address to word register 4 3

XRL Rm,dir16 † Exclusive-OR direct address (64K) to byte reg. 5 4

XRL WRj,dir16 † Exclusive-OR direct address (64K) to word
reg.

5 4

XRL Rm,@WRj † Exclusive-OR indirect address (64K) to byte
reg.

4 3

XRL Rm,@DRk † Exclusive-OR indirect address (16M) to byte
reg.

4 3

194 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
MCS 251 Opcode Map

The MCS 251 opcode map is based on the 8051 microcontroller opcode map. It
is arranged as two separate maps, one for binary compatible mode, and one for
assembly compatible mode. The mode of operation is configurable at reset.

In binary compatible mode the default opcode map is the 8051 microcontroller
map with 255 opcodes and one ESCAPE prefix (A5). If one wants to execute a
new MCS 251 instruction the opcode must be proceeded with the ESCAPE
prefix. This allows the user to take advantage of the new MCS 251 instructions.
Unused opcodes in the ESCAPE map are reserved for future use.

At initialization the user may choose to configure the part to take optimum
advantage of the new MCS 251 instructions. In this mode the opcode map
remains the same except for the register and register indirect instructions of 8051
microcontroller. These instructions, with opcodes with lower nibble between 6
and F, are moved to the ESCAPE map. The new MCS 251 instructions are
moved to this freed up space. Unused opcodes are reserved for future use. The
displaced 8051 based instructions keep the same machine code (opcode +
operand bytes) except that each must now be proceeded by the ESCAPE (A5)
prefix. The MCS 251 instructions keep the same machine code, except they no
longer need to be proceeded by the ESCAPE (A5) byte.

A51 Assembler / A251 Assembler 195

† New features in the A251 assembler and the MCS 251 architecture

A
8051 Microcontroller Instructions

Binary
Mode

0 1 2 3 4 5 6 - 7 8 - F

Source
Mode

0 1 2 3 4 5 A5x6-
A5x7

A5x8-A5xF

0 NOP AJMP
adr11

LJMP
ADR16

RR
A

INC
A

INC
dir

INC
@Ri

INC
Rn

1 JBC
bit,rel

ACALL
adr11

LCALL
adr16

RRC
A

DEC
A

DEC
dir

DEC
@Ri

DEC
Rn

2 JB
bit,rel

AJMP
adr11

RET RL
A

ADD
A,#data

ADD
A,dir

ADD
A,@Ri

ADD
A,Rn

3 JNB
bit,rel

ACALL
adr11

RETI RLC
A

ADDC
A,#data

ADDC
A,dir

ADDC
A,@Ri

ADDC
A,Rn

4 JC
rel

AJMP
adr11

ORL
dir,A

ORL
dir,#data

ORL
A,#data

ORL
A,dir

ORL
A,@Ri

ORL
A,Rn

5 JNC
rel

ACALL
adr11

ANL
dir,A

ANL
dir,#data

ANL
A,#data

ANL
A,dir

ANL
A,@Ri

ANL
A,Rn

6 JZ
rel

AJMP
adr11

XRL
dir,A

XRL
dir,#data

XRL
A,#data

XRL
A,dir

XRL
A,@Ri

XRL
A,Rn

7 JNZ
rel

ACALL
adr11

ORL
c,bit

JMP
@A+DPTR

MOV
A,#data

MOV
dir,#data

MOV
@Ri,#data

MOV
Rn,#data

8 SJMP
rel

AJMP
adr11

ANL
C,bit

MOVC
A,@A+DPTR

DIV
AB

MOV
dir,dir

MOV
dir,@Ri

MOV
dir,Rn

9 MOV
DPTR,#d16

ACALL
adr11

MOV
bit,c

MOVC
A,@A+DPTR

SUBB
A,#data

SUBB
A,dir

SUBB
A,@Ri

SUBB
A,Rn

A ORL
C,/bit

AJMP
adr11

MOV
C,bit

INC
DPTR

MUL
AB

ESC MOV
@Ri,dir

MOV
Rn,dir

B ANL
C,/bit

ACALL
adr11

CPL
bit

CPL
C

CJNE
A,#d8,rel

CJNE
A,dir,rel

CJNE
@Ri,#d8,rel

CJNE
Rn,#d8,rel

C PUSH
dir

AJMP
adr11

CLR
bit

CLR
C

SWAP
A

XCH
A,dir

XCH
A,@Ri

XCH
A,Rn

D POP
dir

ACALL
adr11

SETB
bit

SETB
C

DA
A

DJNZ
dir,rel

XCHD
A,@Ri

DJNZ
Rn,rel

E MOVX
A,@DPTR

AJMP
adr11

MOVX
A,@Ri

CLR
A

MOV
A,dir

MOV
A,@Ri

MOV
A,Rn

F MOV
@DPTR,A

ACALL
adr11

MOVX
@Ri,A

CPL
A

MOV
dir,A

MOV
@Ri,A

MOV
Rn,A

196 Appendix A. 8051/251 Instruction Sets

† New features in the A251 assembler and the MCS 251 architecture

A
MCS 251 Instructions

Binary
Mode

A5x8 A5x9 A5xA A5xB A5xC A5xD A5xE A5xF

Source
Mode

x8 x9 xA xB xC xD xE xF

0 JSLE
rel

MOV Rm
@WRj+dis

MOVZ
WRj,Rm

INC Rm/WRj/
Drk,#short

MOV reg,ind

SRA
reg

1 JSG
rel

MOV@WRj
+dis,Rm

MOVS
WRj,Rm

DEC Rm/WRj/
Drk,#short

MOV ind,reg

SRL
reg

2 JLE
rel

MOV Rm,
@DRk+dis

ADD
Rm,Rm

ADD
WRj,WRj

ADD
reg,op2

ADD
DRk,DRk

3 JG
rel

MOV@DRk
 +dis,Rm

SLL
reg

4 JSL
rel

MOV Wrj,
@WRjj+dis

ORL
Rm,Rm

ORL
WRj,WRj

ORL
reg,op2

5 JSGE
rel

MOV@WRj
+ dis,WRj

ANL
Rm,Rm

ANL
WRj,WRj

ANL
reg,op2

6 JE
rel

MOV Wrj,
@DRk+dis

XRL
Rm,Rm

XRL
WRj,WRj

XRL
reg,op2

7 JNE
rel

MOV @Drk
 +dis,WRj

MOV
op1,reg

MOV
Rm,Rm

MOV
WRj,WRj

MOV
reg,op2

MOV
DRk,DRk

8 LJMP@WRj
EJMP@DRk

EJMP
addr24

DIV
Rm,Rm

DIV
WRj,WRj

9 LCALL@WR
ECALL@DRk

ECALL
addr24

SUB
Rm,Rm

SUB
WRj,WRj

SUB
reg,op2

SUB
DRk,DRk

A BIT
instructions

ERET MUL
Rm,Rm

MUL
WRj,WRj

B TRAP CMP
Rm,Rm

CMP
WRj,WRj

CMP
reg,op2

CMP
DRk,DRk

C PUSH
op1

D POP
op1

E

F

A51 Assembler / A251 Assembler 197

† New features in the A251 assembler and the MCS 251 architecture

B

Appendix B. Directive Summary

Directive Format Description

BIT symbol BIT bit_address Define a bit address in bit data space.

BSEG BSEG [AT absolute address] Define an absolute segment within the
bit address space.

CODE symbol CODE code_address Assign a symbol name to a specific
address in the code space.

CSEG CSEG [AT absolute address] Define an absolute segment within the
code address space.

DATA symbol DATA data_address Assign a symbol name to a specific
on-chip data address.

DB [label:] DB expression [, expression ...] Generate a list of byte values.

DBIT [label:] DBIT expression Reserve a space in bit units.

DD [label:] DD expression [, expression ...] Generate a list of double word values.

DS [label:] DS expression Reserve space in byte units.

DSB † [label:] DSB expression Reserve space in byte units.

DSD † [label:] DSD expression Reserve space in double word units.

DSEG DSEG [AT absolute address] Define an absolute segment within the
indirect internal data space.

DSW † [label:] DSW expression Reserve space in word units;
advances the location counter of the
current segment.

DW [label:] DW expression [, expression ...] Generate a list of word values.

END END Indicate end of program.

EQU EQU expression Set symbol value permanently.

EVEN † EVEN Ensure word alignment for variables.

EXTRN
EXTERN †

EXTRN class [:type] (symbol [, symbol ...])
EXTERN class [:type] (symbol [,symbol ...])

Defines symbols referenced in the
current module that are defined in
other modules.

IDATA symbol IDATA idata_address Assign a symbol name to a specific
indirect internal address.

ISEG ISEG [AT absolute address] Define an absolute segment within the
internal data space.

LABEL † name[:] LABEL [type] Assign a symbol name to a address
location within a segment.

LIT † symbol LIT ’literal string’ Assign a symbol name to a string.

NAME NAME modulname Specify the name of the current
module.

ORG ORG expression Set the location counter of the current
segment.

PROC †
ENDP †

name PROC [type]
name ENDP

Define a function start and end.

198 Appendix B. Directive Summary

† New features in the A251 assembler and the MCS 251 architecture

B

Directive Format Description

PUBLIC PUBLIC symbol [, symbol ...] Identify symbols which can be used
outside the current module.

RSEG RSEG seg Select a relocatable segment.

SEGMENT seg SEGMENT class [reloctype] [alloctype] Define a relocatable segment.

SET SET expression Set symbol value temporarily.

USING USING expression Set the predefined symbolic register
address and reserve space for the
specified register bank.

XDATA symbol XDATA xdata_address Assign a symbol name to a specific
off-chip data address.

XSEG XSEG [AT absolute address] Define an absolute segment within the
external data address space.

A51 Assembler / A251 Assembler 199

† New features in the A251 assembler and the MCS 251 architecture

C

Appendix C. Control Summary

Name and Abbreviation Description

DATA(date) / DA Places a date string in header (9 characters maximum).

CASE Enable case sensitive mode for symbol names.

DEBUG / DB Outputs debug symbol information to object file.

EJECT / EJ ♦♦♦♦ Continue listing on next page.

ERRORPRINT[(file)] / EP Designates a file to receive error messages in addition to the
listing.

GEN / GE ♦♦♦♦ Generates a full listing of macro expansions in the listing file.

NOGEN / NOGE ♦♦♦♦ List only the original source text in listing file.

INCLUDE(file) / IC ♦♦♦♦ Designates a file to be included as part of the program.

LINK ♦♦♦♦ Place Linker/Locator controls in the Assembler source code.

LIST, NOLIST / LI, NOLI ♦♦♦♦ Print or do not print the assembler source in the listing file.

MODBIN / MB Select MCS 251 binary mode (default).

MODSRC / MS Select MCS 251 source mode.

MPL Enable Macro Processing Language.

NOAMAKE Disable AutoMAKE information.

NOLINES Do not generate LINE number information.

NOMACRO / NOMR Disable Standard Macros

NOMOD51 / NOMO Do not recognize the 8051-specific predefined special register.

NOMOD251 / NO251 Disable the additional MCS 251 instructions.

NOOBLECT / NOOJ Designates that no object file will be created.

NOREGISTERBANK/ NORB Indicates that no banks are used.

NOSYMBOLS / NOSB No symbol table is listed.

NOSYMLIST,NO SL ♦♦♦♦ Do not list the following symbol definitions in the symbol table.

OBJECT[(file)] / OJ Designate file to receive object code.

PAGELENGTH(n) / PL Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) / PW Sets maximum number of characters in each line of listing file.

PRINT[(file)] / PR Designates file to receive source listing.

NOPRINT / NOPR Designates that no listing file will be created.

REGISTERBANK(num,...) Indicates one or more banks used in program module.

REGUSE ♦♦♦♦ Defines register usage of assembler functions for the C
optimizer.

RESTORE / RS ♦♦♦♦ Restores control setting from SAVE stack.

SAVE / SA ♦♦♦♦ Stores current control setting for GEN, LIST and SYMLIST.

SYMLIST, SL ♦♦♦♦ List the following symbol definitions in the symbol table.

TITLE(string) / TT Places a string in all subsequent page headers.

XREF / XR Creates a cross reference listing of all symbols used in program.

200 Appendix C. Control Summary

† New features in the A251 assembler and the MCS 251 architecture

C

♦ — Marks general controls

Directives for Conditional Assembly

Control Meaning

IF Translate block if condition is true

ELSE Translate block if the condition of a previous IF is false.

ELSEIF Translate block if condition is true and a previous IF or ELSEIF is false.

ENDIF Marks end of a block.

RESET Set symbols checked by IF or ELSEIF to false.

SET Set symbols checked by IF or ELSEIF to true or to a specified value.

A51 Assembler / A251 Assembler 201

† New features in the A251 assembler and the MCS 251 architecture

D

Appendix D. Macro Summary
This appendix lists the standard macro functions as well as the MPL built-in
functions.

Standard Macro Functions

Directive Description

ENDM Ends a macro definition.

EXITM Causes the macro expansion to immediately terminate.

IRP Specifies a list of arguments to be substituted, one at a time, for a specified
parameter in subsequent lines.

IRPC Specifies an argument to be substituted, one character at a time, for a
specified parameter in subsequent lines.

LOCAL Specifies up to 16 local symbols used within the macro.

MACRO Begins a macro definition and specifies the name of the macro and any
parameters that may be passed to the macro.

REPT Specifies a repetition factor for subsequent lines in the macro.

MPL Built-in Functions.

%’text end-of-line’ or %’text’

%(balanced-text)

%*DEFINE(call-pattern)[local-symbol-list](macro-body)

%*DEFINE(macro-name[parameter-list]) [LOCAL local-list] (macro-body)

%n text-n-characters-long

%EQS(arg1,arg2)

%EVAL(expression)

%EXIT

%GES(arg1,arg2)

%GTS(arg1,arg2)

202 Appendix D. Macro Summary

† New features in the A251 assembler and the MCS 251 architecture

D

%IF(expression) THEN (balanced-test1) [ELSE (balanced-text2)] FI

%IN

%LEN(balanced-text)

%LES(arg1,arg2)

%LTS(arg1,arg2)

%MATCH(identifier1 delimiter identifier2) (balanced-text)

%METACHAR(balanced-text)

%NES(arg1,arg2)

%OUT(balanced-text)

%REPEAT (expression) (balanced-text)

%SET(macro-id,expression)

%SUBSTR(balanced-text,expression1,expression2)

%WHILE(expression) (balanced-text)

A51 Assembler / A251 Assembler 203

† New features in the A251 assembler and the MCS 251 architecture

E

Appendix E. Reserved Symbols
The A251 assembler recognizes a number of predefined or reserved symbols.
These are symbols that are reserved by the assembler and may not be redefined
in your program. Reserved symbol names include instruction mnemonics,
directives, operators, and register names. The following is a list of the symbol
names reserved by the A251 assembler.

A
AB
ACALL
ADD
ADDC
AJMP
AND
ANL
AR0
AR1
AR2
AR3
AR4
AR5
AR6
AR7
AT
BIT
BITADDRESSABLE
BLOCK
BSEG
BYTE †
BYTE0 †
BYTE1 †
BYTE2 †
BYTE3 †
C
CALL
CJNE
CLR
CMP
CODE
CONST †

CPL
CSEG
DA
DATA
DB
DBIT
DD †
DEC
DIV
DJNZ
DPTR
DR0 †
DR12 †
DR16 †
DR20 †
DR24 †
DR28 †
DR4 †
DR56 †
DR60 †
DR8 †
DS
DSB †
DSD †
DSEG
DSW †
DW
DWORD †
EBIT †
EBITADDRESSABLE †
ECALL †
ECODE †
EDATA †

204 Appendix E. Reserved Symbols

† New features in the A251 assembler and the MCS 251 architecture

E

EJMP †
ELSE
ELSEIF
END
ENDIF
ENDM
ENDP
EQ
EQU
ERET †
EVEN †
EXITM
EXTERN †
EXTRN
FAR †
GE
GT
HCONST †
HDATA †
HIGH
IDATA
IF
INBLOCK
INC
INPAGE
INSEG
IRP
IRPC
ISEG
JB
JBC
JC
JE
JG
JLE
JMP
JNB
JNC
JNE
JNZ
JSG
JSGE

JSL
JSLE
JZ
LABEL †
LCALL
LE
LIT †
LJMP
LOCAL
LOW
LT
MACRO
MOD
MOV
MOVC
MOVH †
MOVS †
MOVX
MOVZ †
MUL
NAME
NCONST †
NE
NEAR †
NOP
NOT
NUL
NUMBER
OFFS †
OR
ORG
ORL
OVERLAYABLE
PAGE
PC
POP
PROC †
PUBLIC
PUSH
R0
R1
R2

A51 Assembler / A251 Assembler 205

† New features in the A251 assembler and the MCS 251 architecture

E

R3
R4
R5
R6
R7
R8 †
R9 †
R10 †
R11 †
R12 †
R13 †
R14 †
R15 †
REPT
RET
RETI
RL
RLC
RR
RRC
RSEG
SEG
SEGMENT
SET
SETB
SHL
SHR
SJMP
SLL †
SRA †
SRL †
SUB

SUBB
SWAP
TRAP †
UNIT
USING
WORD †
WORD0 †
WORD2 †
WR0 †
WR2 †
WR4 †
WR6 †
WR8 †
WR10 †
WR12 †
WR14 †
WR16 †
WR18 †
WR20 †
WR22 †
WR24 †
WR26 †
WR28 †
WR30 †
XCH
XCHD
XDATA
XOR
XRL
XSEG

206 Appendix E. Reserved Symbols

† New features in the A251 assembler and the MCS 251 architecture

E

In addition to the above symbols the A51 assembler predefines the Special
Function Register (SFR) set of the 8051 CPU. This SFR definitions can be
disabled with the A51 control NOMOD51. The predefined SFR symbols are
also reserved symbols and may not be redefined in your program. The following
is a list of the SFR names reserved by the A51 assembler when NOMOD51 is
not given.

AC
ACC
B
CY
DPH
DPL
EA
ES
ET0
ET1
EX0
EX1
F0
IE
IE0
IE1
INT0
INT1
IT0
IT1
OV

P
P0
P1
P2
P3
PS
PSW
PT0
PT1
PX0
PX1
RB8
RD
REN
RI
RS0
RS1
RXD
SBUF
SCON
SM0

SM1
SM2
SP
T1
TB8
TCON
TF0
TF1
TH0
TH1
TI
TL0
TL1
TMOD
TO
TR0
TR1
TXD
WR

A51 Assembler / A251 Assembler 207

† New features in the A251 assembler and the MCS 251 architecture

F

Appendix F. Listing File Format
This appendix describes the format of the listing file generated by the assembler.

Assembler Listing File Format

The A251 assembler, unless overridden by controls, outputs two files: an object
file and a listing file. The object file contains the machine code. The listing file
contains a formatted copy of your source code with page headers and, if
requested through controls (SYMBOL or XREF), a symbol table.

Sample A251 Listing
A251 MACRO ASSEMBLER ASAMPLE1 25/01/95 15:02:23 PAGE 1

DOS MACRO ASSEMBLER A251 Vx.y
OBJECT MODULE PLACED IN ASAMPLE1.OBJ
ASSEMBLER INVOKED BY: F:\RK\ZX\ASM\A251.EXE ASAMPLE1.A51 XREF

LOC OBJ LINE SOURCE

 1 $NOMOD51
 2 $INCLUDE (REG52.INC)
 +1 3 +1 $SAVE
 +1 106 +1 $RESTORE
 107
 108 NAME SAMPLE
 109
 110 EXTRN CODE (PUT_CRLF, PUTSTRING)
 111 PUBLIC TXTBIT
 112
------ 113 PROG SEGMENT CODE
------ 114 PCONST SEGMENT CODE
------ 115 VAR1 SEGMENT DATA
------ 116 BITVAR SEGMENT BIT
------ 117 STACK SEGMENT IDATA
 118
------ 119 RSEG STACK
000000 120 DS 10H ; 16 Bytes Stack
 121
000000 122 CSEG AT 0
 123 USING 0 ; Register-Bank 0
 124 ; Execution starts at address 0 on power-up.
000000 020000 F 125 JMP START
 126
------ 127 RSEG PROG
 128 ; first set Stack Pointer
000000 758100 F 129 START: MOV SP,#STACK-1
 130
 131 ; Initialize serial interface
 132 ; Using TIMER 1 to Generate Baud Rates
 133 ; Oscillator frequency = 11.059 MHz
000003 758920 134 MOV TMOD,#00100000B ;C/T = 0, Mode = 2
000006 758DFD 135 MOV TH1,#0FDH
000009 D28E 136 SETB TR1
00000B 759852 137 MOV SCON,#01010010B
 138
 139 ; clear TXTBIT to read form CODE-Memory

208 Appendix F. Listing File Format

† New features in the A251 assembler and the MCS 251 architecture

F

00000E C200 F 140 CLR TXTBIT
 141
A251 MACRO ASSEMBLER ASAMPLE1 25/01/95 15:02:23 PAGE 2

 142 ; This is the main program. It is a loop,
 143 ; which displays the a text on the console.
000010 144 REPEAT:
 145 ; type message
000010 900000 F 146 MOV DPTR,#TXT
000013 120000 E 147 CALL PUTSTRING
000016 120000 E 148 CALL PUT_CRLF
 149 ; repeat
000019 8000 F 150 SJMP REPEAT
 151 ;
------ 152 RSEG PCONST
000000 54455354 153 TXT: DB 'TEST PROGRAM',00H
000004 2050524F
000008 4752414D
00000C 00
 154
 155 ; only for demonstration
------ 156 RSEG VAR1
000000 157 DUMMY: DS 21H
 158
 159 ; TXTBIT = 0 read text from CODE Memory
 160 ; TXTBIT = 1 read text from XDATA Memory
------ 161 RSEG BITVAR
0000.0 162 TXTBIT: DBIT 1
 163
 164 END

A251 MACRO ASSEMBLER ASAMPLE1 25/01/95 15:02:23 PAGE 3

XREF SYMBOL TABLE LISTING
---- ------ ----- -------

N A M E T Y P E V A L U E ATTRIBUTES / REFERENCES

BITVAR B SEG 000001H REL=UNIT, ALN=BIT 116# 161
DUMMY. D ADDR 000000H R SEG=VAR1 157#
PCONST C SEG 00000DH REL=UNIT, ALN=BYTE 114# 152
PROG C SEG 00001BH REL=UNIT, ALN=BYTE 113# 127
PUTSTRING. C ADDR ------- EXT 110# 147
PUT_CRLF C ADDR ------- EXT 110# 148
REPEAT C ADDR 000010H R SEG=PROG 144# 150
SAMPLE 108
STACK. I SEG 000010H REL=UNIT, ALN=BYTE 117# 119 129
START. C ADDR 000000H R SEG=PROG 125 129#
TXT. C ADDR 000000H R SEG=PCONST 146 153#
TXTBIT B ADDR 0000H.0 R SEG=BITVAR 111 140 162#
VAR1 D SEG 000021H REL=UNIT, ALN=BYTE 115# 156

REGISTER BANK(S) USED: 0

ASSEMBLY COMPLETE. 0 WARNING(S), 0 ERROR(S)

Listing File Heading

Every page has a header on the first line. It contains the words “A251 MACRO
ASSEMBLER” followed by the title, if specified. If the title is not specified,

A51 Assembler / A251 Assembler 209

† New features in the A251 assembler and the MCS 251 architecture

F

then the module name is used. It is derived from the NAME directive (if
specified), or from the root of the source filename. On the extreme right side of
the header, the date (if specified) and the page number are printed.

In addition to the normal header, the first page of listing includes the A251
listing file header. This header shows the assembler version number, the file
name of the object file, if any, and the entire invocation line.

Source Listing

The main body of the listing file is the formatted source listing. A section of
formatted source is shown in the following.

Sample Source Listing
LOC OBJ LINE SOURCE

000006 758DFD 135 MOV TH1,#0FDH

The format for each line in the listing file depends on the source line that appears
on it. Instruction lines contain 4 fields. The name of each field and its meanings
is shown in the list below:

′ LOC shows the location relative or absolute (code address) of the first byte of
the instruction. The value is displayed in hexadecimal.

′ OBJ shows the actual machine code produced by the instruction, displayed in
hexadecimal.

′ If the object that corresponds to the printed line is to be fixed up (it contains
external references or is relocatable), an F is printed after the OBJ field. The
object fields to be fixed up contain zeros.

′ LINE shows the INCLUDE nesting level, if any, the number of source lines
from the top of the program, and the macro nesting level, if any. All values in
this field are displayed in decimal numbers.

′ SOURCE shows the source line as it appears in the file. This line may be
extended onto the subsequent lines in the listing file.

DB, DW, and DD directives are formatted similarly to instruction lines, except
the OBJ field shows the data values placed in memory. All data values are
shown. If the expression list is long, then it may take several lines in the listing

210 Appendix F. Listing File Format

† New features in the A251 assembler and the MCS 251 architecture

F

file to display all of the values placed in memory. The extra lines will only
contain the LOC and OBJ fields.

The directives that affect the location counter without initializing memory (e.g.
ORG, DBIT, or DS) do not use the OBJ field, but the new value of the location
counter is shown in the LOC field.

The SET and EQU directives do not have a LOC or OBJ field. In their place the
assembler lists the value that the symbol is set to. If the symbol is defined to
equal one of the registers, then REG is placed in this field. The remainder of the
directive line is formatted in the same way as the other directives.

Format for Macros, Include Files, and
Save Stack

In the listing file, the assembler displays the macro nesting level, the include file
level, and the level of the SAVE/RESTORE stack. These nesting levels are
shown before and after the LINE number as shown in the following listing.

LOC OBJ LINE SOURCE

 1 $GEN ; Enable Macro Listing
 2
 3 MYMACRO MACRO ; A sample macro
 4 INC A ; Macro Level 1
 5 MACRO2
 6 ENDM
 7
 8 MACRO2 MACRO ; Macro 2
 9 NOP ; Macro Level 2
 10 ENDM
 11
 12
------ 13 MYPROG SEGMENT CODE
------ 14 RSEG MYPROG
 15
000000 7400 16 MOV A,#0
 17 MYMACRO
000002 04 18+1 INC A ; Macro Level 1
 19+1 MACRO2
000003 00 20+2 NOP ; Macro Level 2
 21 $INCLUDE (MYFILE.INC) ; A include file
 +1 22 ; This is a comment ; Include Level 1
 +1 23 MACRO2
000004 00 +1 24+1 NOP ; Macro Level 1
000005 7401 25 MOV A,#1
 26 +1 $SAVE ; Save Directive
 27 +1 MYMACRO ; SAVE Level 1
000007 04 28+1+1 INC A ; Macro Level 1
 29+1+1 MACRO2
000008 00 30+2+1 NOP ; Macro Level 2
 31 +1 $RESTORE
000009 00 32 NOP
 33 END

A51 Assembler / A251 Assembler 211

† New features in the A251 assembler and the MCS 251 architecture

F

Symbol Table

The symbol table is a list of all symbols defined in the program along with the
status information about the symbol. Any predefined symbols used will also be
listed in the symbol table. If the XREF control is used, the symbol table will
contain information about where the symbol was used in the program.

The status information includes a NAME field, a TYPE field, a VALUE field, and an
ATTRIBUTES field.

The TYPE field specifies the type of the symbol: ADDR if it is a memory
address, NUMB if it is a pure number (e.g., as defined by EQU), SEG if it is a
relocatable segment, and REG if a register. For ADDR and SEG symbols, the
segment type is added.

The VALUE field shows the value of the symbol when the assembly was
completed. For REG symbols, the name of the register is given. For NUMB and
ADDR symbols, their absolute value (or if relocatable, their offset) is given,
followed by A (absolute) or R (relocatable). For SEG symbols, the segment size
is given here. Bit address and size are given by the byte part, a period (.),
followed by the bit part. The scope attribute, if any, is PUB (public) or EXT
(external). These are given after the VALUE field.

The ATTRIBUTES field contains an additional piece of information for some
symbols: relocation type for segments, segment name for relocatable symbols.

Example Symbol Table Listing
SYMBOL TABLE LISTING
------ ----- -------

N A M E T Y P E V A L U E ATTRIBUTES

BITVAR B SEG 000001H REL=UNIT, ALN=BIT
DUMMY. D ADDR 000000H R SEG=VAR1
PCONST C SEG 00000DH REL=UNIT, ALN=BYTE
PROG C SEG 00001BH REL=UNIT, ALN=BYTE
PUTSTRING. C ADDR ------- EXT
PUT_CRLF C ADDR ------- EXT
REPEAT C ADDR 000010H R SEG=PROG
SAMPLE
STACK. I SEG 000010H REL=UNIT, ALN=BYTE
START. C ADDR 000000H R SEG=PROG
TXT. C ADDR 000000H R SEG=PCONST
TXTBIT B ADDR 0000H.0 R SEG=BITVAR
VAR1 D SEG 000021H REL=UNIT, ALN=BYTE

If the XREF control is used, then the symbol table listing will also contain all of
the line numbers of each line of code that the symbol was used. If the value of

212 Appendix F. Listing File Format

† New features in the A251 assembler and the MCS 251 architecture

F

the symbol was changed or defined on a line, then that line will have a hash mark
(#) following it. The line numbers are displayed in decimal.

Listing File Trailer

At the end of the listing, the assembler prints a message in the following format:

REGISTER BANK(S) USED: [r r r r]

ASSEMBLY COMPLETE. (n) WARNING(S), (m) ERROR(S)

where

r are the numbers of the register banks used.

n is the number of warnings found in the program.

m is the number of errors found in the program.

A51 Assembler / A251 Assembler 213

† New features in the A251 assembler and the MCS 251 architecture

G

Appendix G. Program Template
The following code template contains guidelines and hints on how to write your
own assembly modules. This template, TEMPLATE.A51, is stored in the
\C51\ASM subdirectory.

TEMPLATE.A51
$NOMOD51 ; disable predefined 8051 registers
$INCLUDE (REG52.INC) ; include CPU definition file (for example, 8052)

;--
; Change names in lowercase to suit your needs.
;
; This assembly template gives you an idea of how to use the A251/A51
; Assembler. You are not required to build each module this way-this is only
; an example.
;
; All entries except the END statement at the End Of File are optional.
;
; If you use this template, make sure you remove any unused segment declarations,
; as well as unused variable space and assembly instructions.
;
; This file cannot provide for every possible use of the A251/A51 Assembler.
; Refer to the A51/A251 User's Guide for more information.
;--

;--
; Module name (optional)
;--
NAME module_name

;--
; Here, you may import symbols form other modules.
;--
EXTRN CODE (code_symbol) ; May be a subroutine entry declared in
 ; CODE segments or with CODE directive.

EXTRN DATA (data_symbol) ; May be any symbol declared in DATA segments
 ; segments or with DATA directive.

EXTRN BIT (bit_symbol) ; May be any symbol declared in BIT segments
 ; or with BIT directive.

EXTRN XDATA (xdata_symbol) ; May be any symbol declared in XDATA segments
 ; or with XDATA directive.

EXTRN NUMBER (typeless_symbol); May be any symbol declared with EQU or SET
 ; directive

;--
; You may include more than one symbol in an EXTRN statement.
;--
EXTRN CODE (sub_routine1, sub_routine2), DATA (variable_1)

;--
; Force a page break in the listing file.
;--
$EJECT

;--
; Here, you may export symbols to other modules. You may use up to 256
; PUBLIC symbols in one module.
;--
PUBLIC data_variable

214 Appendix G. Program Template

† New features in the A251 assembler and the MCS 251 architecture

G

PUBLIC code_entry
PUBLIC typeless_number
PUBLIC xdata_variable
PUBLIC bit_variable

;--
; You may include more than one symbol in a PUBLIC statement.
;--
PUBLIC data_variable1, code_table, typeless_num1, xdata_variable1

;--
; Put the STACK segment in the main module.
;--
?STACK SEGMENT IDATA ; ?STACK goes into IDATA RAM.
 RSEG ?STACK ; switch to ?STACK segment.
 DS 5 ; reserve your stack space
 ; 5 bytes in this example.

$EJECT

;--
; Put segment and variable declarations here.
;--

;--
; DATA SEGMENT--Reserves space in DATA RAM--Delete this segment if not used.
;--
data_seg_name SEGMENT DATA ; segment for DATA RAM.
 RSEG data_seg_name ; switch to this data segment
data_variable: DS 1 ; reserve 1 Bytes for data_variable
data_variable1: DS 2 ; reserve 2 Bytes for data_variable1

;--
; XDATA SEGMENT--Reserves space in XDATA RAM--Delete this segment if not used.
;--
xdata_seg_name SEGMENT XDATA ; segment for XDATA RAM
 RSEG xdata_seg_name ; switch to this xdata segment
xdata_variable: DS 1 ; reserve 1 Bytes for xdata_variable
xdata_array: DS 500 ; reserve 500 Bytes for xdata_array

;--
; INPAGE XDATA SEGMENT--Reserves space in XDATA RAM page (page size: 256 Bytes)
; INPAGE segments are useful for @R0 addressing methodes.
; Delete this segment if not used.
;--
page_xdata_seg SEGMENT XDATA INPAGE ; INPAGE segment for XDATA RAM
 RSEG xdata_seg_name ; switch to this xdata segment
xdata_variable1:DS 1 ; reserve 1 Bytes for xdata_variable1

;--
; ABSOLUTE XDATA SEGMENT--Reserves space in XDATA RAM at absolute addresses.
; ABSOLUTE segments are useful for memory mapped I/O.
; Delete this segment if not used.
;--
 XSEG AT 8000H ; switch absolute XDATA segment @ 8000H
XIO: DS 1 ; reserve 1 Bytes for XIO port
XCONFIG: DS 1 ; reserve 1 Bytes for XCONFIG port

;--
; BIT SEGMENT--Reserves space in BIT RAM--Delete segment if not used.
;--
bit_seg_name SEGMENT BIT ; segment for BIT RAM.
 RSEG bit_seg_name ; switch to this bit segment
bit_variable: DBIT 1 ; reserve 1 Bit for bit_variable
bit_variable1: DBIT 4 ; reserve 4 Bits for bit_variable1

;--
; Add constant (typeless) numbers here.
;--
typeless_number EQU 0DH ; assign 0D hex

A51 Assembler / A251 Assembler 215

† New features in the A251 assembler and the MCS 251 architecture

G

typeless_num1 EQU typeless_number-8 ; evaluate typeless_num1

$EJECT

;--
; Provide an LJMP to start at the reset address (address 0) in the main module.
; You may use this style for interrupt service routines.
;--
 CSEG AT 0 ; absolute Segment at Address 0
 LJMP start ; reset location (jump to start)

;--
; CODE SEGMENT--Reserves space in CODE ROM for assembler instructions.
;--
code_seg_name SEGMENT CODE

 RSEG code_seg_name ; switch to this code segment

 USING 0 ; state register_bank used
 ; for the following program code.

start: MOV SP,#?STACK-1 ; assign stack at beginning

;--
; Insert your assembly program here. Note, the code below is non-functional.
;--
 ORL IE,#82H ; enable interrupt system (timer 0)
 SETB TR0 ; enable timer 0
repeat_label: MOV A,data_symbol
 ADD A,#typeless_symbol
 CALL code_symbol
 MOV DPTR,#xdata_symbol
 MOVX A,@DPTR
 MOV R1,A
 PUSH AR1
 CALL sub_routine1
 POP AR1
 ADD A,R1
 JMP repeat_label

code_entry: CALL code_symbol
 RET

code_table: DW repeat_label
 DW code_entry
 DB typeless_number
 DB 0
$EJECT

;--
; To include an interrupt service routins, provide an LJMP to the ISR at the
; interrupt vector address.
;--
 CSEG AT 0BH ; 0BH is address for Timer 0 interrupt
 LJMP timer0int

;--
; Give each interrupt function its own code segment.
;--
int0_code_seg SEGMENT CODE ; segment for interrupt function
 RSEG int0_code_seg ; switch to this code segment
 USING 1 ; register bank for interrupt routine

timer0int: PUSH PSW
 MOV PSW,#08H ; register bank 1
 PUSH ACC
 MOV R1,data_variable
 MOV DPTR,#xdata_variable
 MOVX A,@DPTR
 ADD A,R1
 MOV data_variable1,A

216 Appendix G. Program Template

† New features in the A251 assembler and the MCS 251 architecture

G

 CLR A
 ADD A,#0
 MOV data_variable1+1,A
 POP ACC
 POP PSW
 RETI

;--
; The END directive is ALWAYS required.
;--
 END ; End Of File

A51 Assembler / A251 Assembler 217

† New features in the A251 assembler and the MCS 251 architecture

H

Appendix H. Assembler Differences
This appendix lists the differences between the Intel ASM-51 assembler, the
Keil A51 assembler, and the Keil A251 assembler.

Differences Between A51 and A251

Assembly modules written for the A51 assembler may be assembled using the
A251 macro assembler. However, since the A251 macro assembler supports the
MCS 251 architecture, the following incompatibilities may arise when A51
assembly modules are assembled with the A251 assembler.

′ 32-Bit Values in Numeric Evaluations
The A51 assembler uses 16-bit values for all numerical expressions.
TheA251 macro assembler uses 32-bit values. This may cause problems
when overflows occur in numerical expressions. For example:

Value EQU (8000H + 9000H) / 2

generates the result 800h in A51 since the result of the addition is only a
16-bit value (1000h). However, the A251 assembler calculates a value of
8800h.

′ 8051 Pre-defined Special Function Register Symbol Set
The default setting of A51 pre-defines the Special Function Register (SFR)
set of 8051 CPU. This default SFR set can be disabled with the A51 control
NOMOD51. A251 does not pre-define the 8051 SFR set. The control
NOMOD51 is accepted by A251 but does not influence any SFR definitions.

′ More Reserved Symbols
The A251 macro assembler has more reserved symbols as A51. Therefore it
might be necessary to change user-defined symbol names. For example the
symbol ECALL cannot be used as label name in A251, since the MCS 251
has a new instruction with that mnemonic.

218 Appendix H. Assembler Differences

† New features in the A251 assembler and the MCS 251 architecture

H

′ Object File Differences
A251 uses the Intel OMF-251 file format for object files. A51 uses an
extended version of the Intel OMF-51 file format. The OMF-51 file format
limits the numbers of external symbols and segments to 256 per module. The
OMF-251 file format does not have such a limit on the segment and external
declarations.

Differences between A51 and ASM51

Assembly modules written for the Intel ASM51 macro assembler can be re-
translated with the A51 macro assembler. However you have to take care about
the following differences:

′ Enable the MPL Macro Language
If your assembly module contains Intel ASM51 macros, the A51 MPL macros
need to be enable with the MPL control.

′ 8051 Pre-defined Interrupt Vectors
The Intel ASM51 pre-defines the following symbol names if MOD51 is
active: RESET, EXTI0, EXTI1, SINT, TIMER0, TIMER1. A51 does not
pre-define this symbol names.

′ More Reserved Symbols
Since the A51 macro assembler supports also conditional assembly and
standard macros, A51 has more reserved symbols then Intel ASM51.
Therefore it might be necessary to change user-defined symbol names. For
example the symbol IF cannot be used as label name in A51, since it is a
directive for conditional assembly.

′ Object File Differences
A51 generates line number information for source level debugging and file
dependencies for AutoMAKE. For compatibility to previous A51 versions
and to ASM51, the line number information can be disabled with the A51
control NOLINES. The AutoMAKE information can be disabled with the
A51 control NOAMAKE.

Differences between A251 and ASM51

Assembly modules written for Intel ASM51 can be re-translated with the A251
macro assembler. However, since the A251 macro assembler supports also the

A51 Assembler / A251 Assembler 219

† New features in the A251 assembler and the MCS 251 architecture

H

MCS 251 architecture, the following incompatibilities can arise when ASM51
modules are re-translated with A251.

′ 32-Bit Values in Numeric Evaluations
A51 uses for all numerical expressions 16-bit numbers whereas the A251
macro assembler uses 32-bit values. This can cause problems when
overflows occur in numerical expressions. For example:

Value EQU (8000H + 9000H) / 2

has the result 800H in A51 since the result of the addition is only a 16-bit
value (1000H), whereas the A251 calculates Value as 8800H.

′ 8051 Pre-defined Symbols
The default setting of Intel ASM51 pre-defines the Special Function Register
(SFR) set and symbol names for reset and interrupt vectors of 8051 CPU.
This default symbol set can be disabled with the ASM51 control
NOMOD51. A251 does not pre-define any of the 8051 SFR or interrupt
vector symbols. The control NOMOD51 is accepted by A251 but does not
influence any symbol definitions.

′ More Reserved Symbols
The A251 macro assembler has more reserved symbols as ASM51.
Therefore it might be necessary to change user-defined symbol names. For
example the symbol ECALL cannot be used as label name in A251, since the
MCS 251 has a new instruction with that mnemonic.

′ Enable the MPL Macro Language
If your assembly module contains Intel ASM51 macros, the A251 MPL
macros need to be enable with the MPL control.

′ Object File Differences
A251 uses the Intel OMF-251 file format for object files. A51 uses an
extended version of the Intel OMF-51 file format. The OMF-51 file format
limits the numbers of external symbols and segments to 256 per module. The
OMF-251 file format does not have such a limit on the segment and external
declarations.

A51 generates also line number information for source level debugging and
file dependencies for AutoMAKE. For compatibility to previous A51
versions and to ASM51, the line number information can be disabled with the
A51 control NOLINES. The AutoMAKE information can be disabled with
the A51 control NOAMAKE.

220 Appendix H. Assembler Differences

† New features in the A251 assembler and the MCS 251 architecture

H

A51 Assembler / A251 Assembler 221

Glossary

A251
The command used to assemble programs using the A251 Macro Assembler.

A51
The command used to assemble programs using the A51 Macro Assembler.

argument
The value that is passed to macro or function.

arithmetic types
Data types that are integral, floating-point, or enumerations.

array
A set of elements all of the same data type.

ASCII
American Standard Code for Information Interchange. This is a set of 256
codes used by computers to represent digits, characters, punctuation, and
other special symbols. The first 128 characters are standardized. The
remaining 128 are defined by the implementation.

basename
The part of the file name that excludes the drive letter, directory name, and
file extension. For example, the basename for the file C:\SAMPLE\SIO.A51
is SIO.

batch file
A text file that contains MS-DOS commands and programs that can be
invoked from the command line.

BCD
See Binary-Coded Decimal (BCD)

Binary-Coded Decimal
A system that is used to encode decimal numbers in binary form. In BCD,
each decimal digit of a number is encoded as a binary value 4 bits long. A
byte can hold 2 BCD digits – one in the upper 4 bits (or nibble) and one in the
lower 4 bits (or nibble).

BL51
The command used to link object files and libraries using the 8051 Code
Banking Linker/Locator.

222 Glossary

C51
The command used to compile programs using the 8051 Optimizing C Cross
Compiler.

constant expression
Any expression that evaluates to a constant non-variable value. Constants
may include character, integer, enumeration, and floating-point constant
values.

DS51
The command used to load and execute the DS51 Debugger/Simulator.

environment table
The memory area used by MS-DOS to store environment variables and their
values.

environment variable
A variable stored in the environment table. These variables provide MS-DOS
programs with information like where to find include files and library files.

escape sequence
A backslash (‘\’) character followed by a single letter or a combination of
digits that specifies a particular character value in strings and character
constants.

expression
A combination of any number of operators and operands that produces a
constant value.

function
A combination of declarations and statements that can be called by name that
perform an operation and/or return a value.

function call
An expression that invokes and possibly passes arguments to a function.

in-circuit emulator (ICE)
A hardware device that aids in debugging embedded software by providing
hardware-level single-stepping, tracing, and break-pointing. Some ICEs
provide a trace buffer that stores the most recent CPU events.

include file
A text file that is incorporated into a source file using the $INCLUDE
control.

A51 Assembler / A251 Assembler 223

keyword
A reserved word with a predefined meaning for the assembler.

LIB51
The command used to manipulate 8051 library files using the 8051 Library
Manager.

library
A file that stores a number of possibly related object modules. The linker can
extract modules from the library to use in building a target object file.

macro
An identifier that represents a series of lines of assembly text that is defined
using the MACRO control.

memory model
Any of the models that specifies which memory areas are used for function
arguments and local variables.

mnemonic
An ASCII string that is used to represent a machine language opcode in an
assembly language instruction.

monitor51
An 8051 program that can be loaded into your target CPU to aid in debugging
and rapid product development through rapid software downloading.

object
An area of memory that can be examined. Usually used when referring to the
memory area associated with a variable or function.

object file
A file, created by the compiler, that contains the program segment
information and relocatable machine code.

OH51
The command used to convert absolute object files into other hexadecimal
file formats using the Object File Converter.

opcode
Also called operation code. An opcode is the first byte of a machine code
instruction and is usually represented as a 2–digit hexadecimal number. The
opcode indicates the type of machine language instruction and the type of
operation to perform.

224 Glossary

operand
A variable or constant that is used in an expression.

operator
A symbol that specifies how to manipulate the operands of an expression;
e.g., +, -, *, /.

parameter
The value that is passed to a macro or function.

pointer
A variable that contains the address of another variable, function, or memory
area.

relocatable
Able to be moved or relocated. Not containing absolute or fixed addresses.

RTX51 Full
An 8051 Real-Time Executive that provides a multitasking operating system
kernel and library of routines for its use.

RTX51 Tiny
A limited version of RTX51.

scope
The sections of a program where an item (function or variable) can be
referenced by name. The scope of an item may be limited to file, function, or
block.

SFR
An SFR or Special Function Register is a register in the 8051 internal data
memory space that is used to read an write to the hardware components of the
8051. This includes the serial port, timers, counters, I/O ports, and other
hardware control registers.

source file
A text file containing assembly program code.

Special Function Register
See SFR.

stack
An area of memory, indirectly accessed by a stack pointer, that shrinks and
expands dynamically as items are pushed onto the stack and popped off of the
stack. Items in the stack are removed on a LIFO (last-in, first-out) basis.

A51 Assembler / A251 Assembler 225

string
An array of characters that is terminated with a null character (‘\0’).

string literal
A string of characters enclosed within double quotes (“ ”).

TS51
The command used to load and execute the 8051 TS51 Target Debugger.

two’s complement
A binary notation that is used to represent both positive and negative
numbers. Negative values are created by complementing all bits of a positive
value and adding 1.

whitespace character
Characters that are used as delimiters in C programs such as space, tab,
newline, etc.

wild card
One of the MS-DOS characters (? or *) that can be used in place of characters
in a filename.

226 Glossary

8051 Utilities 227

Index

$...33
(, operator ...33
), operator ...33
*, operator...33
+, operator ..33
 ; ..79,83
–, operator ..33
/, operator ...33
<, operator ..34
<=, operator ..34
<>, operator ..34
=, operator ..34
>, operator ..34
>=, operator ..34
 !, macro operator79,83
 %, macro operator79,82
 &, macro operator.........................79,80
 <, macro operator79,81
 >, macro operator79,81
8051 Address Space11
8051 Register File14

A
A, register ...25
A251, defined219
A51, defined219
AB, register ..25
Additional items, notational

conventions.......................................iv
Address

Direct DATA Addresses27
Program Addresses28

Address Control..................................66
Address Counter32
Addresses

Direct BIT Addresses28
Allocation Type48
Allocation types

BIT..48
BLOCK...48

BYTE ... 48
DWORD....................................... 48
PAGE ... 48
SEG.. 48
WORD ... 48

ampersand character........................... 79
AND, operator 34
angle brackets 79
AR0, register 25
AR1, register 25
AR2, register 25
AR3, register 25
AR4, register 25
AR5, register 25
AR6, register 25
AR7, register 25
argument, defined............................. 219
Arithmetic operators 33
arithmetic types, defined 219
array, defined 219
ASCII, defined 219
Assembler Controls.......................... 113
Assembler Directives 41

Introduction.................................. 41
Assembly Programs 19
at sign... 112
AT, relocation type 47

B
basename, defined............................ 219
batch file, defined............................. 219
BCD, defined 219
Binary numbers 30
Binary operators................................. 34
Binary-Coded Decimal, defined....... 219
BIT, allocation type 48
BIT, operator 35
BIT, segment type.............................. 46
BITADDRESSABLE, relocation

type.. 47
BL51, defined 219
BLOCK, allocation type 48

228 Index

bold capital text, use of iv
braces, use of iv
Bracket Function................................ 92
BSEG, directive 49
BYTE, allocation type 48
BYTE, operator 36
BYTE0, operator 36
BYTE1, operator 36
BYTE2, operator 36
BYTE3, operator 36

C
C, register... 25
C51, defined..................................... 220
CA, control 118
carat character.................................. 159
CASE, control.................................. 118
Character constants 31
Choices, notational conventions iv
Class... 46
Class operators................................... 35
CODE .. 26
CODE, directive 52
CODE, external symbol segment

type ... 65
CODE, operator 35
CODE, segment type 46
Command line.................................. 111
Comment Function............................. 91
Comments .. 21
COND, control................................. 116
CONST .. 26
CONST, operator............................... 35
CONST, segment type 46
constant expression, defined 220
Controls

CASE ... 118
COND .. 116
DATE... 117
DEBUG...................................... 119
EJECT.. 120
ELSE.. 153
ELSEIF 152
ENDIF.. 154
ERRORPRINT........................... 121

GEN..122
IF ..151
INCLUDE123
LINK ..124
LIST ...125
MACRO126
MODBIN....................................127
MODSRC128
MPL..129
NOAMAKE................................130
NOCOND...................................116
NOGEN......................................122
NOLINES...................................131
NOLIST......................................125
NOMACRO................................132
NOMOD251...............................134
NOMOD51.................................133
NOOBJECT136
NOPRINT...................................139
NOREGISTERBANK................140
NOREGUSE...............................141
NOSYMBOLS135
NOSYMLIST144
OBJECT136
PAGELENGTH..........................137
PAGEWIDTH138
PRINT ..139
REGISTERBANK......................140
REGUSE141
RESET..150
RESTORE142
SAVE ...143
SET...149
SYMLIST...................................144
TITLE...145
XREF..146

courier typeface, use ofiv
CSEG, directive..................................49
CUBSTR Function102

D
DA, control.......................................117
DATA, directive.................................52
DATA, external symbol segment

type..65

8051 Utilities 229

DATA, operator..................................35
DATA, segment type46
DATE, control117
DB, control119
DB, directive55
DBIT, directive...................................57
DD, directive56
DEBUG, control...............................119
Decimal numbers................................30
Defining a macro72
Differences between A251 and

ASM51 ..216
32-bit evaluation217
8051 Symbols217
Macro Processing Language217
Object File217
Reserved Symbols.......................217

Differences Between A51 and
A251 ..215

32-bit evaluation215
8051 Special Function

Registers...................................215
Object File216
Reserved Symbols.......................215

Differences between A51 and
ASM51 ..216

Interrupt Vectors.........................216
Macro Processing Language216
Object File216
Reserved Symbols.......................216

Differences to the 805116
Compatiblity17
Program Status Word....................17
Stack Pointer.................................17
Timing Issues................................17

Directives
BSEG..49
CODE ...52
CSEG..49
DATA ...52
DB...55
DBIT...57
DD ..56
DS...58
DSB ..58
DSD ..60

DSEG ... 49
DSW... 59
DW... 55
END ... 69
ENDP ... 61
EQU ... 51
EVEN... 67
EXTERN...................................... 64
EXTRN .. 64
IDATA ... 52
ISEG... 49
LABEL... 63
LIT ... 53
NAME.. 65
ORG ... 66
PROC ... 61
PUBLIC 64
RSEG ... 49
SEGMENT................................... 45
USING ... 67
XDATA.. 52
XSEG ... 49

Displayed text, notational
conventions iv

Document conventions........................ iv
dollar sign

location counter............................ 33
used in a number 31

double brackets, use of........................ iv
double semicolon 79
DPTR, register 25
DS, directive 58
DS51, defined 220
DSB, directive.................................... 58
DSD, directive 60
DSEG, directive 49
DSW, directive................................... 59
DW, directive..................................... 55
DWORD, operator 36

E
EBIT, operator 35
EBIT, segment type 46
ECODE, operator............................... 35
ECODE, segment type 46

230 Index

ECONST, operator 35
ECONST, segment type..................... 46
EDATA.. 27
EDATA, operator 35
EDATA, segment type....................... 46
EJ, control.. 120
EJECT, control 120
ellipses, use of..................................... iv
ellipses, vertical, use of....................... iv
ELSE, control 153
ELSEIF, control............................... 152
END, directive 69
ENDIF, control 154
ENDP, directive................................. 61
environment table, defined............... 220
environment variable, defined.......... 220
EP, control 121
EQ, operator 34
EQU, directive 51
Error Messages 155

Fatal Errors 155
Non-Fatal Errors 158

ERRORLEVEL 112
ERRORPRINT, control 121
Escape Function................................. 92
escape sequence, defined 220
EVAL Function.................................. 97
EVEN, directive................................. 67
exclamation mark............................... 79
EXIT Function................................. 101
Expression

Classes.. 38
expression, defined 220
Expressions 30,37
EXTERN, directive............................ 64
External Memory 12
External symbol segment types.......... 65
EXTRN, directive 64

F
FAR, operator 36
Filename, notational conventions........ iv
Files generated by A251 112
function call, defined 220
function, defined 220

G
GEN, control122
GT, operator.......................................34
GTE, operator34

H
HCONST, operator35
HCONST, segment type.....................46
HDATA..27
HDATA, operator35
HDATA, segment type.......................46
Hexadecimal numbers30
HIGH, operator36

I
IC, control ..123
ICE, defined220
IDATA ...26
IDATA, directive52
IDATA, external symbol

segment type....................................65
IDATA, operator35
IDATA, segment type46
IF Function...99
IF, control...151
INBLOCK, relocation type47
in-circuit emulator, defined220
include file, defined..........................220
INCLUDE, control123
INPAGE, allocation type....................48
INPAGE, relocation type47
INSEG, relocation type47
Internal Data Memory12
Invoking a Macro83
Invoking A251111
ISEG, directive...................................49
italicized text, use of............................iv

K
Key names, notational

conventions.......................................iv
keyword, defined..............................221

8051 Utilities 231

L
LABEL, directive63
Labels ...23
Labels in macros.................................74
LEN Function102
LI, control..................................124,125
LIB51, defined..................................221
library, defined221
LINK, control124
LIST, control125
Listing File Format205

File Heading................................207
File Trailer210
Include File Level208
Macro Level................................208
Save Stack Level.........................208
Source Listing.............................207
Symbol Table..............................209

LIT, directive......................................53
Location Counter32
LOW, operator36
LST files ...113
LT, operator..34
LTE, operator34

M
Macro definition72
Macro definitions nested77
Macro directives72
Macro invocation................................83
Macro labels74
Macro operators..................................79

! ..79,83
%..79,82
&..79,80
;; ..79,83
< ..79,81
> ..79,81
NUL..79

Macro parameters73
Macro Processing Language...............85

Macro Errors...............................109
MPL Functions91
MPL Macro...................................85
Overview.......................................85

Macro repeating blocks...................... 75
MACRO, control.............................. 126
macro, defined 221
Macros and recursion......................... 78
MATCH Function............................ 103
MB,control....................................... 127
MCS

®
 251 Architecture 9

MCS
®

 251 Register File.................... 14
Memory Classes................................. 13

CODE... 26
CONST .. 26
EDATA .. 27
HDATA.. 27
IDATA ... 26
XDATA.. 26

Memory Initialization 55
Memory Model 10
memory model, defined 221
Memory Reservation.......................... 57
METACHAR Function 93
Miscellaneous operators..................... 36
mnemonic, defined........................... 221
MOD, operator................................... 33
MODBIN, control............................ 127
MODSRC, control 128
monitor51, defined........................... 221
MPL Functions

Bracket ... 92
Comment 91
Escape .. 92
EVAL... 97
EXIT .. 101
IF.. 99
LEN.. 102
MATCH 103
METACHAR 93
REPEAT 100
SET .. 96
SUBSTR 102
WHILE... 99

MPL, control.................................... 129
MPL, Macro Processing

Language
delimiters.................................... 105

MS,control 128

232 Index

N
NAME, directive................................ 65
Names .. 22
NE, operator 34
NEAR, operator 36
Nesting macro definitions 77
NO251, control 134
NOAM, control................................ 130
NOAMAKE, control........................ 130
NOCOND, control 116
NOGEN, control 122
NOLI,control 131
NOLINES, control 131
NOLIST, control.............................. 125
NOMACRO, control........................ 132
NOMO, control................................ 133
NOMOD251, control....................... 134
NOMOD51, control......................... 133
NOOBJECT, control 136
NOOJ, control.................................. 136
NOPR, control 139
NOPRINT, control........................... 139
NORB, control................................. 140
NOREGISTERBANK, control 140
NOREGUSE, control....................... 141
NORU, control................................. 141
NOSB,control 135
NOSL, control.................................. 144
NOSYMBOLS, control 135
NOSYMLIST, control 144
NOT, operator.................................... 34
NUL, macro operator......................... 79
NULL macro parameters 79
NUMBER, external symbol

segment type 65
Numbers... 30

O
OBJ files .. 113
object file, defined 221
OBJECT, control 136
object, defined 221
Octal numbers 30
OFFS, relocation type 47
OH51, defined 221

OJ, control..136
Omitted text, notational

conventions.......................................iv
opcode, defined221
operand, defined...............................222
Operands ..24
Operaters ..30
Operator ...33

arithmetic......................................33
binary..34
class ..35
miscellaneous36
precedence....................................37
relational.......................................34
type ...35

operator, defined222
Operators

(...33
) ...33
* ...33
+ ...33
/ ...33
< ...34
<= ...34
<> ...34
= ...34
> ...34
>= ...34
AND ...34
BIT ...35
BYTE ...36
BYTE0 ...36
BYTE1 ...36
BYTE2 ...36
BYTE3 ...36
CODE...35
CONST...35
DATA...35
DWORD.......................................36
EBIT...35
ECODE...35
ECONST35
EDATA ..35
EQ ..34
FAR ..36
GT ..34

8051 Utilities 233

GTE ..34
HCONST35
HDATA ..35
HIGH ..36
IDATA..35
LOW ...36
LT ...34
LTE...34
MOD...33
NE...34
NEAR ...36
NOT..34
OR...34
SHL...34
SHR ..34
WORD..36
WORD0..36
WORD2..36
XDATA ..35
XOR..34

Operators used in macros79
Optional items, notational

conventions.......................................iv
OR, operator34
ORG, directive....................................66
Output files112
OVERLAYABLE, relocation

type ..47

P
PAGE, allocation type48
PAGELENGTH, control137
PAGEWIDTH, control138
parameter, defined222
Parameters in macros..........................73
PC, register ...25
PL, control ..137
pointer, defined.................................222
PR, control..139
Precedence of operators......................37
PRINT, control139
Printed text, notational

conventions.......................................iv
PROC, directive..................................61
Procedure Declaration61

Program Linkage................................ 64
Program Memory 12
Program Template............................ 211
PUBLIC, directive 64
PW, control 138

R
R0, register... 25
R1, register... 25
R2, register... 25
R3, register... 25
R4, register... 25
R5, register... 25
R6, register... 25
R7, register... 25
RB, control....................................... 140
Recursive macros 78
Register names 24
REGISTERBANK, control.............. 140
REGUSE, control............................. 141
Relational operators 34
relocatable, defined.......................... 222
Relocation Type................................. 47
Relocation types

AT .. 47
BITADDRESSABLE................... 47
INBLOCK.................................... 47
INPAGE....................................... 47
INSEG.. 47
OFFS .. 47
OVERLAYABLE 47

REPEAT Function 100
Repeating blocks................................ 75
RESET, control................................ 150
RESTORE, control 142
RS, control 142
RSEG, directive 49
RTX51 Tiny, defined 222
RTX51, defined 222
RU, control 141
Running A251.................................. 111

S
SA, control 143
sans serif typeface, use of.................... iv

234 Index

SAVE, control.................................. 143
SB, control 135
scope, defined 222
SEG, allocation type 48
Segment Controls............................... 42

Location Counter.......................... 42
Segment types

BIT... 46
CODE... 46
CONST .. 46
DATA .. 46
EBIT .. 46
ECODE .. 46
ECONST...................................... 46
EDATA.. 46
HCONST 46
HDATA.. 46
IDATA... 46
XDATA.. 46

SEGMENT, directive 45
Segments

absolute .. 44
default .. 45
generic.. 43
stack ... 43

semicolon character 21
SET Function..................................... 96
SET, control..................................... 149
SFR, defined 222
SHL, operator 34
SHR, operator 34
SL, control 144
source file, defined........................... 222
Special Function Register,

defined .. 222
Special Function Registers................. 16
stack, defined 222
Standard Macros 71
Statements.. 19

Controls.. 20
Directives 20
Instructions................................... 20

string literal, defined 223
string, defined 223
Strings.. 32
Symbol Definition.............................. 51

Symbol Names22
Symbols..22
SYMLIST, control144

T
TEMPLATE.A51.............................211
TITLE, control145
TS51, defined223
TT, control145
two’s complement, defined...............223
Type operators....................................35

U
Unary +, operator33
Unary -, operator33
USING, directive................................67

V
Variables, notational

conventions.......................................iv
vertical bar, use ofiv

W
WHILE Function................................99
whitespace character, defined...........223
wild card, defined.............................223
WORD, allocation type48
WORD, operator36
WORD0, operator36
WORD2, operator36

X
XDATA..26
XDATA, directive..............................52
XDATA, external symbol

segment type....................................65
XDATA, operator35
XDATA, segment type.......................46
XOR, operator....................................34
XR, control.......................................146
XREF, control146
XSEG, directive49

8051 Utilities 235

	Chapter 1. Introduction
	What is an Assembler?
	How to Develop A Program
	Advantages of Modular Programming
	Efficient Program Development
	Multiple Use of Subprograms
	Ease of Debugging and Modifying

	Modular Program Development Process
	Segments, Modules, and Programs
	Program Entry and Exit
	Assembly
	Relocation and Linkage
	Keeping Track of Files

	Writing and Assembling Programs

	Chapter 2. 8051 and MCS 251 Architecture
	New Features of the MCS 251 Architecture
	8051 and MCS 251 Memory Model
	8051 Address Space
	Program Memory
	Internal Data Memory
	External Memory
	Memory Classes

	8051 and MCS 251 Register File
	Special Function Registers

	Differences to the 8051
	8051 Compatibility
	Timing Issues
	Stack Pointer (SPX)
	Program Status Word
	PSW Bit Definitions

	Chapter 3. Writing Assembly Programs
	Assembly Statements
	Directives
	Controls
	Instructions

	Comments
	Symbols
	Symbol Names

	Labels
	Operands
	Special Assembler Symbols
	Immediate Data
	Indirect Addresses
	IDATA
	XDATA
	CODE and CONST †
	EDATA †
	HDATA †
	Direct Data Addresses
	Direct Bit Addresses
	Program Addresses
	Relative Jumps
	In-Block Jumps and Calls (ACALL and AJMP)
	Long Jumps and Calls (LJMP and LCALL)
	Extended Jumps and Calls (EJMP and ECALL)
	Generic Jump and Call (JMP and CALL)

	Expressions and Operators
	Numbers
	Characters
	Character Strings
	Location Counter

	Operators
	Arithmetic Operators
	Binary Operators
	Relational Operators
	Class Operators
	Type Operators †
	Miscellaneous Operators
	Operator Precedence

	Expressions
	Expression Classes
	Relocatable Expressions
	Simple Relocatable Expressions
	Extended Relocatable Expressions

	Chapter 4. Assembler Directives
	Introduction
	Segment Controls
	Location Counter
	Generic Segments
	Stack Segment
	Absolute Segments
	Default Segment
	SEGMENT
	RSEG
	BSEG, CSEG, DSEG, ISEG, XSEG

	Symbol Definition
	EQU, SET
	CODE, DATA, IDATA, XDATA
	LIT †

	Memory Initialization
	DB
	DW
	DD †

	Memory Reservation
	DBIT
	DS
	DSB †
	DSW †
	DSD †

	Procedure Declaration †
	PROC / ENDP †
	LABEL †

	Program Linkage
	PUBLIC
	EXTRN / EXTERN
	NAME

	Address Control
	ORG
	EVEN †
	USING

	Other Directives
	END

	Chapter 5. Standard Macros
	Directives
	Defining a Macro
	Parameters
	Labels
	Repeating Blocks
	REPT
	IRP
	IRPC
	Nested Definitions
	Nested Repeating Blocks
	Recursive Macros

	Operators
	NUL Operator
	& Operator
	< and > Operators
	% Operator
	;; Operator
	! Operator

	Invoking a Macro

	Chapter 6. Macro Processing Language
	Overview
	Creating and Calling MPL Macros
	Creating Parameterless Macros
	MPL Macros with Parameters
	Local Symbols List
	Macro Processor Language Functions
	Comment Function
	Escape Function
	Bracket Function
	METACHAR Function
	Numbers and Expressions
	Numbers
	Character Strings
	SET Function
	EVAL Function
	Logical Expressions and String Comparison

	Conditional MPL Processing
	IF Function
	WHILE Function
	REPEAT Function
	EXIT Function

	String Manipulation Functions
	LEN Function
	SUBSTR Function
	MATCH Function

	Console I/O Functions
	Advanced Macro Processing
	Literal Delimiters
	Blank Delimiters
	Identifier Delimiters
	Literal and Normal Mode

	MACRO Errors

	Chapter 7. Invocation and Controls
	Running A251
	Command Files
	DOS ERRORLEVEL
	Output Files

	Assembler Controls
	Directives for Conditional Assembly
	Conditional Assembly Controls

	Chapter 8. Error Messages
	Fatal Errors
	Fatal Error Messages

	Non–Fatal Errors

	Appendix A. 8051/251 Instruction Sets
	MCS 251 Opcode Map
	8051 Microcontroller Instructions

	Appendix B. Directive Summary
	Appendix F. Listing File Format
	Assembler Listing File Format
	Listing File Heading
	Source Listing
	Format for Macros, Include Files, and Save Stack
	Symbol Table
	Listing File Trailer

	Appendix G. Program Template
	Appendix H. Assembler Differences
	Differences Between A51 and A251
	Differences between A51 and ASM51
	Differences between A251 and ASM51

	Glossary
	Index

