[1SS wARE

A51 Assembler
A251 Assembler

Macro Assemblers for the 8051
and MCS® 251 Microcontrollers

User’'s Guide 04.95

Keil Software

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

© Copyright 1988-1995 Keil Elektronik GmbH., and Keil Software, Inc.
All rights reserved.

Keil C51™ and dScope™ are trademarks of Keil Elektronik GmbH.

Microsoft®, MS-DOS®, and Windows™ are trademarks or registered trademarks
of Microsoft Corporation.

IBM®, PC®, and PS/2® are registered trademarks of International Business
Machines Corporation.

Intel®, MCS® 51, MCS® 251, ASM-51%, and PL/M-51° are registered
trademarks of Intel Corporation.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

A15 D05/12/95

A51 Assembler / A251 Assembler

Preface

This manual describes how to use the A51 and A251 macro assemblers. The
Ab51 and A251 assembler translate programs you write in assembly language into
executable machine instructions. You may use the A51 assembler to assemble
programs for the 8051 family of microcontrollers. You may use the A251
assembler to assemble programs for the 8051 family as well as the MCS 251
family of microcontrollers. This manual assumes that you are familiar with the
MS-DOS operating system and know how to program the 8051 or MCS 251
microcontrollers.

This manual is divided into the following chapters.

“{fhapter 1. Introduction,” describes the basics of assembly language

“Chapter 2. 8051 and MCS 251 Architecture,” contains an overview of the 8051

operands and address descriptors, and the rules for arithmetic and logical
expressions.

“Chapter 4._Assembler Directives;” describes how to define segments and

symbols and how to use all directives.

“Chapter 5._Standard Macros,” describes the function of the standard macros

and contains information for using standard macros.

“Chapter 8. Error Messages;” contains a list of all assembler error messages and

describes their causes and how to avoid them.

The Appendix includes information on the 8051 and MCS 251 instruction set, a
summary of directives and controls, the differences between assembler versions,
and other items of interest.

Preface

Document Conventions

This document uses the following conventions:

SEMIES

README.TXT

Couri er

Variables

Omitted code

|[Optional Items]

{ optl | opt2 }

Keys

Elements that repeat...

Description

Bold capital text is used for the names of executable programs, data
files, source files, environment variables, and commands you enter at
the MS-DOS command prompt. This text usually represents commands
that you must type in literally. For example:

CLS DIR BL51.EXE

Note that you are not required to enter these commands using all capital
letters.

Text in this typeface is used to represent information that displays on
screen or prints at the printer.

This typeface is also used within the text when discussing or describing
command line items.

Text in italics represents information that you must provide. For
example, projectfile in a syntax string means that you must supply the
actual project file name.

Occasionally, italics are also used to emphasize words in the text.

Ellipses (...) are used in examples to indicate an item that may be
repeated.

Vertical ellipses are used in source code examples to indicate that a
fragment of the program is omitted. For example:

void main (void) {

while (1);

Optional arguments in command-line and option fields are indicated by
double brackets. For example:

C51 TEST. C PRINT [(filenane) |

Text contained within braces, separated by a vertical bar represents a
group of items from which one must be chosen. The braces enclose all
of the choices and the vertical bars separate the choices. One item in
the list must be selected.

Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue.”

A51 Assembler / A251 Assembler

Contents

1Chapter 1. INtroduCtion........ou s usiis s s s s s st g e 1

AR EEREREEEEE R R R R R AR R

1 WhaL S AN ASSEMDIEI?. ... 1!
i __How to Develop A Program
+ Advantages of Modular Programming......

i Efficient Program Development............o.covois i 3
-I--rd-"d_'-r-rd-" T ™ k™ k™ ™ il ™ ™ el el el el el el el el el el el el el el el il el el el e el el el il el el el el el el e el el el il il il el el el e e
L Multiple Use of Subprograms

" Ease of D_epygf;jrlq ggg_l_/l_o_d_igﬁipg '" .. I 3!

1
! Modular Program Development PrOCESScoivoiivicsiiiieee i

:I_‘_Sdga_grrgg_rlt‘ghl\dg_g_g_ldg__s_‘_gp_gﬁ@‘g‘r_gl_rp_;sr.; .. 4
1 Program Entry gpgtlgxit ... 4

i Assembl

i _Chapter 2. 8051 and MCS 251 Architecture ... 9
' New Features of the MCS 251 ArChIteCIUIEcc.ecvvevveecieiireiiecie e stee e ecreereevreereees 9
18051 and MCS 251 Memory Model ... 10:
L 8051 Address Space . vy
Program Memory .. 12,

AR R R R E AR R R R AR R

E Internal Data MEMOY v 12!

AR AR AR R R R R R R R R AR A AR R

L Memory Classes .

8051 and MCS 251 Register File .-

1 Special FUNction REQISEErS ... 16,

i DIfferences t0 the 8051ooururrerireeiireessimessesresesee s 16!
8051, Compatibility .. s
L TIMING ISSUBS ... 17

1
o o o o " o o oy

USEACK POINKET (SPX) .ovos i st s s s e e 17

i_Program Status Word....

hapter 3. Writing Assembly Prog

-:-_ Assembly Statements ...

;__Directives .. 0!

L_C_qutfg I_S_"_"_"_"_"_'
... nstructions.,

;"quments ... T .'2'1'.

y Labels.......
! Operands.

Vi

Contents

o B A o . A B B B O

:_ KDAT A, 26

. CODE a0 CONST T onroscooemericeeeessmoeeeeesmeeesssseeeecesmceesessssceesesssescsesesin 26,
U EDATA T oottt e e 27,

1
-l.-l.-n.-n.1.1.1.1.-.-n.1.1.1.1.-.-n.1.1.1.1.-.-n.1.1.1.1.-.-n.1.1.1.1.-.-n.1.1.1.1.-.-n.1.1.1.1.-.-n.-l.-n.-n-l.-n.-n.-l.-n.-n-l.-n.-n.-l.-n.-n-l.-n-n.-l.-n.-n-l.

. Direct Data Addresses... " 27,

' Direct Bit Addresses......

] ¢ Program Addres_s_e§"__"2-§
1 LREIAtIVE JUMPS .o 2
' In Block JumEs an d Calis (LACALL and A AJMP2 ... 20

] Long Jumps and Calis (LJMP and LCALL)......... T eeeeeeeeeeeeeeeeneecerereeeenrceerseoces 29

T

i Extended 1 Jumps and Calls (EJMP and ECALL) ... 201

T R R R R R R R R R R R R R

i_li)gg@ﬁpp'sﬁndgp'erators .. 30,

L Numbers.......cccccceevvenne

C (63 Y Torr R o osiosaosnioiuioiuiiniuiniuintuisiuimiuiminiminimininiots:

! 'Cﬁ;;raEt'e'r's't'rFrjg'_s'..'..'..'..'..'..'..'..'..'..'..'..'..'..'..'..'..'.T.T.T..'..'.T.T.T.T.T.T.T.T.T.T.T.T.'..'..'..'..'..'..'. 71
. i Locatlon Counter ... 32
! Operators ...

| Binary Operators....)

1 Relatlonal | Operators..
1 Class Operators

T Mlscellaneous Operators....
1 Operator Precedence -

T Seg_ment COMIOIS ... 42,
- Locatlon Counter ... 42

> "d'-l'-l'd‘"d'-l'-l'd‘"d'-l'-l'd‘"d'-l'-l'd‘"d‘fd’f"d‘fd’f"d‘fd’f"d‘fff"d‘f-fl

3 Generlc Sﬁgments .. 43,

Stack K SBOMENT 1..coovsioorsiomrisoemisoesioioemessenseemeseeeeeeeeeeseeeeeereeesoseessoseesosessnoressnosesss A
LADSOIUE SEOMENES ... 44
VDETAUIT SEOMENT v 45,

;'r SEGIMENT ..o seseereseseeneseenenesesesaeseerereseseeseererereneesesrereneeeeene. 46!

FEE I L R R R R L I e e e e e e e e L

) :_ BSEG, CSEG, DSEG, ISEG, XSEG. ”
] Symbol Def|n|t|on ...

A51 Assembler / A251 Assembler Vii

t Memory INItialiZationoooososos s 56

+_Memory Reservation
AR AR AR AR AR AR R R AR R AR R R R R R R R R AR R AR R R R R R AR R AR R R AR R R R R R AR AR AR R R AR R AR EEEEEEREEEREERERERERR

UDBIT e 58!

LS s 39

e o o i o e i o o o o ol i o o i o ol ol ol i o ol ol ol i e ol o o ol i o ol o ol ol i ol ol ol ol ol o ol ol ol ol ol o ol ol ol ol ol i ol ol ol ol ol i ool

U DSB. Tt se s s st 59,

A ARARRR R R R R R R R R R R R AR R R R R R R R R R R A A R T

EDSW ot ss s s ss sttt 60,

R R R R R R R R R A A A R A R A e R R R R e
1
| TR TP PT PP P TP O PP P O TSP PO PP PP U PP PO U P PP PP PO P PP U P PP POTPUOPPPPTPIPTR '

i PROC/ENDP

FLABEL T T Y

LProgram LinKage,o.oooonsesc 65

U PUBLIC ..t ar s 65:

':__D‘i OO I S e 74,

rAEEEEREEEEEEEE R AR AR R R R EEE R EEEE R R R R R R R RS

L DEfiNINg @ MacrO. oo 74!

L P A MBS .. vttt r e e e s s bbb raaeasaane " 75,

Labels

L REpeAtng BIOCKS oo vinvssnvssnsss i S
S = P TP 77

t Nested Definitions............. =9

L Nested Repeating Blocks .

s L.R.e.c.u.rﬁ'.".e.M.a.C.“.)i::::::::::;;:;;:;;;;;:;;'.“.".".".".".".".".".".".';;;;;;;;;;;:':8:::
L OPEIATONS ..t bbb 81,
t NUL Operator................ e T i s i I i OL1

F& OPOIAION ..o 82

e o i i i i o ol ol ol ol ol = ol = wl ml kol ol al al wl= nl= l ~l ~l ~l ~i i o

L.5AN0 > OPEIATONS ... 83,

e e e e
IO 1= - (o] PP PP 84
I 1

1 ;_;__I_Q_Qerator ... 851

-

L OB AIOL . i e e e R 85!

viii Contents

ing Language

--|-- -- == EEEEEEssssEsasEErasEEssaa s s e s wEmna

T Creatlng and Calllng MPL Macros ..

1 Creatlng Parameterless MaEr'o's'.....'..'..
' MPL Macros with Parameters...
: Local SYMDOIS LiSt........coovieriererrseriersesinesns
L Macro Processor Language F Functions ..

.1 Comment Functlon .. 93,

. Bracket FUNCHON ... 94,

AL AR AL CACACACA CRCRCRCRCR R CR L DL D D D C O C C D D O R L L CL R i

" METACHAR Function_........

Numbers and E)gpressmns

' ‘Numbers ..

‘I-'I-'I-'I-'I.'I.‘I- e N LS S e e e S R e e L e Y

- i Logical Expressmns and String COMPAIISON........uiuiiiiiiiie e 99}
Conditional MPL Processint 100;

‘- sy

L IF Functlon

LEN FUNCHION ...ttt ettie sttt e eetea s sabesa s sabasesness s sasese e ssbesesnssssssssenes 104,

LRSI TR L L E R R R R R R R R L LR R R R R R R R R R R AL AR R R R R R R A AR L L LSRR L L T T Y

ESUBSTR FUNCHON oo sttt ot 104

LTI e e R R L A L L L L

i MATCH Functlon ... 105!

L String Manipulation FUNCHIONS ... e 103,

EEREEEEEEEEEEEEE R R AR R R R R R EEE R R R R R R R R R R R R EEE R R R R R R R R RS

- Advanced Macro Proce‘s_sm ... 107!

T theral Delimiters .107.

v ‘Blank Delimiters,

' Identifier Delimiters ..

L.theral and Normal_ Mgge

T MACRO EIMTOTS. oo oo i1,

1 DOS ERRORLEVELouvoiiiiiiie ittt ettt ettt s satasesnasesssaransssnnne s
! Output Files............

] A_ssemble'r'édnt'r(')l's"" -
COND / NOCOND
1 DATE ettt ettt e ettt e e ettt e e sttt e e et b et e e et basasabare e nabesesenete s narens 119

e e S S e S e P S R e P e e e |

i CASE f

A51 Assembler / A251 Assembler

L INCLUDE ...ttt se st se ezt ares 125!

e o o o o o ol o o ol o o ol i o ol e e ol i e ol o ol ol i e ol o e ol i o ol o ol ol i ol ol ol ol ol i ol ol ol ol ol o ol ol ol ol o ool ol ol oot

: LN K ettt e et se et ettt ettt 126'

NOAMAKE

NOLINES - ot s oot 133!
L NOMACRO_ s 234

. TNOMODBL -....ooovoserssisessismssism oot eeseseeessie e eeerseeeerreeeerreeeerreeees 135!
TN O O DD T s s FE et f ot op e e e 136!
O S YIMBOLS oo ettt Attt 1371

E LA A T -|.1.-|.-|.1.-|.-|.1.-|.-|.1.-|.-|.1.-|.-|.1.-|.-|.1.1.1.':
' _OBJECT / e oLz X =l 138,
k=) o o o o o o o o A S rrrrrrrrrrsrs

L REGUSE ... e 143!

FTRESTORE oo 144,

Directives Jor Conditional Assembly.............coooei i, 149)
' Condltlonal Assembl‘y Controls

B Fatal Error Messages.
' "Non-Fatal Errors

Contents

ppendix F. Listing File Format ... s 207

:.,_A.s.sgr'n_b_lgr. I'_is.ti_rlgrﬂl_e_Format .. 2071

FF e P P F PR e ey

1 LiSting File HEAOING. cuviiitiiieitiiicitisiesieie ettt esee e s e sessnesesenesesenens 208!

1 SOUNCE LISTING .ttt et te et ae et e e et e s teesteesteeteeneeeneeaseenreeans 209!
E__Eqr‘rggt_ for Macros, Include Files, and Save Stack.............ccoweness 210!

1 Differences Between A51 and A25L........c.vcuiiveiuieiieiieiieiesiesieeseeeeeeieeieeveeneeans 217!

1 Differences between ASL and ASMBL. ..o vv v vt e irissesesrsesssessssassrssmsessssssraraeeessses 2185

1
[

A51 Assembler / A251 Assembler 1

Chapter 1. Introduction

This manual describes the A51 macro assembler and the A251 macro assembler
and explains the process of developing software in assembly language for the
MCS 251 and 8051 microcontroller families.

A brief overview of the 8051 and MCS 251 architecture can be found in

differences between the generic 8051 and the MCS 251 processors are described.
For the most complete information about the 8051 or MCS 251 microcontrollers,
contact your vendor.

Assembly language programs translate directly into machine instructions which
instruct the processor what operations to perform. Therefore, to effectively write
assembly programs, you should be familiar with both the microcomputer
architecture and assembly language. This chapter presents an overview of the
A251 macro assembler and how it is used.

The A251 assembler is a superset of A51 assembler. For this reason, this manual
serves as documentation for both assemblers. The term A251 is used within this
document to refer to both the A251 assembler and A51 assembler.

NOTE

New features in the A251 assembler and in the MCS 251 microcontroller family
which are not available in the A51 assembler or the 8051 microcontroller family
are marked with 7.

What is an Assembler?

An assembler is a software tool — a program — designed to simplify the task of
writing computer programs. It performs the clerical task of translating symbolic
code into executable object code. This object code may then be programmed
into an 8051 or MCS 251 microcontroller and executed. If you have ever written
a computer program directly in machine-recognizable form, such as binary or
hexadecimal code, you will appreciate the advantages of programming in
symbolic assembly language.

Assembly language operation codes (mnemonics) are easily remembered (MOV
for move instructions, ADD for addition, and so on). You can also symbolically

T New features in the A251 assembler and the MCS 251 architecture

2 Chapter 1. Introduction

express addresses and values referenced in the operand field of instructions.
Since you assign these names, you can make them as meaningful as the
mnemonics for the instructions. For example, if your program must manipulate a
date as data, you can assign it the symbolic name DATE. If your program
contains a set of instructions used as a timing loop (a set of instructions executed
repeatedly until a specific amount of time has passed), you can name the
instruction group TIMER_LOOP.

An assembly program has three constituent parts:

Machine instructions
Assembler directives

Assembler controls

A machine instruction is a machine code that can be executed by the machine.
Detailed discussion of the machine instructions can be found in the hardware
manuals of the 8051 or MCS 251 microcontrollers. Appendix A provides an
overview about machine instructions.

Assembler directives are used to define the program structure and symbols, and

generate non-executable code (data, messages, etc.). Refer to “Chapter 4._ 1

Assembler Directives? on page #1for details on all of the assembler directives.

Assembler controls set the assembly modes and direct the assembly flow.

e o ol o o

guide to all the assembler controls.

How to Develop A Program

The A251 assembler enables the user to program in a modular fashion. The
following paragraphs explain the basics of modular program development.

Advantages of Modular Programming

Many programs are too long or complex to write as a single unit. Programming
becomes much simpler when the code is divided into small functional units.
Modular programs are usually easier to code, debug, and change than monolithic
programs.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 3

The modular approach to programming is similar to the design of hardware that
contains numerous circuits. The device or program is logically divided into

“black boxes” with specific inputs and outputs. Once the interfaces between the
units have been defined, the detailed design of each unit can proceed separately.

Efficient Program Development

Programs can be developed more quickly with the modular approach since small
subprograms are easier to understand, design, and test than large programs.
With the module inputs and outputs defined, the programmer can supply the
needed input and verify the correctness of the module by examining the output.
The separate modules are than linked and located by the linker into an absolute
executable single program module. Finally, the complete module is tested.

Multiple Use of Subprograms

Code written for one program is often useful in others. Modular programming
allows these sections to be saved for future use. Because the code is relocatable,
saved modules can be linked to any program which fulfills their input and output
requirements. With monolithic programming, such sections of code are buried
inside the program and are not so available for use by other programs.

Ease of Debugging and Modifying

Modular programs are generally easier to debug than monolithic programs.
Because of the well defined module interfaces of the program, problems can be
isolated to specific modules. Once the faulty module has been identified, fixing
the problem is considerably simpler. When a program must be modified,
modular programming simplifies the job. You can link new or debugged
modules to an existing program with the confidence that the rest of the program
will not change.

Modular Program Development Process

This section is a brief discussion of the program development process with the
relocatable A251 assembler, L251 Linker/Locator, and the OH251 code
conversion program.

T New features in the A251 assembler and the MCS 251 architecture

4 Chapter 1. Introduction

Segments, Modules, and Programs

In the initial design stages, the tasks to be performed by the program are defined,
and then partitioned into subprograms. Here are brief introductions to the kinds
of subprograms used with the A251 assembler and L251 linker/locator.

A segment is a block of code or data memory. A segment may be relocatable or
absolute. A relocatable segment has a name, type, and other attributes.
Segments with the same name, from different modules, are considered part of the
same segment and are called “partial segments”. Partial segments are combined
into segments by L251. An absolute segment cannot be combined with other
segments.

A module contains one or more segments or partial segments. A module has a
name assigned by the user. The module definitions determine the scope of local
symbols.

A program consists of a single absolute module, merging all absolute and
relocatable segments from all input modules.

Program Entry and Exit

After the design is completed, the source code for each module is entered into a
disk file using any text editor. When errors are detected in the development
process, the text editor may be used to make corrections in the source code.

Assembly

The A251 assembler translates the source code into object code. The assembler
produces a relocatable object file and a listing file showing the results of the
assembly. When the assembler invocation contains the DEBUG control, the
object file also receives the debug information for use during the symbolic
debugging of the program. This debugging may be via the dScope-251
Debugger/Simulator, or in-circuit emulators available from many vendors.

Object File: the object file contains machine language instructions and data that
can be loaded into memory for execution or interpretation. In addition, it
contains control information governing the loading process.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 5

Listing File: The listing file provides both the source program and the object
code. The assembler also produces diagnostic messages in the listing file for
syntax and other coding errors. For example, if you specify a 16-bit value for an
instruction that can only use an 8-bit value, the assembler tells you that the value
exceeds the permissible range. Appendix F describes the format of the listing
file. In addition, you can also request a symbol table to be appended to the
listing. The symbol table lists all the symbols and their attributes.

Relocation and Linkage

After assembly of all modules of the program, L251 processes the object module
files. the L251 program assigns absolute memory locations to all the relocatable
segments, combining segments with the same name and type. L251 also resolves
all references between modules. L251 outputs an absolute object module file
with the completed program, and a summary listing file showing the results of
the link/locate process.

Keeping Track of Files

It is convenient to use the extensions of filename to indicate the stage in the
process represented by the contents of each file. Thus, source code files can use
extensions like .SRC or .A51 (indicating that the code is for input to the A251
assembler). Object code files receive the extension .OBJ by default, or the user
can specify another extension. Executable files generally have no extension.
Listing files can use .LST, the default extension assigned by the assembler.
L251 uses .MAP for the default linker map file extension. L51 and BL51 use
.M51 for the default linker map file extension.

T New features in the A251 assembler and the MCS 251 architecture

Chapter 1. Introduction

Writing and Assembling Programs

There are several steps necessary to incorporate an 8051 microcomputer in your
application. The following figure shows an overview of the steps involved in
creating a program for the 8051 or 251.

Assembler

Source File

A251
Assembler
Object
Other File
Objects or
Libraries
L251
Linker/Locater
Absolute
Object
File
y Y v
OH251 dScope-251 In-Circuit
Object Hex Converter HLL Debugger Emulator

PROM Programmer

T New features in the A251 assembler and the MCS 251 architecture

Ab51 Assembler / A251 Assembler 7

If you are developing hardware for your application, consult the 8051, MCS 51,
or MCS 251 hardware manuals.

Following is an example listing file generated by the assembler.

A251 MACRO ASSEMBLER ASSEMBLER DEMO PROGRAM 24/ 11/ 94 10: 09: 15 PAGE 1

DOS MACRO ASSEMBLER A251 V1. 00
OBJECT MODULE PLACED | N DEMO. OBJ
ASSEMBLER | NVOKED BY: A251. EXE DEMO. A51

LOC OBJ LI NE SOURCE
1 $TI TLE (ASSEMBLER DEMO PROGRAM
2 ; A sinple Assenbl er Mdul e for Denpnstration
3
4 ; Synbol Definition
00000D 5 CR EQU 13 ; Carriage-Return
00000A 6 LF EQU 10 ; Li ne- Feed
7
8 ; Segnent Definition
—————— 9 ?PR?DEMO SEGMENT CODE ; Program Part
—————— 10 ?CO?DEMO SEGMENT CODE ; Constant Part
11
12 ;. Extern Definition
13 EXTRN CODE (PRI NTS, DEMD)
14
15 ; The Program Start
000000 16 CSEG AT O ; Reset Vector
000000 020000 F 17 JWP Start
18
—————— 19 RSEG ?PR?DEMO ; Program Part
000000 900000 F 20 START: MOV DPTR #Txt ; Denp Text
000003 120000 E 21 CALL PRINTS ; Print String
22 ;
000006 020000 E 23 JWP DEMO ; Denp Program
24
25 ; The Text Constants
—————— 26 RSEG ?CO?DEMD ; Constant Part
000000 48656C6C 27 Txt: DB '"Hello World', CR LF, 0
000004 6F20576F
000008 726C640D
00000C 0AO00
28
29 END ;. End of Modul e

SYMBOL TABLE LI STI NG

NAME TYPE VALUE ATTRI BUTES
?CO?DEMO . C SEG 00000EH REL=UNI T, ALN=BYTE
?PR?DEMO . C SEG 000009H REL=UNI T, ALN=BYTE
CR . . N NUMB O00000DH A

DEMO . C ADDR ------- EXT

LF . . . N NUMB O00000AH A

PRI NTS . .. C ADDR ------- EXT

START. C ADDR O000000H R SEG=?PR?DEMO
TXT. C ADDR 000000H R SEG=?CO?DEMD

REG STER BANK(S) USED: 0
ASSEMBLY COMPLETE. 0 WARNING(S), 0 ERROR(S)

T New features in the A251 assembler and the MCS 251 architecture

Chapter 1. Introduction

To assemble this module, the assembler was invoked using the following
command line:

A251 DEMO. A51

The assembler output for this command line is:

DOS MACRO ASSEMBLER A251 V1. 00

ASSEMBLY COVPLETE, NO ERRORS FOUND

After assembly, the object modules are linked and all variables and addresses are
resolved and located into an executable program by the L251 linker. The linker
is invoked with the following command line.

L251 DEMO. OBJ

The linker generates an absolute object file as well as a listing file and screen
messages. The screen output for the linker is:

DOS LI NKER/ LOCATER L251 V1. 00

L251 LI NKING COWPLETE, 0 WARNINGS, 0 ERRCRS

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 9

Chapter 2. 8051 and MCS 251
Architecture

This part reviews the existing 8051 memory and register architecture, before we
introduce the MCS 251 architecture. Also described will be the salient
differences between the 8051 microcontroller and the MCS 251 architecture.
This part will only touch upon the hardware issues.

The A251 macro assembler is capable of generating code for both processor
families with equal ease. The A251 assembler can be called upon to translate
code written for the 8051 family of microcontrollers, generate native code for the
8051, or native code directly for the MCS 251 microcontroller.

In the following both processor architectures are explained.

New Features of the MCS 251
Architecture

The MCS 251 instruction set is a superset of the standard MCS 51
microcontroller. The basic MCS 251 features:
Completely code compatible with the MCS 51 microcontroller.
Powerful 8/16/32-bit instructions.
Flexible 8/16/32-bit register.

16MB linear address space; can be accessed fully by existing 8051 software;
external code-banking logic is not required!

The 251 can run your 51 programs up to 5 times faster.

C applications re-translated with the C251 compiler are up to 15 times faster.
True stack-oriented instruction set with 16-bit stack pointer.

Direct CPU support for 16-bit and 32-bit pointers.

T New features in the A251 assembler and the MCS 251 architecture

10

Chapter 2. 8051 and MCS 251 Architecture

8051 and MCS 251 Memory Model

The standard 8051 memory model, shown in the following figure, is familiar to
8051 users the world over.

FFFF

0000

FFFF

XDATA

0000

SFR:FF

8051
Bit
addressable

SFR
SPACE
DATA

00:007F

[

00:0100

IDATA
256 BYTE

DATA
128 BYTE

DATA
128 BYTE

00:0080
2F
8051
Bitspace
20
1F

4 Register
Banks
00:0000 0

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 11

The following figure shows the memory model of the MCS 251 architecture.

FF:FFFF 00:FFFF SFR:
A FF
F8
CODE ' '
default page ' !
' '
i 98
FF:0000 SFR
SPACE 90
. DATA
! Reset Vector
88
SFR:
Y 80 80
00:007F
HDATA
64 KB "
16 VB 00:0100 251
bitaddr.
02:0000
T IDATA
256 Bytes
XDATA
(defaut 122ABTVATE
SEGMENT
mapable) 00:0080
2F
01:0000 8051
Bitspace
2
DATA lg Y
EDATA 128 Bytes
64 KB 4 Register
Banks
00:0000 00:0000 0

The MCS 251 controller completely supports all aspects of the standard 8051
instruction set and memory organization. This ensures that all existing 8051
programs will successfully execute on the MCS 251. The 8051 family
architecture has 4 separate address spaces: Program memory, Special Function
registers, Internal and External Data memory.

8051 Address Space

All four 8051 memory spaces (DATA, IDATA, CODE and XDATA) are fully
supported by the MCS 251 architecture by mapping them into separate regions in
the MCS 251 address space. The four address spaces are integrated into one
address space, yet they retain their 8051 microcontroller identity guaranteeing
run-time compatibility with the 8051 microcontroller. The mapping is

T New features in the A251 assembler and the MCS 251 architecture

12

Chapter 2. 8051 and MCS 251 Architecture

completely transparent to the user and is taken care of by the A251 assembler
and L251 linker.

Program Memory

The 8051 microcontroller Program Memory space is mapped at FFOO00H, which
is the MCS 251 “RESET” vector. All 8051 microcontroller instructions will
work just as before in the 64K region starting at FFOOOOH. The MOVC
instruction accesses the current active 64K segment, providing 8051
microcontroller compatibility. The A251 assembler translates 8051
microcontroller code in this 64K region making the mapping transparent to the
user. All ORG statements are interpreted with this mapping. The reset and
interrupt vectors are corresponding mapped, avoiding any problems on reset or
interrupts.

Internal Data Memory

The internal data memory is mapped to location 0 ensuring complete run-time
compatibility. Register banking, bit addressing, direct/indirect addressing as
well as stack access are compatible to the 8051 microcontroller. The MCS 251
address space begins as 8051 microcontroller internal data memory and extends
to 16M. This allows enhanced data/stack access using new instructions while
maintaining compatibility with the existing 8051 microcontroller family.

External Memory

The 64K 8051 microcontroller external data memory is mapable to any segment
within the 64KB memory space. After Reset the XDATA space is mapped to the
area 64KB .. 128KB. This provides complete run-time compatibility with the
8051 microcontroller, since the lowest 16 address bits of the external data
memory are identical to the standard 8051 controller. Keeping internal and
external data memory spaces separated ensures that MOV X instructions does not
access internal memory, and that 8051 microcontroller MOV instructions will
not access external memory.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler

13

Memory Classes

Several new memory groups have been defined to take advantage of the 251
extended code and data capability. For convenience we refer to these as,
Memory Classes. Each class has specific requirements and capabilities. These
differences are listed below.

Memory Class

DATA
BIT

IDATA

EDATA

ECONST

EBIT

XDATA

HDATA

HCONST

ECODE

CODE

CONST

Address Range

00:0000 - 00:007F
00:0020 - 00:002F

00:0000 - 00:00FF

00:0000 - 00:FFFF

00:0000 - 00:FFFF

00:0020 - 00:007F

01:0000 - 01:FFFF
(default space)

00:0000 - FF:FFFF

00:0000 - FF:FFFF

00:0000 - FF:FFFF

FF:0000 - FF:FFFF
(default space)

FF:0000 - FF:FFFF
(default space)

Description

Direct addressable on-chip RAM.

8051 compatible bit-addressable RAM; can be
accessed with short 8-bit addresses.

Indirect addressable on-chip RAM; can be
accessed with @RO or @R1.

Extended direct addressable memory area; can
be accessed with direct 16-bit addresses
available on the 251.

Same as EDATA - but allows the definition of
ROM constants.

Extended bit-addressable RAM; can be
accessed with the extended bit addressing
mode available on the 251.

8051 compatible DATA space. Can be mapped
on the 251 to any 64 KB memory segment.
Accessed with MOVX instruction.

Full 16 MB address space of the 251.
Accessed with MOV @DRK instructions. This
space is used for RAM areas.

Same as HDATA - but allows the definition of
ROM constants.

Full 16 MB address space of the 251;
executable code accessed with ECALL or EJIMP
instructions.

8051 compatible CODE space; used for
executable code or RAM constants. Can be
located with L251 to any 64 KB segment

Same as CODE - but can be used for ROM
constants only.

T New features in the A251 assembler and the MCS 251 architecture

14 Chapter 2. 8051 and MCS 251 Architecture

8051 and MCS 251 Register File

The MCS 251 architecture supports an extra 32 bytes of register in addition to
the 4 banks of 8 registers that the 8051 microcontroller architecture. The lower
8 byte registers are mapped between location 00:00 - 00:01FH. The lower 8 byte
registers are mapped in this way to support 8051 microcontroller register
banking (see the following figure). The register-file can be addressed in the
following ways, depending upon the register accessed:

Register 0 - 15 can be addressed as either byte, word, or double word
(Dword) registers.

Register 16 - 31 can be addressed as either word or Dword registers.
Register 0 - 15 can be addressed only as Dword registers.

There are 16 possible byte registers (RO - R15), 16 possible word registers
(WRO - WR30) and 10 possible Dword registers (DRO - DR28, DR56 -
DR60) that can be addressed in any combination.

All Dword registers are Dword aligned; each is addressed as Drk with “k”
being the lowest of the 4 consecutive registers. For example, DR4 consists of
registers 4 - 7.

All word registers are word aligned; each is addressed as Wrj with “j” being
the lower of the 2 consecutive registers. For example WR4 consists of
registers 4 - 5.

All byte registers are inherently byte aligned; each is addressed as Rm with
“m” being the register number. For example R4 consists of register 4.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 15

The following figure shows the register file format for the MCS 251
microcontroller.

WR24 WR26 WR28 WR30

l@————— 8Bytes ———————=|

WR16 WR18 WR20 WR22

Register 56 - 63

WR8 WR10 WR12 WR14

WRO WR2 WR4 WR6

WORD REGISTER

Register 8 - 31
R8 | R9 |R10|R11|R12|R13|R14|R15
Register 0 - 7 RO|R1|R2|[R3|R4|R5|R6|R7
MEMORY

BYTE REGISTER

Stack Pointer (SPX)

v

DR56 DR60

DR24 DR28
DR16 DR20
DR8 DR12
DRO DR4

DWORD REGISTER

Stack Pointer (SPX)

'

DR56 DR60

DR24 WR28 WR30

WR16 WR18 DR20

WR8 WR10 ([R12 | R13| R14| R15
WRO R2 | R3 DR4

EXAMPLE OF MIXED USAGE

T New features in the A251 assembler and the MCS 251 architecture

16

Chapter 2. 8051 and MCS 251 Architecture

Special Function Registers

The 128-byte SFR space is completely compatible with direct addressing of the
8051 controller SFRs including bit addressing. The address/data SFRs such as
A, B, DPL, DPH, SP reside in the MCS 251 register file for high performance,
however, they are also mapped into the 128-byte SFR region for compatibility.
In the MCS 251 architecture, these SFRs can be referred to either by their 8051
microcontroller names, 8051 microcontroller addresses, or the new MCS 251
register names.

The following table shows how the MCS 51 microcontroller registers appear in
the MCS 251 architecture.

MCS 51 MCS 51 Register in 251 251 Register Name
microcontroller microcontroller Register file
SFR Name SFR Address
RO to R7 - 0 through 7 RO to R7
ACC EO 11 R11
B FO 10 R10
DPH 83 58 DR56
DPL 82 59 DR56
SP 81 63 DR60 (SPX)

For purpose of compatibility the Program Status Word (PSW) of the 8051
microcontroller has been left unchanged.

Differences to the 8051

The MCS 251 microcontroller uses the von Neumann Architecture for flexibility
and simplicity. This means that code and data areas share a single contiguous
memory address space.

The increased instruction throughput and instruction fetch rates of the 251 will
require adjustments to code that is instruction cycle or timing dependent.

The extended memory and code space enables to work free of the 8051’s
historical restrictions.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 17

8051 Compatibility

The A251 assembler will assemble existing 8051 microcontroller code for the
MCS 251 without requiring any changes in the assembly code except for a few
cases described below, where a assembler source needs changes under user
control.

Timing Issues

The MCS 251 CPU significantly improves code performance; instructions are
executed about 5 times faster than typical 8051 microcontroller execution. For
example, the instruction ADD A,Rn instruction takes 6 states on the 8051
microcontroller and 1 state on the MCS 251. Some instructions are executed up
to 12 times faster.

Due to these intrinsic performance increases, special care must be given to the
timing loops of 8051 microcontroller code assembled for the MCS 251.
Additionally, 8051 microcontroller peripherals that rely on a time base may
require adjustment before assembling.

MCS 251 timing issues encountered by existing 8051 microcontroller code
would be the same as if the clock speed of the 8051 microcontroller were
increased from 12MHz to 60MHz.

Stack Pointer (SPX)

In addition to being a word register, DR60 is also the 16-bit stack pointer. It is
used for all the stack operations such as pushes/pops, call/returns, transfer to
interrupt service routine and return from interrupt service routine. Making the
stack pointer part of the register file allows all MCS 251 instructions to be used
for stack pointer manipulation, and enhances stack access through a rich set of
addressing modes.

Program Status Word

The Program Status Word (PSW) contains status bits that reflect the current state
of the CPU. It consists of two 8-bit registers, PSW and PSW1. The PSW
register retains the existing 8051 microcontroller flags and the PSW1 register

T New features in the A251 assembler and the MCS 251 architecture

18 Chapter 2. 8051 and MCS 251 Architecture

contains the new MCS 251 flags as well as the CY, AC, and OV. The Z flag will
be set if the result of the last arithmetic or logical operation was a zero. The N
flag will be set if the result of the last logical operation was negative.

PSW Bit Definitions

PSW Register

Bit 7

CY AC FO RS1 RSO oV ub P

PSW1 Register

Bit 7 Bit 6 ‘]) Bit 3 Bit 2 ‘ Bit 1

CY AC N RS1 RSO oV Z =

The following table describes the bits in the PSW.

Symbol Function ‘
CY Carry flag
AC Auxiliary Carry flag (For BCD Operations)
FO Flag 0 (Available to the user for General Purpose)
RS1, Register bank select bit 1
RSO Register bank select bit 0
RS1 RSO Working Register Bank and Address
0 0 BankO0 (00:00H - 00:07H)
0 1 Bank1 (00:08H - 00:0FH)
1 0 Bank2 (00:10H - 00:17H)
1 1 Bank3 (00:18H - 00:1FH)
oV Overflow flag
ubD User definable flag
B Parity flag
- Reserved for future use
z Zero flag
N Negative flag

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 19

Chapter 3. Writing Assembly Programs

The A251 macro assembler is a two pass assembler that translates 8051
assembly language programs into Intel compatible object files. These object
files are then combined or linked using the Linker/Locator to form an
executable, ready to run, absolute object module. As a subsequent step, absolute
object modules can be converted to Intel HEX files suitable for loading onto to
your target hardware, device programmer, or ICE (In-Circuit Emulator) unit.

The following sections describes the components of an assembly program, and
some aspects of writing assembly programs. An assembly program consists of
one or more statements. These statements contain directives, controls, and
instructions.

Assembly Statements

Assembly program source files are made up of statements which may include
assembler controls, assembler directives, or 8051 assembly language instructions
(mnemonics). For example:

$TI TLE(Denp Pr ogr am #1)
ORG 0000h
JMP $
END

This example program consists of four statements. $TI TLE is an assembler
control, ORG and END are assembler directives, and JMP is an assembly
language instruction.

Each line of an assembly program can contain only one control, directive, or
instruction statement. Statements must be contained in exactly one line. Multi-
line statements are not allowed.

Statements in 8051/251 assembly programs are not column sensitive. Controls,
directives, and instructions may start in any column. Indentation used in the
examples in this manual, is done for program clarity and is neither required nor
expected by the assembler. The only exception is that arguments and instruction
operands must be separated from controls, directives, and instructions by at least
one space.

T New features in the A251 assembler and the MCS 251 architecture

20 Chapter 3. Writing Assembly Programs

All 8051/251 assembly programs must include the END directive. This directive
signals to the assembler that this is the end of the assembly program. Any
instructions, directives, or controls found after the END directive are ignored.
The shortest valid assembly program contains only an END directive.

Directives

Assembler directives provide the assembly programmer with a means to instruct
the assembler how to process subsequent assembly language instructions.
Directives also provide a way for you to define program constants and reserve
space for dynamic variables.

and examples of all of the assembler directives that you may include in your
program. Refer to this chapter for more information about how to use directives.

Controls

Assembler controls direct the operations of the assembler when generating a
listing file or object file. Typically, controls do not impact the code that is
generated by the assembler. Controls can be specified on the command line or
within an assembler source file.

The conditional assembly controls are the only assembler controls that will
impact the code that is assembled by the A251 assembler. The IF, ELSE,
ENDIF, and ELSEIF controls provide a powerful set of conditional operators
that can be used to include or exclude certain parts of your program from the
assembly.

assembler controls in detail and provides an exémp_le of each. Refer to this
chapter for more information about control statements.

Instructions

Assembly language instructions specify the program code that is to be assembled
by the A251 assembler. The A251 assembler translates the assembly

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 21

instructions in your program into machine code and stores the resulting code in
an object file.

Assembly instructions have the following general format:

|[I abel:] mmenoni ¢ |[operand] [operand]l |[operand] [; comrent]l

where
| abel is a symbol name that is assigned the address at which the
instruction is located.
rmenoni ¢ is the ASCII text string that symbolically represents a
machine language instruction. 3
oper and is an argument that is required by the specified menoni c.
conmment is an optional description or explanation of the instruction.

A comment may contain any text you wish. Comments are
ignored by the assembler.

The 8051 and 251 instructions are listed in “Appendix A. 8051/251 Instruction _:

Sets!” on page 173by mnemonic and by machine language opcode. Refer to this
section for more information about assembler instructions.

Comments

Comments are lines of text that you may include in your program to identify and
explain the program. Comments are ignored by the A251 assembler and are not
required in order to generate working programs.

You can include comments anywhere in your assembler program. Comments
must be preceded with a semicolon character (;). A comment can appear on a
line by itself or can appear at the end of an instruction. For example:

;This is a conment
NOP ;This is al so a comment

When the assembler recognizes the semicolon character on a line, it ignores
subsequent text on that line. Anything that appears on a line to the right of a
semicolon will be ignored by the A251 assembler. Comments have no impact on
object file generation or the code contained therein.

T New features in the A251 assembler and the MCS 251 architecture

22

Chapter 3. Writing Assembly Programs

Symbols

A symbol is a name that you define to represent a value, text block, address, or
register name. You can also use symbols to represent numeric constants and
expressions.

Symbol Names

Symbols are composed of up to 31 characters from the following list:

A-272 a-12z, 0-9 _, and?

A symbol name can start with any of these characters except the digits 0 - 9.

Symbols can be defined in a number of ways. You can define a symbol to
represent (or EQUate to) an expression using the EQU or SET directives:

NUMBER _FI VE EQU 5|
TRUE_FLAG SET 1
FALSE FLAG SET 0

you can define a symbol to be a label in your assembly program:

LABEL1: DINZ RO, LABEL1

and you can define a symbol to refer to a variable location:

SERI AL_BUFFER DATA 99h

Symbols are used throughout an assembly program. Symbols provide better
human understandable program element attributes. The following sections
provide more information about the use and definition of symbols.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 23

Labels

A label is a type of symbol that you define. A label defines a “place”. A labels
name represents an address. All rules that apply to symbol names also apply to
labels. When defined, a label must be the first text field in a line but may be
preceded by tabs or spaces. A colon character (:) must immediately follow the
symbol name to identify it as a label. Only one label can be defined on a line.

For example:

LABEL1: DS 2

LABEL2: ;| abel by itself
NUVBER: DB 27, 33, 'STRING, O ;l abel at a nessage
COPY: MoV R6, #12H ;label in a program

In the above examples, LABEL1, LABEL2, NUMBER, and cory are all labels.

When a label is defined, it receives the current value of the location counter of

more information about the location counter.

You can use a label just like you would use a program offset within an
instruction. Labels can refer to program code, to variable space in internal or
external data memory, or can refer to constant data stored in the program or code
space.

You can use a label to transfer program execution to a different location. The
instruction immediately following a label can be referenced by using the label.
Your program can jump to or make a call to the label. The code immediately
following the label will be executed.

You can also use labels to provide information to simulators and debuggers. A
simulator or debugger can provide the label symbols while debugging. This can
help to simplify the debugging process.

Labels may only be defined once. They may not be redefined.

T New features in the A251 assembler and the MCS 251 architecture

24 Chapter 3. Writing Assembly Programs

Operands

Operands are arguments, or expressions, that are specified along with assembler
directives or instructions. Assembler directives require operands that are
constants or symbols. For example:

VW EQU 3
DS 10h

Assembler instructions support a wider variety of operands than do directives.
Some instructions require no operands and some may require up to 3 operands.
Multiple operands are separated by commas. For example:

MoV R2, #0

The number of operands that are required and their types depend on the
instruction or directive that is specified. In the following table the first four
operands can also be expressions. Instruction operands can be classified as one
the following types:

Operand Type Description ‘
Immediate Data Symbols or constants the are used as an numeric value.

Direct Bit Address Symbols or constants that reference a bit address.

Program Addresses Symbols or constants that reference a code address.

Direct Data Addresses Symbols or constants that reference a data address.

Indirect Addresses Indirect reference to a memory location, optionally with offset.
Special Assembler Symbol Register names.

Special Assembler Symbols

The A251 assembler defines and reserves names of the 8051 register set. These
predefined names are used in 8051 programs to access the 8051 processor
registers.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 25

Following, is a list of the each of the 8051 registers along with a brief

description:

Register

A

DPTR
PC
C

AB
RO - R7

ARO — AR7

R8 - R15 t
WRO - WR30 t

DRO - DR28 t
DR56 t
DR60 t

Description ‘

Represents the 8051 Accumulator. It is used with many operations including
multiplication and division, moving data to and from external memory, boolean
operations, etc.

The DPTR register is a 16-bit data pointer used to address data in XDATA or
CODE memory.

The PC register is the 16-bit program counter. It contains the address of the
next instruction to be executed.

The Carry flag; indicates the status of operations that generate a carry bit. It is
also used by operations that require a borrow bit.

The A and B register pair used in MUL and DIV instructions.

The eight 8-bit general purpose 8051 registers in the currently active register
bank. A Maximum of four register banks are available.

Represent the absolute data addresses of RO through R7 in the current
register bank. The absolute address for these registers will change depending
on the register bank that is currently selected. These symbols are only
available when the USING directive is given. Refer to the USING directive for
more information on selecting the register bank. These representations are
suppressed by the NOAREGS directive. Refer to the NOAREGS directive for
more information.

Additional eight 8—bit general purpose registers of the 251.

Sixteen 16-bit general purpose registers of the 251. The registers WRO -
WR14 overlap the registers RO - R15. Note that there is no WR1 available.

Ten 32-bit general purpose registers of 251. The registers DRO - DR28
overlap the registers WRO - WR30. Note that there is no DR1, DR2 and DR3
available.

Immediate Data

An immediate data operand is a numeric expression that is encoded as a part of
the machine language instruction. Immediate data values are used literally in an
instruction to change the contents of a register or memory location. The pound
(or number) sign (#) must precede any expression that is to be used as an
immediate data operand. The following shows some examples of how the
immediate data is typically used:

MoV
MoV
ANL
XRL
MoV

A, #0EOh ; load OEOh into the accumul at or
DPTR, #8000h ; load 8000h into the data pointer
A, #128 ; AND t he accunmul ator with 128

RO, #OFFh ; XOR RO with Offh

R5, #BUFFER ; load R5 with the val ue of BUFFER

T New features in the A251 assembler and the MCS 251 architecture

26 Chapter 3. Writing Assembly Programs

Indirect Addresses

With indirect address operands it is possible to access the following memory
classes of the 8051/251:

IDATA

Elements of this type must be accessed via registers RO or R1. If these data
elements also exist within the DATA memory class, OH .. 07FH, then you may
also access them directly.

Example

; BUFFER is a synbol with class | DATA or DATA.

MoV RO, #BUFFER ; load the address
MoV A, @GRO ; the indirect access

XDATA memory can be accessed with the instruction MOV X via the register
DPTR or via the registers RO, R1.

Example

; XBUFFER is a synbol w th class XDATA.

MOV DPTR, #XBUFFER ; | oad address

MOVX @PTR, A ; access via DPTR
MOV R1, #XBUFFER ; | oad address

MOVX A @GR1 ; access via RO or RL

CODE and CONST t

CODE or CONST memory can be accessed with the instruction MOVC via the
DPTR register.

Example

; TABLE is a synbol of class CODE or NCONST

MoV DPTR, #TABLE ; |l oad address of table

MoV A #3 ; load offset into table
MOvC A, @G\+DPTR ; access via MOVC instruction

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 27

EDATA

EDATA memory can be accessed via the registers WRO0 .. WR30. Also variables
of the class IDATA and DATA can be access with this addressing mode.

Example

; STRING is a synbol of class NDATA

MoV VR4, #STRI NG ; load address of STRI NG
MoV R6, @\R4 ; indirect access

MoV @N\R4+2, R6 ; access wWith constant offset

HDATA memory can be accessed via the registers DRO .. DR28. Any memory
location can be accessed with these instructions.

Example

; ARRAY is a synbol of class HDATA

MoV VR8, #WORD2 ARRAY ; |l oad address of ARRAY

MOV WR10, #WORDO ARRAY ; into DR8

MoV R4, @R8 ; indirect access

MoV @DR8+50H, R4 ; access Wi th constant offset

Direct Data Addresses

Direct Data addresses represent the exact address of the data to access in the
memory. Also the special function registers of the 8051 can be accessed with
direct data addresses. With direct data address operands you can access the
following memory classes of the 8051/251.:

; accesses to DATA space

VALUE DATA 20H
MoV 50H, A
MoV RO, VALUE
; accesses to EDATA space
EVAR EDATA 1000H
MoV R5, EDATA 2000H
MoV EVAR, R4

T New features in the A251 assembler and the MCS 251 architecture

28

Chapter 3. Writing Assembly Programs

Direct Bit Addresses

Direct bit addresses represent the exact address of the bit to access in the
memory. Also the special function registers of the 8051/251 are bit addressable
and can be accessed with direct bit addresses.

Bit addresses can be accessed using the period (.) to access the bits of byte
variables that reside in the bit—addressable area (20h to 2Fh) or to access the bits
of certain special function registers. The period must be specified after a byte
base symbol and must have a trailing bit position to access.

With direct bit address operands you can access the following memory classes of
the 8051/251.:

; accesses to BIT class
; also variables with the cl ass DATA Bl TADDRESSABLE can be accessed

SETB 20H. 6 ; set bit 6 in location 20H

CLR 10 ; clear bit 2 in location 21H, this is
; the bit address 10

MoV C, ACC. 5 ; move bit 5 of register Ato the
; carry flag.

; accesses to EBIT space
; also variables with the class DATA can be accessed.
MoV 40H. 5, C
SETB DPL. 7 ; set bit 7 in the register DPL

Program Addresses

Program addresses are absolute or relocatable expressions with the memory class
CODE or ECODE. There are four types of instructions that require a program
address in their operands:

Relative Jumps

Relative jumps include conditional jumps (CINE, DJNZ, JB, JBC, JC, ...) and
the unconditional SIMP instruction. The addressable offset is —128 to +127
bytes from the first byte of the instruction that follows the relative jump. When
you use a relative jump in your code, you must use an expression that evaluates
to the code address of the jump destination. The assembler does all the offset
computations. If the address is out of range, the assembler will issue an error
message.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 29

In-Block Jumps and Calls (ACALL and AJMP)

In-block jumps and calls permit access only within a 2KByte block of program
space. The low order 11 bits of the program counter are replaced when the jump
or call is executed.

If ACALL or AJMP is the last instruction in a block, the high order bits of the
program counter change when incremented to address the next instruction.; thus
the jump will be made within the block following the ACALL or AJMP.

Long Jumps and Calls (LJMP and LCALL)

Long jumps and calls allow to access within a 64KByte segment of program
space. The low order 16 bits of the program counter are replaced when the jump
or call is executed.

For the 8051 only: LIMP and LCALL can access the entire 8051 address space.

For the 251 only: If LIMP and LCALL is the last instruction in a segment, the
high order bits of the program counter change when incremented to address the
next instruction; thus the jump will be made within the block following the
LIMP or LCALL.

Extended Jumps and Calls (EJMP and ECALL)

Extended jumps and calls allow access within the 16MByte program space of the
251. The low order 24 bits of the program counter are replaced when the jump or
call is executed.

Generic Jump and Call (JMP and CALL)

The assembler provides two instruction mnemonics that do not represent a
specific opcode. The are JMP and CALL. JMP may assemble to SIMP,
AIJMP, LIMP or EJMP. CALL may assemble to ACALL, LCALL or
ECALL. These generic mnemonics will always evaluate to an instruction, not
necessarily the shortest, that will reach the specified program address operand.

T New features in the A251 assembler and the MCS 251 architecture

30

Chapter 3. Writing Assembly Programs

This is an effective tool to use during program development, since sections of
code change drastically in size with each development cycle. Note that the
assembler decision may not be optimal. For example, if the code address is a
forward reference, the assembler will generate a long jump although a short
jump may be possible.

Expressions and Operators

An operand may be a numeric constant, a symbolic name, a character string or an
expression.

Operators are used to combine and compare operands within your assembly
program. Operators are not assembly language instructions nor do they generate
8051 assembly code. They represent operations that are evaluated at assembly-
time. Therefore, operators can only handle calculations of values that are known
when the program is assembled.

An expression is a combination of numbers, character string, symbols, and
operators that evaluate to a single 32-bit binary number. Expressions are
evaluated at assembly time and can, therefore, be used to calculate values that
would otherwise be difficult to determine beforehand.

The following sections describe operators and expressions and how they are used
in 8051 assembly programs.

Numbers

Numbers can be specified in hexadecimal (base 16), decimal (base 10), octal
(base 8), and binary (base 2). The base of a number is specified by the last
character in the number. A number that is specified without an explicit base is
interpreted as decimal number.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 31

The following table lists the base types, the base suffix character, and some
examples:

Legal Characters Examples
Hexadecimal H, h 0-9,A-F,a-f 1234h 99h OAOFOh OFFh
Decimal D, d 0-9 1234 65590d 20d 123
Octal 0,0,Q,q 0-7 1770 25q 1230 1777779
Binary B, b 0and 1 10011111b 101010101b

The first character of a number must be a digit between 0 and 9. Hexadecimal
numbers which do not have a digit as the first character should be prefixed with
ao.

The A251 assembler supports also hex numbers written in C notation. For
example:

0xAOFO 0x24 Oxf f

The dollar sign character ($) can be used in a number to make it more readable,
however, the dollar sign character cannot be the first or last character in the
number. A dollar sign used within a number is ignored by the assembler and has
no impact on the value of the number. For example:

1111$0000$1010$0011b is equivalent to 1111000010100011B
1$2$3%4 is equivalent to 1234
Characters

The A251 assembler allows you to use ASCII characters in an expression to
generate a numeric value. Up to two characters enclosed within single quotes (*)
may be included in an expression. More than two characters in single quotes in
an expression will cause the A251 assembler to generate an error. Following are
examples of character expressions:

A eval uates to 0041h
' AB' eval uates to 4142h
'a' eval uates to 0061h
' ab’ eval uates to 6162h
v null string evaluates to 0000h
' abc' generates an ERROR

T New features in the A251 assembler and the MCS 251 architecture

32 Chapter 3. Writing Assembly Programs

Characters may be used anywhere in your program as a immediate data operand.

For example:

LETTER A EQU A

TEST: MOV @0, # F
SUBB A #0

Character Strings

Character strings can be used in combination with the DB directive to define
messages that are used in your 8051 assembly program. Character strings must
be enclosed within single quotes (*). For example:

KEYMSG DB 'Press any key to continue.'

generates the hexadecimal data (50h, 72h, 65h, 73h, 73h, 20h, ... 6Eh, 75h, 65h,
2Eh) starting at KEYMSG. You can mix string and numeric data on the same line.
For example:

EOLMBG DB "End of line', 00h
appends the value 00h to the end of the string ' End of 1ine'.

Two successive single quote characters can be used to insert a single quote into a
string. For example:

MBGTXT: DB "ISN'T A QUOTE REQUI RED HERE?' .

Location Counter

The A251 assembler maintains a location counter for each segment. The
location counter contains the offset of the instruction or data being assembled
and is incremented after each line by the number of bytes of data or code in that
line.

The location counter is initialized to 0 for each segment, but can be changed
using the ORG directive.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 33

The dollar sign character ($) returns the current value of the location counter.
This operator allows you to use the location counter in an expression. For
example, the following code uses $ to calculate the length of a message string.

MSG DB "This is a nessage', O
MSGLEN EQU $ — MSG

You can also use $ in an instruction. For example, the following line of code
will repeat forever.

JMP $; repeat forever

Operators

The A251 assembler provides several classes of operators that allow you to
compare and combine operands and expressions. These operators are described
in the sections that follow.

Arithmetic Operators

Arithmetic operators perform arithmetic functions like addition, subtraction,
multiplication, and division. These operators require one or two operands
depending on the operation. The result is always a 16-bit value. Overflow and
underflow conditions are not detected. Division by zero is detected and causes
an assembler error.

The following table lists the arithmetic operators and provides a brief description
of each.

Operator Syntax Description ‘

+ + expression Unary plus sign
= — expression Unary minus sign
+ expression + expression Addition
= expression — expression Subtraction
* expression * expression Multiplication
/ expression / expression Integer division

MOD expression MOD expression Remainder

(and) (expression) Specify order of execution

T New features in the A251 assembler and the MCS 251 architecture

34 Chapter 3. Writing Assembly Programs

Binary Operators

Binary operators are used to complement, shift, and perform bit—wise operations
on the binary value of their operands. The following table lists the binary
operators and provides a brief description of each.

Operator Syntax Description ‘

NOT NOT expression Bit-wise complement
SHR expression SHR count Shift right

SHL expression SHL count Shift left

AND expression AND expression Bit-wise AND

OR expression OR expression Bit-wise OR

XOR expression XOR expression Bit—-wise exclusive OR

Relational Operators

The relational operators compare two operands. The results of the comparison is
a TRUE or FALSE result. A FALSE result has a value of 0000h. A TRUE
result has a non-zero value.

The following table lists the relational operators and provides a brief description

of each.
Operator Syntax Result ‘
GTE expressionl GTE expression2 True if expressionl is greater than or equal to
expression2
LTE expressionl LTE expression2 True if expressionl is less than or equal to
expression2
NE expressionl NE expression2 True if expressionl is not equal to expression2
EQ expressionl EQ expression2 True if expressionl is equal to expression2
LT expressionl LT expression2 True if expressionl is less than expression2
GT expressionl GT expression2 True if expressionl is greater than expression2
>= expressionl >= expression2 True if expressionl is greater than or equal to
expression2
<= expressionl <= expression2 True if expressionl is less than or equal to
expression2
<> expressionl <> expression2 True if expressionl is not equal to expression2
= expressionl = expression2 True if expressionl is equal to expression2
< expressionl < expression2 True if expressionl is less than expression2

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 35

Operator Syntax Result

> expressionl > expression2 True if expressionl is greater than expression2

Class Operators

The class operator assigns a memory class to an expression. This is how you
associate an expression with a class. The A251 assembler generates an error
message if you use an expression with a class on an instruction which does not
support this class, for example, when you use an HDATA expression as a direct
address.

The following table lists the class operators and provides a brief description of
each.

Operator Syntax Description ‘
BIT BIT expression Assigns the class BIT to the expression.
CODE CODE expression Assigns the class CODE to the expression.
CONST t CONST expression Assigns the class CONST to the expression.
DATA DATA expression Assigns the class DATA to the expression.
EBIT T EBIT expression Assigns the class EBIT to the expression.
ECODE ECODE expression Assigns the class ECODE to the expression.
ECONST *t ECONST expression Assigns the class ECONST to the expression.
EDATA T EDATA expression Assigns the class EDATA to the expression.
HCONST t HCONST expression Assigns the class HCONST to the expression.
HDATA t HDATA expression Assigns the class HDATA to the expression.
IDATA IDATA expression Assigns the class IDATA to the expression.
XDATA XDATA expression Assigns the class XDATA to the expression.

Type Operators t

The type operator assigns a data type to an expression. Thus the expression is
associated with this type. A251 will generate an error message if you are using
an expression with an type on an instruction which does not support this types.
For example when you are using a WORD expression as argument in a byte-
wide instruction of the 251.

T New features in the A251 assembler and the MCS 251 architecture

36 Chapter 3. Writing Assembly Programs

The following table lists the type operators and provides a brief description of

each.
Operator Description
BYTE BYTE expression Assigns the type BYTE to the expression.
WORD WORD expression Assigns the class WORD to the expression.
DWORD DWORD expression Assigns the class DWORD to the expression.
NEAR NEAR expression Assigns the class NEAR to the expression.
FAR FAR expression Assigns the class FAR to the expression.

Miscellaneous Operators

A251 provides operators that do not fall into the previously listed categories.
These operators are listed and described in the following table.

Operator Syntax Description

LOW LOW expression Low—order byte of expression

HIGH HIGH expression High—order byte of expression

BYTEO t BYTEO expression Byte O of expression. See table below. (identical
with LOW).

BYTELl t BYTE1 expression Byte 1 of expression. See table below. (identical
with HIGH).

BYTE2 t BYTE2 expression Byte 2 of expression. See table below.

BYTE3 t BYTE3 expression Byte 3 of expression. See table below.

WORDO t WORDO expression Word 0 of expression. See table below.

WORD2 t WORD2 expression Word2 of expression. See table below.

The following table shows how the byte and word operators impact a 32-bit
value.

BYTE3 BYTE2 BYTE1 BYTEO

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 37

Operator Precedence

All operators are evaluated in a certain, well-defined order. This order of
evaluation is referred to as operator precedence. Operator precedence is required
in order to determine which operators are evaluated first in an expression. The
following table lists the operators in the order of evaluation. Operators at level 1
are evaluated first. If there is more than one operator on a given level, the
leftmost operator is evaluated first followed by each subsequent operator on that
level.

Level Operators ‘

0
NOT, HIGH, LOW, BYTEO, BYTEL, BYTE2, BYTE3, WORDO, WORD2

BIT, CODE, CONST, DATA, EBIT, EDATA, ECONST, ECODE, HCONST,
HDATA, IDATA, XDATA

t BYTE, WORD, DWORD, NEAR, FAR
+ (unary), — (unary)
*, [/, MOD
+ -
SHR, SHL
AND, OR, XOR
10 >=, <=, =, <>, <, >, GTE, LTE, EQ, NE, LT, GT

w N e
=

© 00 N o 0o b

Expressions

An expression is a combination of operands and operators that must be
calculated by the assembler. An operand with no operators is the simplest form
of an expression. An expression can be used in most places where an operand is
required.

Expressions have a number of attributes that are described in the following
sections.

T New features in the A251 assembler and the MCS 251 architecture

38 Chapter 3. Writing Assembly Programs

Expression Classes

Expressions are assigned classes based on the operands that are used. The
following classes apply to expressions:

Expression Class Description ‘
N NUMB A classless number.

C ADDR A CODE address symbol.

D ADDR A DATA address symbol.

| ADDR An IDATA address symbol.

X ADDR An XDATA address symbol.
B ADDR A BIT address symbol.

CO ADDR ft A CONST address symbol.
EC ADDR t An ECONST address symbol.
CE ADDR ft An ECODE address symbol.
ED ADDR t An EDATA address symbol.
EB ADDR t An EBIT address symbol.

HD ADDR ft An HDATA address symbol.
HC ADDR ft An HCONST address symbol.

Typically, expressions are assigned the class NUMBER because they are
composed only of numeric operands. You can assign a class to an expression
using a class operand. An address symbol value gets automatically the class
from the segment where it is defined. When an value has a class, a few rules
apply to how expressions are formed:

1. The result of a unary operation has the same class as its operand.
2. The result of all binary operations except + and — will be a NUMBER type.

3. If only one of the operands of an addition or subtraction operation has a class,
the result will have that class. If both operands have a class, the result will be
a NUMBER.

This means that a class value (i.e. an addresses symbol) plus or minus a number
(or a number plus a class value) give a value with class.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 39

Examples

data_address - 10 gives a data_address val ue
10 + edat a_address gives an edata_address val ue
(dat a_address - data_address) gives a cl assl ess nunber
code_address + (data_address - data_address) gives a code_address val ue

Expressions that have a type of NUMBER can be used virtually anywhere.
Expressions that have a class can only be used where a class of that type is valid.

Relocatable Expressions

Relocatable expressions are so named because they contain a reference to a

relocatable or external symbol. These types of expressions can only be partially 3
calculated by the assembler since the assembler does not know the final location

of relocatable segments. The final calculations are performed by the linker.

A relocatable expression normally contains only a relocatable symbol, however,
it may contain other operands and operators as well. A relocatable symbol can
be modified by adding or subtracting a constant value.
Examples for valid relocatable expression

relocatable_symbol + absolute_expression

relocatable_symbol - absolute_expression

absolute_expression + relocatable_symbol

There are two basic types of relocatable expressions: simple relocatable
expressions and extended relocatable expressions.

Simple Relocatable Expressions

Simple relocatable expressions contain symbols that are defined in a relocatable
segment. Segment and external symbols are not allowed in simple relocatable
expressions.

T New features in the A251 assembler and the MCS 251 architecture

40

Chapter 3. Writing Assembly Programs

Simple relocatable expression can be used in four contexts:

1. Asan operand to the ORG directive.

2. As an operand to a symbol definition directive (i.e. EQU, SET)
3. As an operand to a data initialization directive (DB, DW or DD)
4. As an operand to a machine instruction

Examples for simple relocatable expressions

REL1 + ABS1 * 10

REL2 - ABS1
REL1 + (REL2 - REL3) assum ng REL2 and REL3 refer to the sanme segnent.

Invalid form of simple relocatable expressions

+ rel ocatabl e val ue may not be nultiplied.
REL1 + ABS1) * 10 | bl | b Itiplied
- this is a general rel ocatabl e expression
EXT1 - ABS1 his i | | bl i
REL1 + REL2 you cannot add rel ocat abl e synbol s.

Extended Relocatable Expressions

The extended relocatable expressions have generally the same rules that apply to
simple relocatable expressions. Segment and external symbols are allowed in
extended relocatable expressions. Extended relocatable expression can be used
only in statements that generate code as operands; these are:

As an operand to a data initialization directive (DB, DW or DD)

As an operand to a machine instruction

Examples for extended relocatable expressions

REL1 + ABSL * 10
EXT1 - ABS1
LOW (REL1 + ABSL1)
WORD2 (SEGL)

Invalid form of simple relocatable expressions

(SEGL + ABS1) * 10 rel ocatabl e value may not be multiplied.
(EXT1 - REL1) you can add/ subtract only absolute quantities
LOW (REL1) + ABS1 LOWV may be applied only to the

final rel ocatabl e expression

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 41

Chapter 4. Assembler Directives

This part describes the assembler directives. It shows how to define symbols and
how to control the placement of code and data in program memory.

Introduction

The A251 assembler has several directives that permit you to define symbol
values, reserve and initialize storage, and control the placement of your code.

The directives should not be confused with instructions. They do not produce
executable code, and with the exception of the DB, DW and DD directives, they
have no direct effect on the contents of code memory. These directives change
the state of the assembler, define user symbols, and add information to the object
file.

The directives are divided into the following categories:

Segment Control
Generic Segments: SEGMENT, RSEG
Absolute Segments: CSEG, DSEG, BSEG, ISEG, XSEG

Symbol Definition

Generic Symbols: EQU, SET

Address Symbols: BIT,.CODE, DATA, IDATA, XDATA
Text Replacement: LIT *

Memory Initialization
DB, DW, DD f*

Memory Reservation
DBIT, DS, DSB 1, DSW t,DSD t

Procedure Declaration
PROC/ENDP T, LABEL ft

Program Linkage
PUBLIC, EXTRN/EXTERN t, NAME

Address Control
ORG, EVEN T, USING

T New features in the A251 assembler and the MCS 251 architecture

42

Chapter 4. Assembler Directives

Others
END

The A251 assembler is a two-pass assembler. In the first pass, symbols values
are determined, and in the second, forward references are resolved, and object

Segment Controls

A segment is a block of code or data memory the assembler creates from code or
data in an 8051 assembly source file. How you use segments in your source
modules depends on the complexity of your application. Smaller applications
need less memory and are typically less complex than large multi-module
applications.

The 8051 is a architecture CPU with specific memory areas. You use segments
to locate program code, constant data, and variables in these areas.

Location Counter

A251 maintains a location counter for each segment. The location counter is a
pointer to the address space of the active segment and represents an offset for
generic segments or the actual address for absolute segments. When a segment
is first activated, the location counter is set to 0. The location counter is changed
after each instruction by the length of the instruction. The memory initialization
and reservation directives (i.e. DS, DB or DBIT) change the value of the location
counter as memory is allocated by these directives. The ORG directive sets a
new value for the location counter. If you change the active segment and later
return to that segment, the location counter is restored to its previous value.
Whenever the assembler encounters a label it assigns the current value of the
location counter and the type of the current segment to that label.

The dollar sign ($) indicates the value of the location counter in the active
segment. When you use the $ symbol, keep in mind that its value changes with
each instruction, but only after that instruction has been completely evaluated. If

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 43

you use $ in an operand to an instruction or directive, it represents the address of
the first byte of that instruction.

The following sections describe the different types of segments.

Generic Segments

Generic segments have a name and a class as well as other attributes. Generic
segments with the same name but from different object modules are considered
to be parts of the same segment and are called partial segments. These segments
are combined at link time by the linker/locator.

Generic segments are created using the SEGMENT directive. You must specify
the name of the segment, the segment class, and an optional relocation type and
alignment type when you create a relocatable segment.

Example
MYPROG ~ SEGVENT CODE

defines a segment named MyPROG with a memory class of cobe. This means
that data in the MyPROG segment will be located in the code or program area of

declare generic segments.

Once you have defined a relocatable segment name, you must select that segment
using the RSEG directive. When RSEG is used to select a segment, that
segment becomes the active segment that A251 uses for subsequent code and
data until the segment is changed with RSEG or with an absolute segment
directive.

Example
RSEG ~ MYPROG

will select the MYPROG segment that is defined above.

Typically, assembly routines are placed in generic segments. If you interface
your assembly routines to C, all of your assembly routines must reside in
separate generic segments and the segment names must follow the standards
used by C51. Refer to the C51 Compiler User’s Guide or the C251 Compiler
User’s Guide for more information on interfacing assembler programs to C.

T New features in the A251 assembler and the MCS 251 architecture

44

Chapter 4. Assembler Directives

Stack Segment

The 8051 and MCS 251 architecture uses a hardware stack to store return
addresses for CALL instructions and also for temporary storage using the PUSH
and POP instructions. An 8051 application that uses these instructions must
setup the stack pointer to an area of memory that will not be used by other
variables.

For the 8051 a stack segment must be defined and space must be reserved as
follows.

STACK SEGVENT | DATA
RSEG STACK ; select the stack segnent
DS 10h ; reserve 16 bytes of space

Then, you must initialize the stack pointer early in your program.

CSEG AT 0 ; RESET Vect or
JWP STARTUP ; Junp to startup code
STARTUP: ; code executed at RESET
MoV SP, #STACK - 1 ; load Stack Pointer

For the MCS 215 a stack segment must be defined and space must be reserved as
follows.

STACK SEGVENT EDATA
RSEG STACK ; select the stack segnent
DS 10h ; reserve 16 bytes of space

Then, you must initialize the stack pointer early in your program.

CSEG AT 0 ; RESET Vect or
JWP STARTUP ; Junp to startup code
STARTUP: ; code executed at RESET
MoV DR60, #STACK - 1 ; load Stack Pointer

If you are interfacing assembly routines to C, you probably do not need to setup
the stack. This is already done for you in the C startup code.

Absolute Segments

Absolute segments reside in a fixed memory location. Absolute segments are
created using the CSEG, DSEG, XSEG, ISEG, and BSEG directives. These
directives allow you to locate code and data or reserve memory space in a fixed
location. You use absolute segments when you need to access a fixed memory

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 45

location or when you want to place program code or constant data at a fixed
memory address. Refer to the CSEG, DSEG, ISEG, XSEG, ISEG directives
for more information on how to declare absolute segments.

After reset, the 8051 begins program executing at CODE address 0. The 251
starts execution at address FF0000. Some type of program code must reside at
this address. You can use an absolute segment to force program code into this
address. The following example is used in the C51 startup routines to branch
from the reset address to the beginning of the initialization code.

CSEG AT O
RESET_VEC: LIMP STARTUP

The program code that we place at address 0000h (for 251 at address FFO000h)
with the CSEG AT 0 directive performs a jump to the STARTUP label.

A251 supports absolute segment controls for compatibility to A51. A251
translates the CSEG, DSEG, XSEG, ISEG and BSEG directives to a generic
segment directive.

Default Segment

By default, A251 assumes that the CODE segment is selected and initializes the
location counter to 0000h (FFO000h) when it begins processing an assembly
source module. This allows you to create programs without specifying any
relocatable or absolute segment directives.

T New features in the A251 assembler and the MCS 251 architecture

46 Chapter 4. Assembler Directives

SEGMENT

The SEGMENT directive is used to declare a generic segment. A relocation
type and a allocation type may be specified in the segment declaration. The
SEGMENT directive is specified using the following format:

segnent SEGMVENT cl ass rel octype al | octype
where
segment is the symbol name to assign to the segment. this symbol

name is referred by the following RSEG directive. The
segment symbol name can be used also in expressions to
represent the base or start address of the combined segment
as calculated by the Linker/Locator.

cl ass is the memory class to use for the specified segment. The
class specifies the memory space for the segment. See the
table below for more information.

rel octype is the relocation type for the segment. This determines
what relocation options may be performed by the
Linker/Locator. Refer to the table below for more
information.

al | octype is the allocation type for the segment. This determines what
relocation options may be performed by the Linker/Locator.
Refer to the table below for more information.

Class

The name of each segment within a module must be unique. However, the linker
will combine segments having the same segment type. This applies to segments
declared in other source modules as well.

class specifies the memory class space for the segment. The A251 differs
between basic classes and user defined classes. The class is used by the
linker/locator to access all the segments which belong to that class.

The basic classes are listed below:

Basic Class Description ‘

BIT BIT space (address 20H .. 2FH).

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 47

Basic Class Description ‘

CODE CODE space (default for 251 address OFFO000H .. OFFFFFFH).
CONST t CONST space; same as CODE but for constant only; access via MOVC.

DATA DATA space (address 0 to 7FH & SFR registers).

EBIT T Extended 251 bit space (address 20H .. 7FH)

EDATA T EDATA space (address 0 .. OFFFFH).
ECONST *t ECONST space; same as EDATA but for constants; (address 0 .. OFFFFH).
IDATA IDATA space (address 0 to OFFH).
ECODE *t Entire 251 address space for program code.
HCONST t Entire 251 address space for constants; access via MOV @DRKk.
HDATA t Entire 251 address space for data; access via MOV @DRKk.
XDATA XDATA space (default for 251 address 10000H .. 1FFFFH); access via MOVX.

User-defined Class Names T

User-defined class names are composed for a basic class name plus an extension. 4
With user-defined class names you can access the same address space as with the

basic class name. The advantage is that you can reference with the user defined

class name all segment names which that name and direct them at the

linker/locator level to a specific physical address. User-defined class names must

be enclosed in quotation marks ().

Examples

segl SEGVENT ' NDATA_FLASH
seg2 SEGVENT ' HCONST_BI Tl MAGE'
seg3 SEGVENT ' DATAL'

Relocation Type

The optional relocation type defines the relocation operation that may be
performed by the Linker/Locator. The following table lists the valid relocation

types:

Relocation Type Description

AT address Specifies an absolute segment. The segment will be placed at the
specified address.

BITADDRESSABLE Specifies a segment which will be located within the bit addressable

memory area (20H to 2FH in DATA space). BITADDRESSABLE is
only allowed for segments with the class DATA that do not exceed
16 bytes in length.

T New features in the A251 assembler and the MCS 251 architecture

48 Chapter 4. Assembler Directives

Relocation Type Description ‘
INBLOCK Specifies a segment which must be contained in a 2048Byte block.
This relocation type is only valid for segments with the class CODE.
INPAGE Specifies a segment which must be contained in a 256Byte page.
OFFS offset t Specifies an absolute segment. The segment will be placed at the

start address of the memory class plus the specified offset. The
advantage compare to the AT relocation type is, that the start
address of the memory class can be defined at Linker/Locator level.
Refer to the MCS 251 Utilities User’s Guide for more information.

OVERLAYABLE Specifies that the segment can share memory with other segments.
Segments declared with this relocation type can be overlaid with
other segments which are also declared with the OVERLAYABLE
relocation type. When using this relocation type, the segment name
must be declared according to the C251, C51 or PL/M-51 segment
naming rules. Refer to the C51 Compiler User's Guide or the C251
Compiler User's Guide for more information.

INSEG T Specifies a segment which must be contained in a 64KByte
segment.

Allocation Type

The optional allocation type defines the allocation operation that may be
performed by the Linker/Locator. The following table lists the valid allocation

types:

Allocation Type Description ‘

BIT Specify bit alignment for the segment. This is the default for all segments
with the class BIT.

BYTE t Specify byte alignment for the segment. This is the default for all
segments except of BIT.

WORD *t Specify word alignment for the segment.

DWORD ft Specify dword alignment for the segment.

PAGE Specify a segment whose starting address must be on a 256Byte page
boundary.

BLOCK Tt Specify a segment whose starting address must be on a 2048Byte block
boundary.

SEG T Specify a segment whose starting address must be on a 64KByte segment
boundary.

Examples for Segment Declarations

I DS SEGVENT | DATA

Defines a segment with the name IDS and the memory class IDATA.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 49

MYSEG SEGVENT CODE AT OFF2000H

Defines a segment with the name MY SEG and the memory class CODE to be
located at address OFF2000H.

HDSEG SEGVENT HDATA | NSEG DWORD

Defines a segment with the name HDSEG and the memory class HDATA. The
segment is located within one 64KByte segment and is DWORD aligned.

XDSEG SEGVENT XDATA PAGE

Defines a segment with the name XDSEG and the memory class XDATA. The
segment is PAGE aligned, this means it starts on a 256Byte page.

HCSEG SEGVENT HCONST SEG

Defines a segment with the name HCSEG with the memory class HCONST.
The segment is SEGMENT aligned, this means it starts on a 64KByte segment.

RSEG

The RSEG directive selects a generic segment that was previously declared
using the SEGMENT directive. The RSEG directive uses the following format:

RSEG segnent

where
segment is the name of a segment that was previously defined using
the SEGMENT directive. Once selected, the specified
segment remains active until a new segment is specified.
Example
M(PRCIB SEGVENT CODE ; declare a segnent
RSEG MYPROG ; select the segnent
MOV A #0
MOV PO, A

T New features in the A251 assembler and the MCS 251 architecture

50

Chapter 4. Assembler Directives

BSEG, CSEG, DSEG, ISEG, XSEG

The BSEG, CSEG, DSEG, ISEG, XSEG directive selects an absolute segment.
This directives are using the following format:

BSEG AT address defines an absolute BI T segnment.

CSEG AT address defines an absol ute CODE segnent.

DSEG AT address defines an absol ute DATA segnent.

| SEG AT address defines an absol ute | DATA segnent.

XSEG AT address defines an absol ute XDATA segnent.

where

addr ess is an optional absolute base address at which the segment

begins. The address may not contain any forward
references and must be an expression that can be evaluated
to a valid address.

CSEG, DSEG, ISEG, BSEG and XSEG select an absolute segment within the
code, internal data, indirect internal data, bit, or external data address spaces. If
you choose to specify an absolute address (by including AT addr ess), the
assembler terminates the last absolute segment, if any, of the specified segment
type, and creates a new absolute segment starting at that address. If you do not
specify an address, the last absolute segment of the specified type is continued.
If no absolute segment of this type was selected and the absolute address is
omitted, a new segment is created starting at location 0. You cannot use any
forward references and the start address must be an absolute expression.

The A251 Macro Assembler supports the BSEG, CSEG, DSEG, ISEG, and
XSEG directives for A51 compatibility. These directives are converted to
standard segments as follows:

A51 Directive Converted to A251 Segment Declaration
BSEG AT 20H.1 ?BI?modulename?n SEGMENT OFFS 20H.1
CSEG AT 1234H 2CO?modulename?n SEGMENT OFFS 1234H
DSEG AT 40H 2DT?modulename?n SEGMENT OFFS 40H
ISEG AT 80H 2ID?modulename?n SEGMENT OFFS 80H
XSEG AT 5100H 2XD?modulename?n SEGMENT OFFS 5100H

where

modul name is the name of the current assembler module

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 51
n is a sequential number incremented for every absolute
segment.

Examples

BSEG AT 30h ; absolute bit segnent @ 30h
DEC FLAG DBl T 1 ; absolute bit
I NC_FLAG DBl T 1

CSEG AT 100h ; absol ute code segnent @ 100h
PARI TY_TAB: DB 00h ; parity for 00h

DB 01h ; 01h

DB 01h ; 02h

DB 00h ; 03h

DB 01h ; FEh

DB 00h ; FFh

DSEG AT 40h ; absol ute data segnent @ 40h
TMP_A DS 2 ; absolute data word
TMP_B: DS 4

| SEG AT 40h ; abs indirect data seg @40h
TVP_I A DS 2
TMP_I B: DS 4

XSEG AT 1000h

CEMNAME: DS 25 ; abs external data
PRDNAME: DS 25
VERSI ON: DS 25

Symbol Definition

abs external data seg @ 1000h

The symbol definition directives allow you to create symbols that can be used to
represent registers, numbers, and addresses.

Symbols defined by these directives may not have been previously defined and
may not be redefined by any means. The SET directive is the only exception to
this.

EQU, SET

The EQU and SET directive assigns a numeric value or register symbol to the
specified symbol name. Symbols defined with EQU may not have been
previously defined and may not be redefined by any means. The SET directive
allows later redefinition of symbols. Statements involving the EQU or SET
directive are formatted as follows:

T New features in the A251 assembler and the MCS 251 architecture

52

Chapter 4. Assembler Directives

synbol EQU expr essi on

synbol EQU register

synbol SET expr essi on

synbol SET register

where

synbol is the name of the symbol to define. The expression or

register specified in the EQU or SET directive will be
substituted for each occurrence of synbol that is used in
your assembly program.

expr essi on IS @ numeric expression which contains no forward
references, or a simple relocatable expression.

register is one of the following register names: A, RO, R1, R2, R3,
R4, R5, R6, or R7.

Symbols defined with the EQU or SET directive may be used anywhere in
operands, expressions, or addresses. Symbols that are defined as a register name
can be used anywhere a register is allowed. A251 replaces each occurrence of
the defined symbol in your assembly program with the specified numeric value
or register symbol.

Symbols defined with the EQU directive may not be changed or redefined. You
cannot use the SET directive if a symbol was previously defined with EQU and
you cannot use the EQU directive if a symbol which was defined with SET.

Examples

LIMT EQU 1200

VALUE EQU LIMT - 200 + 'A
SERI AL EQU SBUF

ACCU EQU A

COUNT EQU RS

VALUE SET 100

VALUE SET VALUE / 2
COUNTER SET RL

TEMP SET COUNTER

TEMP SET VALUE * VALUE

CODE, DATA, IDATA, XDATA

The BIT, CODE, DATA, IDATA, and XDATA directives assigns an address
value to the specified symbol. Symbols defined with the BIT, CODE, DATA,

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 53

IDATA, and XDATA directives may not be changed or redefined. The format
of theses directives is:

synbol BI T bi t _address defines a BIT synbol
synbol CODE code_addr ess defines a CODE synbol
synbol DATA dat a_addr ess defines a DATA synbol
synbol | DATA i dat a_addr ess defines an | DATA synbol
synbol XDATA xdat a_addr ess defines a XDATA synbol
where
synbol is the name of the symbol to define. The symbol name can
be used anywhere an address of this memory class is valid.
bi t _address is the address of a bit in internal data memory in the area
20H .. 2FH or a bit address of an 8051 bit-addressable SFR.
code_addr ess is a code address in the range 0000H .. OFFFFH.
dat a_addr ess is a data memory address in the range 0 to 127 or a special

function register (SFR) address in the range 128 .. 255.

i dat a_addr ess is an idata memory address in the range 0 to 255.

xdat a_addr ess is an xdata memory address in the range 0 to 65535.

Example

DATA_SEG SEGVENT Bl TADDRESSABLE

RSEG DATA SEG ; a bitaddressable rel _seg
CTRL: DS 1 ; a l-byte variable (CTRL)
ALARM BI T CTRL. 0 ; bit in a relocatable byte
SHUT BI T ALARMF1 ; the next bit

ENABLE_FLAG BI T 60H ; an absolute bit
DONE_FLAG BI T 24H. 2 ; an absolute bit

P1_BI T2 EQU 90H. 2 ; a SFR bit

RESTART CCDE 00H

I NTVEC 0 CCDE RESTART + 3

I NTVEC 1 CCDE RESTART + OBH

I NTVEC 2 CCDE RESTART + 1BH

SERBUF DATA SBUF ; redfinition of the SFR SBUF
RESULT DATA 40H

RESULT2 DATA RESULT + 2

PORT1 DATA 90H ; a SFR synbol

BUFFER | DATA 60H

BUF_LEN EQU 20H

BUF_END | DATA BUFFER + BUF_LEN — 1

XSEGL SEGVENT XDATA

RSEG XSEGL

DTI M DS 6 ;reserve 6-bytes for DTIM
TI ME XDATA DTIM+ 0

DATE XDATA DTIM + 3

T New features in the A251 assembler and the MCS 251 architecture

54

Chapter 4. Assembler Directives

LIT 1

The LIT directive provides a simple text substitution facility. The LIT directive
has the following format:

synbol LIT "literal string’

synbol LIT “literal string“

where

synbol is the name of the symbol to define. The literal string

specified in the LIT directive will be substituted for each
occurrence of synbol that is used in your assembly
program.

literal string isanumeric expression which contains no forward
references, or a simple relocatable expression.

Every time the synbol is encountered, it will be replaced by the l'i t eral

stri ng assigned to symbol name. The symbol name follows the same rules as
other identifiers, that is, a literal name is not encountered if it not forms a
separate token. If a substring is to be replaced, then symbol must be enclosed in
braces: TEXT{synbol }. The assembler listing shows the expanded lines where
literals are substituted.

Example

Source text containing literals before assembly:

$I NCLUDE (REGE1. | NO)

REGL LI'T "Rl

NUM LI'T "AL

DBYTE LIT " DATA BYTE"
FLAG LI'T " ACC. 3'

?PR?MOD SEGVENT CODE
RSEG ?PR?MOD

MOV REGL, #5
SETB FLAG
JB FLAG, LAB_{ NUM
PUSH DBYTE 0
LAB_{ NUM :
END

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler

55

Assembler listing from previous example:

000000 7E1005
000003 D2E3
000005 20E300
000008 C000
00000A

+1

+1

$1 NCLUDE (REGE1. | NO)

$RESTORE

REGL LI'T
NUM LI'T
DBYTE LIT
FLAG LI'T

"R
CAL

" DATA BYTE"
" ACC. 3'

?PR?MOD SEGVENT CODE
RSEG ?PR?MOD

MOV
SETB
JB
PUSH
LAB_Al:

END

RL, #5
ACC. 3

ACC. 3, LAB_A1
DATA BYTE 0

T New features in the A251 assembler and the MCS 251 architecture

56 Chapter 4. Assembler Directives

Memory Initialization
The memory initialization directives are used to initialize code or const space in

either word, dword or byte units. The memory image starts at the point indicated
by the current value of the location counter in the currently active segment.

DB

The DB directive initializes code memory with 8-bit byte values. The DB
directive has the following format:

| abel : DB expression , expression
where
| abel is the symbol that is given the address of the initialized
memory and
expressi on is a byte value. Each expressi on may be a symbol, a

character string, or an expression.

The DB directive can only be specified within a code or const segment. If the
DB directive is used in a different segment, A251 will generate an error
message.

Example

REQUEST: DB ' PRESS ANY KEY TO CONTI NUE', O
TABLE: DB 0,1,8,'A,'0", LONTABLE),";"
DB

ZERO, 0,
CASE_TAB: LOW REQUEST), LOW TABLE), LOWZERO)

DW

The DW directive initializes code memory with 16-bit word values. The DW
directive has the following format:

| abel : DW expression , expression

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 57

where

| abel is the symbol that is given the address of the initialized
memory and

expression is the initialization data. Each expressi on may contain a

symbol, a character string, or an expression.

The DW directive can only be specified within a code or const segment. If the
DW directive is used in a different segment, A251 will generate an error

message.

Example

TABLE: DW TABLE, TABLE + 10, ZERO

ZERQ DW 0

CASE_TAB: DW CASEO, CASEl, CASE2, CASE3, CASE4
W $

The DD directive initializes code memory with 32-bit double word values. The
DD directive has the following format:

| abel : DD expression , expression
where
| abel is the symbol that is given the address of the initialized
memory and
expression is the initialization data. Each expressi on may contain a

symbol, a character string, or an expression.

The DD directive can only be specified within a code or const segment. If the
DD directive is used in a different segment, A251 will generate an error

message.

Example

TABLE: DD TABLE, TABLE + 10, ZERO
DD $

ZERQ DD 0

LONG_VAL: DD 12345678H, OFFFFFFFFH, 1

T New features in the A251 assembler and the MCS 251 architecture

58 Chapter 4. Assembler Directives

Memory Reservation
The memory reservation directives are used to reserve space in either word,

dword, byte, or bit units. The space reserved starts at the point indicated by the
current value of the location counter in the currently active segment.

DBIT

The DBIT directive reserves space in a bit or ebit segment. The DBIT directive
has the following format:

| abel : DBI T expression
where
| abel is the symbol that is given the address of the reserved

memory. The label is a symbol of the type BIT and gets the
current address value and the memory class of the active
segment. The label can only be used where a symbol of this
type is allowed.

expression is the number of bits to reserve. The expressi on cannot
contain forward references, relocatable symbols, or external
symbols.

The DBIT directive reserves space in the bit segment starting at the current
address. The location counter for the bit segment is increased by the value of the
expr essi on. You should note that the location counter for the bit segment
references bits and not bytes.

NOTE

The A251 assembler is a two—pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DBIT directive may not contain forward

references.

Example

ON_FLAG DBl T 1 ;reserve 1 bit
OFF_FLAG DBI T 1

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 59

DS

The DS directive reserves a specified number of bytes in a memory space. The
DS directive has the following format:

| abel : DS expression
where
| abel is the symbol that is given the address of the reserved

memory. The label is a typeless number and gets the current
address value and the memory class of the active segment.
The label can only be used where a symbol of this type is
allowed.

expression is the number of bytes to reserve. The expressi on cannot
contain forward references, relocatable symbols, or external
symbols.

The DS directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expressi on. The sum
of the location counter and the value of the specified expressi on should not
exceed the limitations of the current address space.

NOTE

The A251 assembler is a two—pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DS directive may not contain forward
references.

Example

GAP: DS (($ + 16) AND OFFFOH) — $
DS 20

TI ME: DS 8

DSB

The DSB directive reserves a specified number of bytes in a memory space. The
DSB directive has the following format:

| abel : DSB expression

T New features in the A251 assembler and the MCS 251 architecture

60

Chapter 4. Assembler Directives

where

| abel is the symbol that is given the address of the reserved
memory. The label is a symbol of the type BYTE and gets
the current address value and the memory class of the active
segment. The label can only be used where a symbol of this
type is allowed.

expression is the number of bytes to reserve. The expressi on cannot
contain forward references, relocatable symbols, or external
symbols.

The DSB directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expression. The sum
of the location counter and the value of the specified expression should not
exceed the limitations of the current address space.

NOTE

The A251 assembler is a two—pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DSB directive may not contain forward
references.

Example

DAY: DSB 1
MONTH: DSB 1
HOUR: DSB 1
M N DSB 1
DSW T

The DSW directive reserves a specified number of words in a memory space.
The DSW directive has the following format:

| abel : DSW expressi on
where
| abel is the symbol that is given the address of the reserved

memory. The label is a symbol of the type WORD and gets
the current address value and the memory class of the active

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 61

segment. The label can only be used where a symbol of this
type is allowed.

expressi on is the number of bytes to reserve. The expressi on cannot
contain forward references, relocatable symbols, or external
symbols.

The DSW directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expression. The sum
of the location counter and the value of the specified expression should not
exceed the limitations of the current address space.

NOTE

The A251 assembler is a two—pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DSW directive may not contain forward
references.

Example
YEAR DSW 1
DAYi nYEAR DSW 1
DSD t

The DSD directive reserves a specified number of double words in a memory
space. The DSD directive has the following format:

| abel : DSD expressi on
where
| abel is the symbol that is given the address of the reserved

memory. The label is a symbol of the type DWORD and
gets the current address value and the memory class of the
active segment. The label can only be used where a symbol
of this type is allowed.

expression is the number of bytes to reserve. The expressi on cannot
contain forward references, relocatable symbols, or external
symbols.

T New features in the A251 assembler and the MCS 251 architecture

62

Chapter 4. Assembler Directives

The DSD directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expressi on. The sum
of the location counter and the value of the specified expressi on should not
exceed the limitations of the current address space.

NOTE

The A251 assembler is a two—pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DSD directive may not contain forward
references.

Example
SEC_CNT: DSD 1
LONG_ARR DSD 50

Procedure Declaration T

A251 provides procedures to implement the concept of subroutines. Procedures
can be executed in-line (control “falls through” to them), jumped to, or invoked
by a CALL. Calls are recommended as a better programming practice.

PROC /ENDP t

The PROC / ENDP directive pair is used to define a label for a sequence of
machine instructions called a procedure. A procedure is called within the same
physical 64KByte segment (LCALL or ACALL = NEAR) or from a different
64kbyte segment (ECALL = FAR). A procedure may have either the type
NEAR or FAR. Unless procedures known from high level languages, the
scoping of identifiers is different in the assembly language. Identifiers must be
unique in A251 because the visibility is module wide. The format of the
PROC/ENDRP directives is:

nanme PROC [type]

; procedure text

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 63

RET
name ENDP
where
nane is the name of the procedure.
type specifies the type of the procedure, and must be one of the
following:
Description

none The type defaults to NEAR

NEAR Defines a near procedure; called with LCALL or ACALL.

FAR Defines a far procedure; called with ECALL.

You should specify FAR if the procedure will be called from different 64KByte
segment. A procedure normally ends with a RET instruction. The software
instruction RET will be automatically converted to an appropriate machine
return instruction, that is:

RET from a near procedure.

ERET from a far procedure.

Example

P100 PROC NEAR
RET ; near return
ENDP

P200 PROC FAR
RET ; far return (ERET)
ENDP

P300 PROC NEAR
CALL P100 ; LCALL
CALL P200 ; ECALL
RET ; near return
ENDP
END

T New features in the A251 assembler and the MCS 251 architecture

64

Chapter 4. Assembler Directives

LABEL t

A label is a symbol name for an address location in a segment. The LABEL
directive can be used to define a program label. The label name can be followed
by a colon, but it is not required. The label inherits the attributes of the program
or code segment currently active. The LABEL directive may therefore never be
used outside the scope of a program segment. The syntax of the LABEL
directive is:

nane[:] LABEL [type]
where
nane is the name of the label.
type specifies the type of the label, and must be one of the
following:
Description

none The type defaults to NEAR

NEAR Defines a near label.

FAR Defines a far label; use ECALL or EJMP.

You should specify FAR if the label will be referenced from a different 64KByte
segment. NEAR lets you refer to this label for the current 64KByte segment.

Example
RSEG ECODE_SEGL ; activate an ECODE segnent
ENTRY: LABEL FAR ; entry point
RSEG ECODE_SEG2 ; activate anot her ECODE segnent
EJMP ENTRTY ; Junp across 64KB segment

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 65

Program Linkage

Program linkage directives allow the separately assembled modules to
communicate by permitting inter-module references and the naming of modules.

PUBLIC

The PUBLIC directive lists symbols that may be used in other object modules.
The PUBLIC directive makes the specified symbols available in the generated
object module. This, in effect, publicizes the names of these symbols. The
PUBLIC directive has the following format:

PUBLI C synbol , synbol
where
synbol must be a symbol that was defined somewhere within the

source file. Forward references to symbol names are
permitted. All symbol names, with the exception of register
symbols and segment symbols, may be specified with the
PUBLIC directive. Multiple symbols must be separated
with a comma (,).

If you want to use public symbols in other source files, the EXTRN or
EXTERN directive must be used to specify that the symbols are declared in
another object module.

Example

PUBLI C PUT_CRLF, PUT_STRI NG PUT_ECS
PUBLI C ASCBI N, BI NASC
PUBLI C GETTOKEN, GETNUMBER

EXTRN / EXTERN

The EXTRN or EXTERN t directive lists symbols that are referenced in the
current source module that are actually declared in other modules. The format
for the EXTRN / EXTERN directive is as follows:

T New features in the A251 assembler and the MCS 251 architecture

66 Chapter 4. Assembler Directives

EXTRN cl ass : type (synbol , synbol ...)

EXTERN cl ass : type (synbol , synbol ...) T

where

cl ass is the memory class where the symbol has been defined and

may be one of the following: BIT, CODE, CONST f,
DATA, EBIT t, ECONST t, EDATA 1, ECODE t,
HDATA t, HCONST ft, IDATA, XDATA, or NUMBER
(to specify a typeless symbol).

type T is the symbol type of the external symbol and may be one of
the following: BYTE, WORD, DWORD, NEAR, FAR.
synbol is an external symbol name.

The EXTRN or EXTERN directive may appear anywhere in the source
program. Multiple symbols may be separated and included in parentheses
following the class and type information.

Symbol names that are specified with the EXTRN / EXTERN directive must
have been specified as public symbols with the PUBLIC directive in the source
file in which they were declared.

The Linker/Locator resolves all external symbols at link time and verifies that
the symbol class and symbol types (specified with the EXTRN / EXTERN and
PUBLIC directives) matches. Symbols with the class NUMBER matches to
every memory class.

Examples

EXTRN CODE (PUT_CRLF), DATA (BUFFER)
EXTERN CODE (Bl NASC, ASCBIN)

EXTRN NUMBER (TABLE_SI ZE)

EXTERN CODE: FAR (main) t

EXTRN EDATA: BYTE (VALUE, COUNT) t
EXTRN NCONST: DWORD (LIMT) t
NAME

The NAME directive specifies the name to use for the object module generated
for the current program. The filename for the object file is not the object module
name. The object module name is embedded within the object file. The format
for the NAME directive is as follows:

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 67

NAMVE nodul enane

where

nodul enare is the name to use for the object module and can be up to 40
characters long. The modulename must adhere to the rules
for symbol names.

If a NAME directive is not present in the source program, the object module
name will be the basename of the source file without the extension.

NOTE
Only one NAME directive may be specified in a source file.

Example
NANE PARSERMODULE

Address Control

The following directives allow the control of the address location counter or the
control of absolute register symbols.

ORG

The ORG directive is used to alter the location counter of the current active
segment and sets an new origin for statements that follow the directive. The
format for the ORG statement is as follows:

ORG expression

where

expressi on must be an absolute or simple relocatable expression and
may not have any forward references. Only absolute
addresses or symbol values of the current segment may be
used.

When an ORG statement is encountered, the assembler calculates the value of
the expression and changes the location counter for the current segment. If the
ORG statement occurs in an absolute segment, the location counter will be

T New features in the A251 assembler and the MCS 251 architecture

68

Chapter 4. Assembler Directives

assigned the absolute address value. If the ORG statement occurs in a
relocatable segment, the location counter will be assigned the offset of the
specified expression.

The ORG directive changes the location counter but does not produce a new
segment. A possible address gap may be introduced into the current segment.
With absolute segments, the location counter cannot reference an address prior
to the segment base.

NOTE

The A251 assembler is a two—pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the ORG directive may not contain forward
references.

Example

ORG 100H
ORG RESTART
ORG EXTI1

ORG ($ + 16) AND OFFFOH

EVEN ¥

The EVEN directive ensures that code or data following EVEN is aligned on a
word boundary. The assembler creates a gap of one byte if necessary. The
content of the byte gap is undefined. The EVEN directive has the following
syntax:

EVEN
Example
MYDATA SEGVENT DATA WORD ; word al i gnnent
RSEG MYDATA ; activate segnent
var 1: DSB 1 ; reserve a byte variable
EVEN ; ensure word al i gnnent
var 2: DSW 1 ; reserve a word vari abl e

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 69

USING

The USING directive specifies which register bank to use for coding the ARO
through ARY registers. The USING directive is specified as follows:

USI NG expression

where

expr essi on is the register bank number which must be a value between
0and 3.

The USING directive does not generate any code to change the register bank.
Your program must make sure the correct register bank is selected. For example,
the following code can be used to select register bank 2:

PUSH PSW ; save PSWregi ster bank
MoV PSW #(2 SHL 3) ; sel ect register bank 2

;function or subroutine body

PoP PSW ;restore PSWregister bank

The register bank selected by the USING directive is marked in the object file
and the memory area required by these registerbank reserved by the
Linker/Locator.

The value of ARO through AR7 is calculated as the absolute address of RO
through R7 in the register bank specified by the USING directive. Some 8051
instruction (i.e. PUSH / POP) only allow to use absolute register addresses. By
default the register bank 0 is assigned to the symbols ARO through AR7.

NOTE

When the EQU directive is used to define a symbol for an ARn register, the
address of the register Rn is calculated when the symbol is defined; not when it
is used. If the USING directive subsequently changes the register bank, the
defined symbol will not have the proper address of the ARn register and the
generated code is likely to fail.

T New features in the A251 assembler and the MCS 251 architecture

70 Chapter 4. Assembler Directives

Example
USI NG 3
PUSH AR2 ; Push register 2 in bank 3
USI NG 1
PUSH AR2 ; Push register 2 in bank 1

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 71

Other Directives

END

The END directive signals the end of the assembly module. Any text in the
assembly file that appears after the END directive is ignored.

The END directive is required in every assembly source file. If the END
statement is excluded, A251 will generate a fatal error message.

Example
END

T New features in the A251 assembler and the MCS 251 architecture

72 Chapter 4. Assembler Directives

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 73

Chapter 5. Standard Macros

A macro is a name that you assign to one or more assembly statements. A251
provides a macro processor that enables you to define and to use macros in your
8051 assembly programs. This chapter describes some of the features and
advantages of using macros, lists the directives and operators that are used in
macro definitions, and provides a number of example macros.

When you define a macro, you provide text (usually assembly code) that you
want to associate with a macro name. Then, when you want to include the macro
text in your assembly program, you provide the name of the macro. The A251
assembler will replace the macro name with the text specified in the macro
definition.

Macros provide a number of advantages when writing assembly programs.

The frequent use of macros can reduce programmer induced errors. A macro
allows you to define instruction sequences that are used repetitively
throughout your program. Subsequent use of the macro will faithfully
provide the same results each time. A macro can help reduce the likelihood
of errors introduced in repetitive programming sequences. Of course,
introduction of an error into a macro definition will cause that error to be
duplicated where the macro is used.

The scope of symbols used in a macro is limited to that macro. You do not
need to be concerned about utilizing a previously used symbol name.

Macros are well suited for the creation of simple code tables. Production of
these tables by hand is both tedious and error prone.

A macro can be thought of as a subroutine call with the exception that the code
that would be contained in the subroutine is included in—line at the point of the
macro call. However, macros should not be used to replace subroutines. Each
invocation of a subroutine only adds code to call the subroutine. Each
invocation of a macro causes the assembly code associated with the macro to be
included in—line in the assembly program. This can cause a program to grow
rapidly if a large macro is used frequently. In a static environment, a subroutine
is the better choice, since program size can be considerably reduced. But in time
critical, dynamic programs, macros will speed the execution of algorithms or
other frequently called statements without the penalty of the procedure calling
overhead.

T New features in the A251 assembler and the MCS 251 architecture

74 Chapter 5. Standard Macros

Use the following guidelines when deciding between macros or subroutines:
Subroutines are best used when certain procedures are frequently executed or
when memory space usage must be kept to a minimum.

Macros should be used when maximum processor speed is required and when
memory space used is of less importance.

Macros can also be used to make repetitive, short assembly blocks more
convenient to enter.

Directives

A251 provides a number of directives that are used specifically for defining
macros. These directives are listed in the following table:

Directive Description

ENDM Ends a macro definition.
EXITM Causes the macro expansion to immediately terminate.
IRP Specifies a list of arguments to be substituted, one at a time, for a specified
parameter in subsequent lines.
IRPC Specifies an argument to be substituted, one character at a time, for a
specified parameter in subsequent lines.
LOCAL Specifies up to 16 local symbols used within the macro.
MACRO Begins a macro definition and specifies the name of the macro and any

parameters that may be passed to the macro.

REPT Specifies a repetition factor for subsequent lines in the macro.

more information on these and other directives.

Defining a Macro

Macros must be defined in the program before they can be used. A macro
definition begins with the MACRO directive which declares the name of the
macro as well as the formal parameters. The macro definition must be
terminated with the ENDM directive. The text between the MACRO and
ENDM directives is called the macro body.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler

75

Example
VWAI T MACRO macro definition
REPT generate X NOP instructions
NOP
ENDM end REPT
ENDM end MACRO

In this example, wal T is the name of the macro and X is the only formal

parameter.

In addition to the ENDM directive, the EXITM directive can be used to
immediately terminate a macro expansion. When an EXITM directive is
detected, the macro processor stops expanding the current macro and resumes
processing after the next ENDM directive. The EXITM directive is useful in

conditional statements.

Example
WAI T MACRO macro definition

I F NUL X make sure X has a val ue

EXI TM if not then exit

ENDI F

REPT generate X NOP instructions

NOP

ENDM end REPT

ENDM end MACRO

Parameters

Up to 16 parameters can be passed to a macro in the invocation line. Formal
parameter names must be defined using the MACRO directive.

Example
MNAVME MACRO P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16

defines a macro with 16 parameters. Parameters must be separated by commas
both in the macro definition and invocation. The invocation line for the above
macro would appear as follows:

MNAME A B,C D, EF,GHI,J,KL,MNOQP

where A, B, C, ... O P are parameters that correspond to the format parameter
names P1, P2, P3, ... P15, P16.

T New features in the A251 assembler and the MCS 251 architecture

76

Chapter 5. Standard Macros

Null parameters can be passed to a macro. Null parameters have the value
NULL and can be tested for using the NUL operator described later in this
chapter. If a parameter is omitted from the parameter list in the macro
invocation, that parameter is assigned a value of NULL.

Example
MNAME A, ,C L, E ,G,I,,K ,M,Q

P2, P4, P6, P8, P10, P12, P14, and P16 will all be assigned the value NULL
when the macro is invoked. You should note that there are no spaces between
the comma separators in the above invocation line. A space has an ASCII value
of 20h and is not equivalent to a NULL.

Labels

You can use labels within a macro definition. By default, labels used in a macro
are global and if the macro is used more than once in a module, A251 will
generate an error.

Example

M5-DOS MACRO ASSEMBLER A251
OBJECT MODULE PLACED I N M GLAB. OBJ
ASSEMBLER | NVOKED BY: A251 M GLAB. A251

LoC ©oBJ LI NE SOURCE
1 GLABEL MACRO
2 LOOP: NOP
3 JWP LOoP
4 ENDM
5)
6
7 GLABEL
0000 00 8+1 LOOP: NOP
0001 80FD 9+1 JwP LooP
10 GLABEL

11+1 LOOP: NOP
* k% N
*** ERROR #9, LINE #11, ATTEMPT TO DEFI NE AN ALREADY DEFI NED LABEL
0003 80FB 12+1 JWP LOOP

15 END

Labels used in a macro should be local labels. Local labels are visible only
within the macro and will not generate errors if the macro is used multiple times

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 77

in one source file. You can define a label (or any symbol) used in a macro to be
local with the LOCAL directive. Up to 16 local symbols may be defined using
the LOCAL directive.

Example

CLRVEM MACRO ADDR, LEN
LOCAL LooP
MOV R7, #LEN
MOV RO, #ADDR
MOV A #0

LOOP: VoY, @0, A
INC RO
DINZ R7, LOCP
ENDM

In this example, the label Loor is local because it is defined with the LOCAL
directive. Any symbol that is not defined using the LOCAL directive will be a
global symbol.

A251 generates an internal symbol for local symbols defined in a macro. The
internal symbol has the form 2?0000 and is incremented each time the macro is
invoked. Therefore, local labels used in a macro are unique and will not
generate errors.

Repeating Blocks

A251 provides the ability to repeat a block of text within a macro. The REPT,
IRP, and IRPC directives are used to specify text to repeat within a macro.
Each of these directives must be terminated with an ENDM directive.

REPT

The REPT directive will cause a block of text to be repeated a fixed number of
times. The following macro:

DELAY MACRO ;macro definition
REPT 5 ;insert 5 NOP instructions
NOP
ENDM ;end REPT bl ock
ENDM ;end macro definition

will insert 5 NOP instructions when it is invoked.

T New features in the A251 assembler and the MCS 251 architecture

78

Chapter 5. Standard Macros

Example

IRP

The IRP directive will repeat a block once for each argument in a specified list.
A specified parameter in the text block will be replaced by each argument. The
following macro:

CLRREGS MACRO ; macro definition
IRP RNUM <RO, R1, R2, R3, R4, R5, R6, R7>
MOV RNUM #0

ENDM ; end IRP
ENDM ; end MACRO
replaces the argument RNUM with RO, R1, R2, ... R7 and will generate the

following code when invoked:

IRPC

The IRPC directive will repeat a block once for each character in the specified
argument. A specified parameter in the text block will be replaced by each
character. The following macro:

DEBUGOUT MACRO ; macro definition
| RPC CHR, <TEST>
JNB T, $; wait for xmtter
CLR TI
MOV A # CHR
MOV SBUF, A ; xmit CHR
ENDM ; end | RPC
ENDM ; end MACRO

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 79

replaces the argument cHR with the characters T, E, s, and T and will
generate the following code when invoked:

JNB TI, $; WALT FOR XM TTER
CLR TI

MV A#T

MOV SBUF,A ; XMT T

JNB TI, $; WAIT FOR XM TTER
CLR TI

MV A#FE

MOV SBUF, A ; XMT E

JNB TI, $; WALT FOR XM TTER
CLR TI

MV A#S

MOV SBUF,A ; XMT S

JNB TI, $; WALT FOR XM TTER
CLR TI

MV A#T

MOV SBUF,A ; XMT T

Nested Definitions

Macro definitions can be nested up to nine levels deep.

Example
L1 MACRO
LOCAL L2
L2 MACRO
INC RO
ENDM
VoY, RO, #0
L2
ENDM

The macro L2 is defined within the macro definition of L1. Since the LOCAL
directive is used to define L2 as a local symbol, it is not visible outside L1. If
you want to use L2 outside of L1, exclude L2 from the LOCAL directive
symbol list.

Invocation of the L1 macro generates the following:

MoV RO, #0
I NC RO

T New features in the A251 assembler and the MCS 251 architecture

80

Chapter 5. Standard Macros

Nested Repeating Blocks

You can also nest repeating blocks, specified with the REPT, IRP, and IRPC

directives.

Example

PORTOUT MACRO
I RPC
REPT
NCP
ENDM
MoV
MoV
ENDM
ENDM

CHR, <Hell o>
4

A # CHR
PO, A

; macro definition
; wait for 4 cycles
; end REPT

; wite CHR to PO

; end | RPC
; end MACRO

This macro nests a REPT block within an IRPC block.

Recursive Macros

Macros can call themselves directly or indirectly (via another macro). However,
the total number of levels of recursion may not exceed nine. A fatal error will be
generated if the total nesting level is greater than nine. The following example
shows a recursive macro that is invoked by a non-recursive macro.

RECURSE MACRO
I F X<>0
RECURSE
ADD
ENDI F
ENDM
SUWM MACRO
MOV
IF NUL X
EXI TM
ENDI F
I F X=0
EXI TM
ENDI F
RECURSE X
ENDM

X

9X-1
A #X

recursive nmacro

gen add a, #?

macro to sum nunbers
start with zero

exit if null argunent
exit if O argunent
sumto O

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 81

Operators

A251 provides a number of operators that may be used within a macro
definition. The following table lists the operators and gives a description of
each.

Operator Description ‘

NUL The NUL operator can be used to determine if a macro argument is NULL.
NUL generates a non—zero value if its argument is a NULL. Non—-NULL
arguments will generate a value of 0. The NUL operator can be used with an
IF control to enable condition macro assembly.

& The ampersand character is used to concatenate text and parameters.

<> Angle brackets are used to literalize delimiters like commas and blanks. Angle
brackets are required when passing these characters to a nested macro. One
pair of angle brackets is required for every nesting level.

% The percent sign is used to prefix a macro argument that should be interpreted
as an expression. When this operator is used, the numeric value of the
following expression is calculated. That value is passed to the macro instead
of the expression text.

i A double semicolon indicates that subsequent text on the line should be
ignored. The remaining text is not processed or emitted. This helps to reduce
memory usage.

! If an exclamation mark is used in front of a character, that character will be
literalized. This allows character operators to be passed to a macro as a
parameter.

NUL Operator

When a formal parameter in a macro call is omitted, the parameter is given a
value of NULL. You can check for NULL parameters by using the NUL
operator within an IF control statement in the macro. The NUL operator
requires an argument. If no argument is found, NUL returns a value of 0 to the
IF control.

For example, the following macro definition:

EXAVPLE MACRO X
I'F NUL X
EXI T™M
ENDI F
ENDM

when invoked by:

EXAVPLE

T New features in the A251 assembler and the MCS 251 architecture

82 Chapter 5. Standard Macros

will cause the I F NUL X test to pass, process the ExI TM statement, and exit the
macro expansion.

NOTE
A blank character (* *) has an ASCII value of 20h and is not equivalent to a
NULL.

& Operator

The ampersand macro operator (&) can be used to concatenate text and macro
parameters. The following macro declaration demonstrates the proper use of this

operator.
MAK_NOP_LABEL MACRO X
LABEL&X: NOP

ENDM

The MAK_NoP_LABEL macro will insert a new label and a NOP instruction for
each invocation. The argument will be appended to the text LABEL to form the
label for the line.

Example
Loc o8l LI NE SOURCE
1 MAK_NOP_LABEL ~ MACRO X
2 LABEL&X: NOP
3 ENDM
4
5
6 MAK_NOP_LABEL 1
0000 00 7+1 LABELL: NOP
8 MAK_NOP_LABEL 2
0001 00 9+1 LABEL2: NOP
10 MAK_NOP_LABEL 3
0002 00 11+1 LABEL3: NOP
12 MAK_NOP_LABEL 4
0003 00 13+1 LABEL4: NOP
14
15 END

The MAK_NOP_LABEL macro is invoked in the above example in lines 6, 8, 10,
and 12. The generated label and NOP instructions are shown in lines 7, 9, 11,
and 13. Note that the labels are concatenated with the argument that is passed in
the macro invocation.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 83

< and > Operators

The angle bracket characters (< >) are used to enclose text that should be
passed literally to macros. Some characters; for example, the comma; cannot be
passed without being enclosed within angle brackets.

The following example shows a macro declaration and invocation passing an
argument list within angle brackets.

1 FLAG CLR MACRO FLAGS
2 MoV A, #0
3 | RP F, <FLAGS>
4 MOV FLARF, A
5 ENDM
6 ENDM
7
8 DSEG
0000 9 FLAGL: DS 1
0001 10 FLA@: DS 1
0002 11 FLAG: DS 1
0003 12 FLA: DS 1
0004 13 FLAGG: DS 1
0005 14 FLAGG: DS 1
0006 15 FLAG7: DS 1
0007 16 FLAG: DS 1
0008 17 FLA&®: DS 1
18
19 CSEG
20
21 FLAG CLR <1>
0000 7400 22+1 MoV A, #0
23+1 | RP F, <1>
24+1 MOV FLARF, A
25+1 ENDM
0002 F500 26+2 MOV FLAGL, A
27 FLAG CLR <1,2, 3>
0004 7400 28+1 MoV A, #0
29+1 I RP F, <1,2,3>
30+1 MOV FLARF, A
31+1 ENDM
0006 F500 32+2 MOV FLAGL, A
0008 F501 33+2 MV FLAR, A
000A F502 34+2 MOV FLAG, A
35 FLAG CLR <1,3,5, 7>
000C 7400 36+1 MoV A, #0
37+1 I RP F, <1,3,5,7>
38+1 MOV FLARF, A
39+1 ENDM
000E F500 40+2 MOV FLAGL, A
0010 F502 41+2 MOV FLAG, A
0012 F504 42+2 MOV FLAGG, A
A

0014 F506 43+2 MOV FLAGY,

T New features in the A251 assembler and the MCS 251 architecture

84

Chapter 5. Standard Macros

In the above example, the FLAG CLR macro is declared to clear any of a number
of flag variables. The FLAGS argument specifies a list of arguments that are
used by the IRP directive in line 3. The IRP directive repeats the instruction
MOV FLAG&F, A for each parameter in the FLAGS argument.

The FLAG CLR macro is invoked in lines 21, 27, and 35. In line 21, only one
parameter is passed. In line 27, three parameters are passed, and in line 35, four
parameters are passed. The parameter list is enclosed in angle brackets so that it
may be referred to as a single macro parameter, FLAGS. The code generated by
the macro is found in lines 26, 32-34, and 40-43.

% Operator

The percent character (%6) is used to pass the value of an expression to a macro
rather than passing the literal expression itself. For example, the following
program example shows a macro declaration that requires a numeric value along
with macro invocations that use the percent operator to pass the value of an
expression to the macro.

1 OQUTPORT MACRO N

2 MOV A #N
3 MOV PO, A
4 ENDM
5
6
00FF 7 RESET_SIG EQU OFFh
0000 8 CLEAR SI G EQU 0
9
10
11 OUTPCRT 9% RESET_SI G AND NOT 11110000b)
0000 740F 12+1 MOV A #15
0002 F580 13+1 MOV PO, A
14
15 OUTPCRT 9% CLEAR SI G OR 11110000b)
0004 74F0 16+1 MOV A, #240
0006 F580 17+1 MOV PO, A

In this example, the expressions evaluated in lines 11 and 15 could not be passed
to the macro because the macro expects a numeric value. Therefore, the
expressions must be evaluated before the macro. The percent sign forces A251
to generate a numeric value for the expressions. This value is then passed to the
macro.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 85

;; Operator

The double semicolon operator is used to signal that the remaining text on the
line should not be emitted when the macro is expanded. This operator is
typically used to precede comments that do not need to be expanded when the
macro is invoked.

Example
REGCLR MACRO CNT
REGNUM SET 0
MOV A #0 ;; load Awith 0
REPT CNT ;; rpt for CNT registers
MOV R&GREGNUM A ;; set R#Eto O
REGNUM SET 9% REGNUM#+1)
ENDM
ENDM
I Operator

The exclamation mark operator is used to indicate that a special character is to
be passed literally to a macro. This operator enables you to pass comma and
angle bracket characters, that would normally be interpreted as delimiters, to a
macro.

Invoking a Macro

Once a macro has been defined, it can be called many times in the program. A
macro call consists of the macro name plus any parameters that are to be passed
to the macro.

In the invocation of a macro, the position of the actual parameters corresponds to
the position of the parameter names specified in the macro definition. A251
performs parameter substitution in the macro starting with the first parameter.
The first parameter passed in the invocation replaces each occurrence of the first
formal parameter in the macro definition, the second parameter that is passed
replaces the second formal parameter in the macro definition, and so on.

If more parameters are specified in the macro invocation than are actually
declared in the macro definition, A251 ignores the additional parameters. If
fewer parameters are specified than declared, A251 replaces the missing
parameters with a NULL character.

T New features in the A251 assembler and the MCS 251 architecture

86 Chapter 5. Standard Macros

To invoke a macro in your assembly programs, you must first define the macro.
For example, the following definition:

DELAY MACRO CNT ;macro definition
REPT CNT ;insert CNT NOP instructions
NOP
ENDM ;end REPT bl ock
ENDM ;end macro definition

defines a macro called DELAY that accepts one argument CNT. This macro will
generate cNT NOP instructions. So, if oNT is equal to 3, the emitted code will
be:

NOP
NOP
NOP

The following code shows how to invoke the DELAY macro from an assembly

program.

LOOP: MoV PO, #0 ;clr PORT O
DELAY 5 ;wait 5 NOPs
MoV PO, #0ffh ; set PORT 0
DELAY 5 ;wait 5 NOPs
JWP LCooP ; repeat

In this example, a value of 0 is written to port 0. The DELAY macro is then
invoked with the parameter 5. This will cause 5 NOP instructions to be inserted
into the program. A value of OFFh is written to port 0 and the DELAY macro is
invoked again. The program then repeats.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 87

Chapter 6. Macro Processing
Language

The Macro Processing Language (MPL) is a string replacement facility. The
macro processing language is enabled with the assembler control MPL and fully
compatible to the Intel ASM 51 macro processing language. It permits you to
write repeatedly used sections of code once and then insert that code at several
places in your program. Perhaps MPL’s most valuable capability is conditional
assembly-with all microprocessors, compact configuration dependent code is
very important to good program design. Conditional assembly of sections of
code can help to achieve the most compact code possible.

Overview

The MPL processor views the source file in different terms than the assembler:
to the assembler, the source file is a series of lines — control lines, and directive
lines. To the MPL processor, the source file is a long string of characters.

All MPL processing of the source file is performed before your code is
assembled. Because of this independent processing of the MPL macros and
assembly of code, we must differentiate between macro-time and assembly-
time. At macro-time, assembly language symbols and labels are unknown.
SET and EQU symbols, and the location counter are also not known.
Similarly, at assembly-time, no information about the MPL is known.

The MPL processor scans the source file looking for macro calls. A macro
call is a request to the processor to replace the macro name of a built-in or
user-defined macro by some replacement text.

Creating and Calling MPL Macros

The MPL processor is a character string replacement facility. It
searches the source file for a macro call, and then replaces the call
with the macro's return value. A % character signals a macro call.

T New features in the A251 assembler and the MCS 251 architecture

88

Chapter 6. Macro Processing Language

The MPL processor function DEFINE creates macros. MPL processor functions
are a predefined part of the macro language, and can be called without definition.
The syntax for DEFINE is:

% *] DEFI NE (rmacro nane) [paraneter-list] (macro-body)

DEFINE is the most important macro processor function. Each of the symbols in
the syntax above (macro name, parameter-list, and macro-body) are described in
the following.

Creating Parameterless Macros

When you create a parameterless macro, there are two parts to a DEFINE call:
macro name
The macro name defines the name used when the macro is called.

macro body
The macro-body defines the return value of the call.

The syntax of a parameterless macro definition is shown below:

9% DEFI NE (macro nane) (macro-body)

The “ %’ is the metacharacter that signals a macro call. The **’ is the literal
character. The use of the literal character is described later in this part.

Macro names have the following conventions:

Maximum of 31 characters long

First character: ‘A’ -‘Z’,‘a’-‘z’,“ ’,or ‘?’

Other characters: ‘A’ -‘Z’,*a’-‘z’,* ’,“?’, ‘0’ -9’

The macro-body is usually the replacement text of the macro call. However, the
macro-body may contain calls to other macros. If so, the replacement text is
actually the fully expanded macro-body, including the calls to other macros.
When you define a macro using the syntax shown above, macro calls contained
in the body of the macro are not expanded, until you call the macro.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 89

The syntax of DEFINE requires that left and right parentheses surround the
macro-body. For this reason, you must have balanced parentheses within the
macro-body (each left parenthesis must have a succeeding right parenthesis, and
each right parenthesis must have a preceding left parenthesis). We call character
strings that meet these requirements balanced-text.

To call a macro, use the metacharacter followed by the macro name for the MPL
macro. (The literal character is not needed when you call a user-defined macro.)
The MPL processor will remove the call and insert the replacement text of the
call. If the macro- body contains any call to other macros, they will be replaced
with their replacement text.

Once a macro has been created, it may be redefined by a second DEFINE.

MPL Macros with Parameters

Parameters in a macro body allow to fill in values when you call the MPL macro.
This permits you to design a generic macro that produces code for many
operations.

The term parameter refers to both the formal parameters that are specified when
the macro is defined, and the actual parameters or arguments that are replaced
when the macro is called.

The syntax for defining MPL macros with parameters is:

9% DEFI NE (macr o- name(paraneter-list)) (macro-body)

The parameter-list is a list of identifiers separated by macro delimiters. The
identifier for each parameter must be unique.

Typically, the macro delimiters are parentheses and commas. When using these
delimiters, you would enclose the parameter-list in parentheses and separate each
formal parameter with a comma. When you define a macro using parentheses
and commas as delimiters, you must use those same delimiters, when you call
that macro.

The macro-body must be a balanced-text string. To indicate the locations of
parameter replacement, place the parameter's name preceded by the
metacharacter in the macro-body. The parameters may be used any number of
times and in any order within the macro-body. If a macro has the same name as

T New features in the A251 assembler and the MCS 251 architecture

90

Chapter 6. Macro Processing Language

one of the parameters, the macro cannot be called within the macro-body since
this would lead to infinite recursion.

The example below shows the definition of a macro with three dummy
parameters - SOURCE, DESTINATION, and COUNT. The macro will produce
code to copy any number of bytes from one part of memory to another.

% DEFI NE (BMOVE (src, dst, cnt)) LOCAL lab (

MOV R1, #%lst

MOV R2, #%nt
% ab: MOV A @RO

MOV @RL, A

INC RO

INC R1

DINZ R2, % ab
)

To call the above macro, you must use the metacharacter followed by the macro's
name similar to simple macros without parameters. However, a list of the actual
parameters must follow. The actual parameters must be surrounded in the macro
definition. The actual parameters must be balanced-text and may optionally
contain calls to other macros. A simple program example with the macro
defined above might be:

Assembler source text

% DEFI NE (BMOVE (src, dst, cnt)) LOCAL lab (
RO, #%sr c
MOV R1, #%lst
MOV R2, #%nt

% ab: MOV A @RO
MOV @RL, A
INC RO
INC R1

DINZ R2, % ab
)

ALEN EQU 10 ; define the array size
DSEC SEGVENT | DATA ; define a | DATA segnent
PSEC SEGVENT CODE ; define a CODE segnent

RSEG DSEC ; activate | DATA segnent
arrl: DS ALEN ; define arrays
arr2: DS ALEN

RSEG PSEC ; activate CODE segnent
; move menory bl ock
YBMOVE (arrl, arr2, ALEN)

END

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler

91

The following listing shows the assembler listing of the above source code.

LOC 0BJ

00000A

000000
00000A

000000 7EO0000 F

000003 7E1000 F

000006 7E200A

000009 A5E6
00000B A5F7
00000D A508
00000F A509

000011 ASDA00 F

LI NE

CoOoO~NOUhWNE

SQURCE

ALEN
DSEC
PSEC

arrl:
arr2:

EQU 10 c
SEGVENT | DATA ;
SEGVENT CODE

RSEG DSEC
DS ALEN
DS ALEN

RSEG PSEC

move menory bl ock
YBMOVE (arrl, arr2, ALEN)

MOV RO, #%src
MOV R1, #%lst
MOV R2, #%€nt

% ab: MOV A @GRO

MOV RO, #%src
arrl

MOV RO, #arr 1l
MOV R1, #%lst
arr2

MOV RL, #arr2
MOV R2, #%€nt
ALEN

MOV R2, #ALEN

% ab: MOV A @GRO

" LABO
LABO:

MOV A @RO
MoV A

I NC
I NC
DINZ R2,

239

% ab
LABO
DINZ R2, LABO

END

define the array size
define a | DATA segnent
define a CODE segnent

activate | DATA segnent
define arrays

activate CODE segnent

The example shows an assembled file containing a macro definition in lines

1 to 9. The macro definition shows semicolons at start of each line. These
semicolons are added by the assembler to prevent assembly of the definition text
which is meaningful to the MPL preprocessor, but not to the remaining
assembler phases. The listing will not include macro definitions or macro calls,
if the general control NOGEN (which is the default if none is given), is used.

T New features in the A251 assembler and the MCS 251 architecture

92

Chapter 6. Macro Processing Language

The macro BMOVE is called in line 12 with three actual parameters. Lines 14 to
20 shows the macro expansion, which is the return value of the macro call. This
text will be assembled.

The example will produce assembly errors because no section directives are
included in the source file. The purpose here is to show MPL processing, not the
assembler semantics.

Local Symbols List

The DJNZ instruction in the previous example uses a local label for target of the
branch. If a fixed label name is used (for example xlab, without leading %) then
activation of the macro a second time would cause assembly errors due to
multiple definitions of a single name.

The solution to this problem are local symbols. Local symbols are generated by
the MPL processor as 'local_symbol_nnn', where local_symbol is the name of
the local symbol and nnn is some number. Each time the macro is called, the
number will be automatically incremented, the resulting names will be unique on
each macro call.

The MPL processor increments a counter each time your program calls a macro
that uses the LOCAL construct. The counter is incremented once for each
symbol in the LOCAL list. Symbols in the LOCAL list, when used in the macro-
body, receive a one to five digit suffix that is the decimal value of the counter.
The first time you call a macro that uses the LOCAL construct, the suffix is '0".

The syntax for the LOCAL construct in the DEFINE functions is shown below
(this is finally the complete syntax for the MPL processor function DEFINE):

9% DEFI NE (macro-nanme (paraneter-list)) [LOCAL |ocal-1ist] (macro-body)

The local-list is a list of valid macro identifiers separated by spaces or commas.
The LOCAL construct in a macro has no affect on the syntax of a macro call.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 93

Macro Processor Language Functions

The MPL processor has several predefined macro processor functions. These
MPL processor functions perform many useful operations that would be difficult
or impossible to produce in a user-defined macro. An important difference
between a user-defined macro and a MPL processor function is that user-defined
macros may be redefined, while MPL processor functions can not be redefined.

We have already seen one of these MPL processor functions, DEFINE. DEFINE
creates user defined macros. MPL processor functions are already defined when
the MPL processor is started.

Comment Function

The MPL processing language can be very subtle, and the operation of macros
written in a straightforward manner may not be immediately obvious. Therefore,
it is often necessary to comment macro definitions. The comment function has
the following syntax:

% text'
% text end-of-line

The comment function always evaluates to the null string. Two terminating
characters are recognized, the apostrophe and the end-of-line character. The
second form allows to spread macro definitions over several lines, while
avoiding unwanted end-of-lines in the return value. In either form of the
comment function, the text or comment is not evaluated for macro calls.

Example

%this is macro conment.' ; this is an assenbl er comment.

% the conplete line including end-of-line is a coment

Source text before MPL processing

MoV R5, R15 %the followng line will be kept separate'
MoV R1, % this cooment eats the new ine character
R12

Output text from MPL processor

MoV R5, R15
MoV R1, R12

T New features in the A251 assembler and the MCS 251 architecture

94 Chapter 6. Macro Processing Language

Escape Function

Sometimes it is required to prevent the MPL processor from processing macro
text. Two MPL processor functions perform this operation:
escape function

bracket function

The escape function interrupts scanning of macro text. The syntax of the escape
function is:

% text-n-characters-1|ong

The metacharacter followed by a single decimal digit specifies the number of
characters (maximum is 9) shall not be evaluated. The escape function is useful
for inserting a metacharacter (normally the % character), a comma, or a
parenthesis.

Example
1094% OF 10 = 1, expands to: 10% OF 10 = 1,
ASM©251 expands to: ASM251

Bracket Function

The other MPL processor function that inhibits the processing of macro text is
the bracket function. The syntax of the bracket function is:

% bal anced-t ext)

The bracket function disables all MPL processing of the text contained within
the parentheses. However, the escape function, the comment function, and
parameter substitution are still recognized.

Since there is no restriction for the length of the text within the bracket function,
it is usually easier to use than the escape function.

Example
ASM/ 251) eval uates to: ASM251
%1, 2,3, 4,5) eval uates to: 1,2,3,4,5

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 95

Macro definition of ‘DW’

9% DEFI NE (DW (LI ST, LABEL)) (
AABEL: DW %.I ST

)

Macro call to ‘DW’
YDW (9% 120, 121, 122, 123, -1), TABLE)

Return value of the macro call to ‘DW’
TABLE: DW 120, 121, 122, 123, -1

The macro above will add word definitions to the source file. It uses two
parameters: one for the word expression list and one for the label name. Without
the bracket function it would not be possible to pass more than one expression in
the list, since the first comma would be interpreted as the delimiter separating
the actual parameters to the macro. The bracket function used in the macro call
prevents the expression list (120, 121, 122, 123, -1) from being evaluated as
separate parameters.

METACHAR Function

The MPL processor function METACHAR allows the programmer to change the
character that will be recognized by the MPL processor as the metacharacter.
The use of this function requires extreme care.

The syntax of the METACHAR function is:

%WETACHAR (bal anced_t ext)

The first character of the balanced text is taken to be the new value of the
metacharacter. The characters @, (,), *, blank, tab, and identifier-characters are
not allowed to be the metacharacter.

Example
UWETACHAR (!) ; change netacharacter to '!"’
1(1,2,3,4) ; bracket function invoked with !

T New features in the A251 assembler and the MCS 251 architecture

96 Chapter 6. Macro Processing Language

Numbers and Expressions

Balanced text strings appearing in certain places in built-in MPL processor
functions are interpreted as numeric expressions:

The argument to evaluate function ‘EVAL'

The argument to the flow of control functions 'IF', "WHILE', 'REPEAT"
and 'SUBSTR".

Expressions are processed as follows:

The text of the numeric expression will be expanded in the ordinary manner
of evaluating an argument to a macro function.

The resulting string is evaluated to both a numeric and character
representation of the expressions result. The return value is the character
representation.

The following operators are allowed (shown in order of precedence).
1. Parenthesized Expressions

2. HIGH, LOW

3. *,/,MOD, SHL, SHR

4. EQ, LT, LE, GT, GE, NE

5. NOT

6. AND, OR, XOR

The arithmetic is done using signed 16-bit integers. The result of the relational
operators is either 0 (FALSE) or 1 (TRUE).

Numbers

Numbers can be specified in hexadecimal (base 16), decimal (base 10), octal
(base 8) and binary (base 2). A number without an explicit base is interpreted as

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 97

decimal, this being the default representation. The first character of a number
must always be a digit between 0 and 9. Hexadecimal numbers which do not
have a digit as the first character must have a 0 placed in front of them.

Base Suffix Valid Characters Examples ‘

hexadecimal H,h 0-9, A-F(a-f) 1234H 99H 123H 0AOFOH OFFH

Hexadecimal numbers must be preceded with a 0, if the first
digitis in range A to F

decimal D,d 0-9 1234 65590D 20d 123
octal 0,0,Q.9 0-7 1770 77770 250 1230 1777770
binary B,b 0-1 1111B 10011111B 101010101B

Dollar ($) signs can be placed within the numbers to make them more readable.
However a $ sign is not allowed to be the first or last character of a number and
will not be interpreted.

1111$0000$1010$0011B is equivalent to 1111000010100011B
1$2$3%4 is equivalent to 1234

Hexadecimal numbers may be also entered using the convention from the C

language:
0xFEQ2 0x1234
0X5566 0x0A

Character Strings

The MPL processor allows the use of ASCII characters strings in expressions.
An expression is permitted to have a string consisting of one or two characters
enclosed in single quote characters ().

‘A evaluates to 0041H
'‘AB' evaluates to 4142H
a’ evaluates to 0061H
‘ab’ evaluates to 6162H

" the null string is not valid!
‘abc’ ERROR due to more than two characters

T New features in the A251 assembler and the MCS 251 architecture

98

Chapter 6. Macro Processing Language

The MPL processor cannot access the assembler's symbol table. The values of
labels, SET and EQU symbols are not known during MPL processing. But, the
programmer can define macro-time symbols with the MPL processor function
'SET'.

SET Function

The MPL processor function SET permits you to define macro-time symbols.
SET takes two arguments: a valid identifier, and a numeric expression.

The syntax of the SET function is:

YSET (identifier, expression)
SET assigns the value of the numeric expression to the identifier.

The SET function affects the MPL processor symbol table only. Symbols
defined by SET can be redefined with a second SET function call, or defined as
a macro with DEFINE.

Source text

YSET (CNT, 3)

YSET (OFS, 16)

MOV RL, #UONT+YOFS
YSET (OFS, %OFS + 10)
OFS = %OFS

Output text
MOV RL, #3+16
OFS = 26

The SET symbol may be used in the expression that defines its own value:

Source text

YSET (CNT, 10) % define variable CNT'
YSET (OFS, 20) % define variable OFS

% 'change values for CNT and OFS’

UBET (CNT, YCNT+Y%OFS) % CNT = 30°
UBET (OFS, %OFS * 2) % OFS = 40
MOV R2, #%CNT + %OFS % 70
MOV RS, #%CNT % 30

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler

99

Output text

MOV R2, #30 + 40
MOV R5, #30

EVAL Function

The MPL processor function EVAL accepts an expression as an argument and
returns the decimal character representation of it's result.

The syntax of the EVAL function is:

%EVAL (expression)

The expression arguments must be a legal expression with already defined macro
identifiers, if any.

Source text

YSET (CNT, 10) % define variable CNT'
YSET (OFS, 20) % define variable OFS

MOV RI5, #9EVAL (%CNT+1)

MOV WRL4, #YEVAL (14+15* 200)

MOV RI13, #9EVAL (- (Y%CNT + %FS - 1))
MOV R, #YEVAL (%OFS LE %CNT)

MOV R7, #%EVAL (%OFS GE %CNT)

Output text

MOV R15, #11
MOV VR14, #3014
MOV R13, #- 29
MOV R2, #0

MOV R7, #1

Logical Expressions and String Comparison

The following MPL processor functions compare two balanced-text string
arguments and return a logical value based on that comparison. If the function
evaluates to "'TRUE,' then it returns '1". If the function evaluates to 'FALSE,' then
it returns ‘0. The list of string comparison functions below shows the syntax and
describes the type of comparison made for each. Both arguments to these
function may contain macro calls. (These MPL calls are expanded before the
comparison is made).

T New features in the A251 assembler and the MCS 251 architecture

100 Chapter 6. Macro Processing Language

%EQS (argl,arg?2) True if both arguments are identical

%NES (argl,arg2) True if arguments are different in any way

%LTS (argl,arg2) True if first argument has a lower value than second
argument
%LES (argl,arg2) True if first argument has a lower value then second

argument or if both arguments are identical

%GTS (argl,arg2) True if first argument has a higher value than second
argument

%GES (argl,arg2) True if first argument has a higher value than second
argument or if both arguments are identical

Example

YEQS (A251, A251) 0 (FALSE), the space after the comma is part of the
second argument

LT% (A251, a251) 1 (TRUE), the lower case characters have a higher ASCII
value than upper case

%3TS (10, 16) 0 (FALSE), these macros compare strings not numerical
values. ASCII '6' is greater than ASCII '1'

YGES (a251, a251) 0 (FALSE), the space at the end of the second argument
makes the second argument greater than the first

96 DEFI NE (VARL) (A251) 1 (TRUE) expands to:

9% DEFI NE (VAR2) (%/AR1)
YEQS (WARL, WARR)
YEQS(A251, A251)

Conditional MPL Processing

Some MPL functions accept logical expressions as arguments. The MPL uses the
value 1 and 0 to determine TRUE or FALSE. If the value is one, then the
expression is TRUE. If the value is zero, then the expression is FALSE.

Typically, you will use either the relational operators (EQ, NE, LE, LT, GT, or
GE) or the string comparison functions (EQS, NES, LES, LTS, GTS, or GES) to
specify a logical value.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 101

IF Function

The IF MPL function evaluates a logical expression, and based on that
expression, expands or skips its text arguments. The syntax of the MPL
processor function IF is:

% F (expression) THEN (bal anced-text1) [ELSE (bal anced-text2)] FI

IF first evaluates the expression, if it is TRUE, then balanced-textl is expanded,;
if it is FALSE and the optional ELSE clause is included, then balanced-text2 is
expanded. If it is FALSE and the ELSE clause is not included, the IF call returns
a null string. FI must be included to terminate the call.

IF calls can be nested; when they are, the ELSE clause refers to the most recent
IF call that is still open (not terminated by FI). FI terminates the most recent IF
call that is still open.

Source text

% DEFI NE (ADDSUB (op, p1, p2)) (
% F (Y%EQS (%p, ADD)) THEN (
ADD %1, %2
YELSE (% F (%EQS (%p, SUB)) THEN (
SUB %1, %2

) FI
) FI
)
Y%ADDSUB (ADD, R15, R3) % generate ADD R15, R3'
Y%ADDSUB (SUB, R15, R9) % generate SUB R15, RO’
%ADDSUB (MUL, R15, R4) % generates nothing !
Output text

ADD R15, R3
SuB R15, RO

WHILE Function

Often you may wish to perform macro operations until a certain condition is met.
The MPL processor function WHILE provides this facility.

The syntax for the MPL processor function WHILE is:

%Ml LE (expression) (bal anced-text)

T New features in the A251 assembler and the MCS 251 architecture

102 Chapter 6. Macro Processing Language

WHILE first evaluates the expression. If it is TRUE, then the balanced-text is
expanded; otherwise, it is not. Once the balanced-text has been expanded, the
logical argument is retested and if it is still TRUE, then the balanced-text is
again expanded. This loop continues until the logical argument proves FALSE.

Since the MPL continues processing until expression evaluates to FALSE, the
balanced-text should modify the expression, or the WHILE may never terminate.

A call to the MPL processor function EXIT will always terminate a WHILE
function. EXIT is described later.

Source text

YSET (count, 5) % initialize count to 5
%M LE (%€ount GT 0)
(ADD R15, R15 %SET (count, %ount - 1)

)

Output text

ADD R15, R15
ADD R15, R15
ADD R15, R15
ADD R15, R15
ADD R15, R15

REPEAT Function

The MPL processor function REPEAT expands its balanced-text a specified
number of times. The syntax for the MPL processor function REPEAT is:

YREPEAT (expression) (bal anced-test)

REPEAT uses the expression for a numerical value that specifies the number of
times the balanced-text will be expanded. The expression is evaluated once
when the macro is first called, then the specified number of iterations is
performed.

Source text

YREPEAT (5)
(-enter any key to shut down-

)
UREPEAT (5) (+YREPEAT (9) (-))+

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 103

Output text

-enter any key to shut down-
-enter any key to shut down-
-enter any key to shut down-
-enter any key to shut down-
-enter any key to shut down-

EXIT Function

The EXIT MPL processor function terminates expansion of the most recently
called REPEAT, WHILE or user-defined macro function. It is most commonly
used to avoid infinite loops (example: a WHILE that never becomes FALSE, or a
recursive user-defined macro that never terminates). It allows several exit points
in the same macro.

The syntax for the MPL processor function EXIT is:

%EXI T

Source text
YSET (count, 0)

WH LE (1)
(B F (Y%ount GI 5) THEN (%EXIT)
Fl DW % ount, -%ount

YSET (count, %ount + 1))

Output text
DW 0, -0
DW 1, -1
DW 2, -2
DW 3, -3
DW 4, -4
DW 5, -5

String Manipulation Functions

The purpose of the MPL is to manipulate character strings. Therefore, there are
several MPL functions that perform common character string manipulations.

T New features in the A251 assembler and the MCS 251 architecture

104 Chapter 6. Macro Processing Language

LEN Function

The MPL processor function LEN returns the length of the character string
argument in hexadecimal: The character string is limited to 256 characters.

The syntax for the MPL processor function LEN is:

%_EN (bal anced-text)

Source text

%.EN (A251) % len = 4
% EN (A251, A251) % comma counts al so'
%.EN ()

%.EN (ABCDEFGHI JKLMNOPQRSTUWIKYZ)
YDEFI NE (TEXT) (QUEEN)

YDEFI NE (LENGTH) (%.EN (96EXT))
LENGTH OF ' 94EXT' = 9%.ENGTH.

Output text

4
9
0
26
LENGTH OF ' QUEEN = 5.

SUBSTR Function

The MPL processor function SUBSTR returns a substring of the given text
argument. The function takes three arguments: a character string to be divided
and two numeric arguments.

The syntax for the MPL processor function SUBSTR is:

YSUBSTR (bal anced-t ext, expressi onl, expr essi on2)

balanced-text is any text argument, possibly containing macro calls. Expressionl
specifies the starting character of the substring. Expression2 specifies the
number of characters to be included in the substring.

If expressionl is zero or greater than the length of the argument string, then
SUBSTR returns the null string. The index of the first character of the balanced
text is one.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 105

If expression2 is zero, then SUBSTR returns the null string. If expression2 is
greater than the remaining length or the string, then all characters from the start
character to the end of the string are included.

Source text

YDEFI NE (STRI NG (abcdef gh)
YSUBSTR (Y%string, 1, 2)
Y8UBSTR (%1, 2, 3,4,5), 3, 20)

Output text

ab
2,3,4,5

MATCH Function

The MPL processor function MATCH searches a character string for a delimiter
character, and assigns the substrings on either side of the delimiter to the
identifiers.

The syntax for the MPL processor function MATCH is:

9ATCH (identifierl delimter identifier2) (balanced-text)

Identifierl and identifier2 must be valid macro identifiers. Delimiter is the first
character to follow identifierl. Typically, a space or comma is used, but any
character that is not a macro identifier character may be used. Balanced-text is
the text searched by the MATCH function. It may contain macro calls.

MATCH searches the balanced-text string for the specified delimiter. When the
delimiter is found, then all characters to the left are assigned to identifierl and
all characters to the right are assigned to identifier2. If the delimiter is not
found, the entire balanced-text string is assigned to identifierl and the null string
is assigned to identifier2.

Source text

YOEFI NE (text) (-1,-2,-3,-4,-5)
YVATCH (next,list) (% ext)
OHI LE (%4.EN (%ext) NE 0)

(MOV R8, #¥%next
MoV @\R2, R8 YUVATCH (next,list)(%ist)
I NC WR2, #1

T New features in the A251 assembler and the MCS 251 architecture

106

Chapter 6. Macro Processing Language

Output text

MoV
MoV
I NC

R8, #- 1
@\R2, R8

$+
=

$+

ER R

F+
Hgmpghpgwpgw

Console I/O Functions

There are two MPL processor functions that perform console 1/0: IN and OUT.
Their names describe the function each performs. IN outputs a character >'as a
prompt, and returns the line typed at the console. OUT outputs a string to the
console; a call to OUT is replaced by the null string.

The syntax for the MPL processor functions IN and OUT is:

% N

%UT (bal anced-t ext)

Source text

%UT (enter baud rate)
%set (BAUD_RATE, % n)
BAUD_RATE = %BAUD_RATE

Output text

<19200 was entered at the consol e>
BAUD_RATE = 19200

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 107

Advanced Macro Processing

The MPL definition function associates an identifier with a functional string.
The macro may or may not have an associated pattern consisting of parameters
and/or delimiters. Also optionally present are local symbols. The syntax for a
macro definition is:

YOEFI NE (macro_id define_pattern) [LOCAL id_list] (balanced_text)

The define_pattern is a balanced string which is further analyzed by the MPL
processor as follows:

define_pattern = { [parm.id] [delimter_specifier] }
Delimiter_specifier is one of the following:

some string not containing non-literal id-continuation. logical blank or
character @.

@delimiter _id

The macro call must have a call pattern which corresponds to the macro define
pattern. Regardless of the type of delimiter used to define a macro, once it has
been defined, only delimiters used in the definition can be used in the macro call.
Macros defined with parentheses and commas require parentheses and commas
in the macro call. Macros defined with spaces or any other delimiter require that
delimiter when called.

The define pattern may have three kinds of delimiters: implied blank delimiters,
identifier delimiters and literal delimiters.

Literal Delimiters

The delimiters used in user-defined macros (parentheses and commas) are literal
delimiters. A literal delimiter can be any character except the metacharacter.

When you define a macro using a literal delimiter, you must use exactly that
delimiter when you call the macro. If the specified delimiter is not used as it
appears in the definition, a macro error occurs.

T New features in the A251 assembler and the MCS 251 architecture

108 Chapter 6. Macro Processing Language

When defining a macro, the delimiter string must be literalized, if the delimiter
meets any of the following conditions:

more than one character,

a macro identifier character (A-Z, 0-9, _, or ?),

a commercial at (@), a space, tab, carriage return, or linefeed.

Use the escape function (%n) or the bracket function (%()) to literalize the
delimiter string.

This is the simple form shown earlier:

Before Macro Expansion After Macro Expansion
%*DEFINE(MAC(A,B))(%A %B) null string
%MAC(4,5) 45

In the following example brackets are used instead of parentheses. The
commercial at symbol separates parameters:

% DEFI NE (MOV[A% @ B]) (MOV %A, 9B) - null string
9OV PO@P1] = MOV PO, P1

In the next two examples, delimiters that could be id delimiters have been
defined as literal delimiter (the differences are noted):

% DEFI NE(ADD (RLO AND B)) (ADD R10, %B) - null string
%ADD (RLO AND #27H) = ADD RI10, #27H

Spaces around AND are considered as part of the argument string.

Blank Delimiters

Blank delimiters are the easiest to use. Blank delimiter is one or more spaces,
tabs or new lines (a carriage-return/linefeed pair) in any order. To define a
macro that uses the blank delimiter, simply place one or more spaces, tabs, or
new lines surrounding the parameter list.

When the macro defined with the blank delimiter is called, each delimiter will
match a series of spaces, tabs, or new lines. Each parameter in the call begins
with the first non-blank character, and ends when a blank character is found.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 109

Source text

% DEFI NE (X1 X2 X3) (P2=9%K2, P3=9%X3)
91 assenbl er A251

Output text
P2=assenbl er, P3=A251

Identifier Delimiters

Identifier delimiters are legal macro identifiers designated as delimiters. To
define a macro that uses an identifier delimiter, you must prefix the delimiter
with the @ symbol. You must separate the identifier delimiter from the macro
identifiers (formal parameters or macro name) by a blank character.

When calling a macro defined with identifier delimiters, a blank delimiter is
required to precede the identifier delimiter, but none is required to follow the
identifier delimiter.

Source text

% DEFI NE (ADD X1 @O X2 @TORE X3) (
MOV RI, %1
MV R2, %2
ADD RL R
MOV %3, RL
)

%\DD VARL TO VAR2 STORE VAR3

Output text

MoV R1, VARL
MoV R2, VAR2
ADD Rl, R2

MoV VAR3, R1

Literal and Normal Mode

In normal mode, the MPL processor scans for the metacharacter. If it is found,
parameters are substituted and macros are expanded. This is the usual operation
of the MPL processor.

When the literal character (*) is placed in a DEFINE function, the MPL
processor shifts to literal mode while expanding the macro. The effect is similar

T New features in the A251 assembler and the MCS 251 architecture

110 Chapter 6. Macro Processing Language

to surrounding the entire call with the bracket function. Parameters to the
literalized call are expanded, the escape, comment, and bracket functions are
also expanded, but no further processing is performed. If there are any calls to
other macros, they are not expanded.

If there are no parameters in the macro being defined, the DEFINE function can
be called without literal character. If the macro uses parameters, the MPL
processor will attempt to evaluate the formal parameters in the macro-body as
parameterless macro calls.

The following example illustrates the difference between defining a macro in
literal mode and normal mode:

YSET (TOM 1)
% DEFI NE (AB) (9%EVAL (9%GOM))
YDEFI NE (CD) (%EVAL (%TOM))

When AB and CD are defined, TOM is equal to 1. The macro body of AB has
not been evaluated due to the literal character, but the macro body of CD has
been completely evaluated, since the literal character is not used in the
definition. Changing the value of TOM has no effect on CD, but it changes the

value of AB:

YSET (TOM 2) - null string
%AB - 2

%D -1

% CD - 1

% AB - Y%&EVAL (99av)

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 111

MACRO Errors

The MPL processor will output error messages, if errors occur in the MPL
processing phase. The errors are displayed like other assembly errors in the
listing file which is generated by the assembler anyway. The following describes
the error messages generated by the MPL processor.

Number Error Message and Description ‘
200 PREVMATURE END OF FI LE

The end of the source module was reached while processing some macro call, which
requires more input from the source file.

201 ' <t oken>' | DENTI FI ER EXPECTED
The MPL processor expected an identifier while processing some macro. None was
found. The unexpected token is displayed with this error message.

202 MPL FUNCTI ON ' <nanme>': '<character>'" EXPECTED

The context of the MPL processor language requires a specific character from the
input given by <character> while processing the built-in function given by <name>.

203 <string> UNBALANCED PARENTHESES
A balanced string requires the same number of right parentheses and left parentheses.
204 EXPECTED ' <t oken>'

The syntax requires a specific token to follow, for example THEN after the balanced
text argument to IF.

205 | NCOVPLETE MACRO DEFI NI TI ON
The macro definition has not been completely processed due to premature end of input
file.

206 FUNCTI ON ' MATCH : | LLEGAL CALL PATTERN

The built-in function MATCH was called with an illegal call pattern. The call pattern
must consist of some formal name followed by a delimiter specification and another

formal name.

207 FUNCTI ON ' EXIT' | N BAD CONTEXT
The built-in function EXIT is allowed only in the loop control constructs WHILE and
REPEAT.

208 | LLEGAL METACHARACTER ' <char act er >'

The first character of the balanced text argument to METACHAR is taken to be the
new value of the metacharacter. The characters @, (,), *, blank, tab, and identifier-
characters are not allowed to be the metacharacter.

209 CALL PATTERN - DELIM TER ' <delimter>" NOT FOUND

The call pattern of some macro does not conform to the define pattern of that macro.
The delimiters of the macro call should be checked for conformance.

210 CALL TO UNDEFI NED MACRO ' <nane>'

The macro call specifies the name of an undefined macro.

T New features in the A251 assembler and the MCS 251 architecture

112 Chapter 6. Macro Processing Language

Number Error Message and Description ‘
211 I NVALI D MPL COMMAND ' %<char act er >'
The character following the metacharacter does not form a valid MPL command.
212 INVALID DIG T ' <character>" | N NUMBER
A number of an expression contains an invalid digit.
213 UNCLOSED STRI NG OR CHARACTER CONSTANT
214 I NVALI D STRI NG OR CHARACTER CONSTANT

The string representing a number in an expression is invalid. The string must be either
one or two characters long. A character constant must not be longer than one character.
Strings or character constants must be enclosed by single or double quotes.

215 UNKNOWN EXPRESSI ON | DENTI FI ER

The identifier within some expression is not an operator or a number.
216 <character>: | NVALI D EXPRESSI ON TOKEN

The given character does not form a valid operator or an identifier operator.
217 DI V/ MOD BY ZERO

A division or modulo by zero error occurred while evaluating an expression.
218 EVAL: SYNTAX ERROR | N EXPRESSI ON

The expression to be evaluated contains a syntax error, for example two consecutive
number, not separated by an operator.

219 CAN' T OPEN FI LE ' <file>'
The file specified in the INCLUDE directive could not be opened.
220 "<file> |S NOT A DI SK FILE

The file name given in the INCLUDE directive does not specify a disk file. Files other
than disk files are not allowed (example: CON).

221 ERROR | N | NCLUDE DI RECTI VE

The INCLUDE directive is ill-formed. The argument to INCLUDE must be the name
of some file, enclosed in parentheses.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 113

Chapter 7. Invocation and Controls

This part explains how to use A251 to assemble 8051 assembly source files and
discusses the assembler controls that may be specified on the command line and
within the source file.

Using the controls described in this part, you can specify which operations are
performed by A251. For example, you can direct A251 to generate a listing file,
produce cross reference information, and control the amount of information
included in the object file. You can also conditionally assemble sections of code
using the conditional assembly controls.

Running A251

The A251 assembler is invoked by typing A251 at the DOS prompt. The
command line must contain the name of an 8051 assembly source file to be
assembled as well as any command-line controls that are required. The format
for the A251 command line is:

A251 sourcefile |[control s]

where

sourcefile is the name of the source program you want to assemble.
A251assembler

controls are used to direct the operation of the assembler. Refer to

The following command line example invokes A251 and specifies the source file
SAMPLE.A51 and uses the controls DEBUG, XREF, and PAGEWIDTH.

A251 SAMPLE. A51 DEBUG XREF PAGEW DTH(132)

A251 displays the following information upon successful invocation and
assembly.

DOS MACRO ASSEMBLER A251 V1. 00

ASSEMBLY COVPLETE, NO ERRORS FOUND

T New features in the A251 assembler and the MCS 251 architecture

114 Chapter 7. Invocation and Controls

Command Files

Command files are ASCI|I text files that contain information that you would
normally type on the DOS invocation line. Command files can include the
name of the source file to assemble as well as any assembler controls.

A251 allows you to specify a command file on the DOS invocation line using an

at sign (@).

Example
A251 @MDFI L

The contents of the file cvbFi L will be interpreted as one long input command
line.

DOS ERRORLEVEL

After assembly, the number of errors and warnings detected is output to the
screen. A251 then sets the DOS ERRORLEVEL to indicate the status of the
assembly. Values are listed in the following table:

ERROR LEVEL Meaning

No ERRORS or WARNINGS
WARNINGS only

ERRORS and possibly also WARNINGS
FATAL ERRORS

w N B O

You can access the ERRORLEVEL variable in DOS batch files for conditional
inquiries in order to terminate the batch processing when an error occurs. Refer
to your DOS User’s Guide for more information about ERRORLEVEL or batch
files.

Output Files

A251 generates a number of output files during assembly. By default, each of
these shares the same basename as the source file. However, each has a
different file extension. The following table lists the files and gives a brief
description of each.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 115

File Extension Description ‘

basenane. LST Files with this extension are listing files that contain the formatted source
text along with any errors detected by the assembler. Listing files may

basenane. OBJ Files with this extension are object modules that contain relocatable object
code. Object modules can be linked into an absolute object module by the
L51 Linker/Locator. Refer to 1OBJECT 7 NOOBJECT! on page 1 38ifor
more information.

Assembler Controls

A251 provides a number of controls that you can use to direct the operation of
the assembler. Controls are composed of one or more letters or digits and, unless
otherwise indicated, can be specified after the filename on the invocation line or
in a control line within the source file. Control lines are prefixed by the dollar
sign (9$).

Example
A251 TESTFILE. A51 MPL DEBUG XREF

or

$IMPL
$DEBUG
$XREF

or

$MPL DEBUG XREF

In the above example, MPL, DEBUG, and XREF are all control commands and
TESTFILE.A51 is the source file that will be assembled.

A251 has two classes of controls: primary and general. The primary controls are
set in the invocation line or the primary control lines and remain in effect
throughout the assembly. For this reason, primary controls may be used only in
the invocation line or in the control line at the beginning of the program. Only
other control lines (that do not contain the INCLUDE control) may precede a
line containing a primary control. The INCLUDE control terminates of primary
controls.

T New features in the A251 assembler and the MCS 251 architecture

116 Chapter 7. Invocation and Controls

If a primary control is specified in the invocation line and in the primary control
lines, the first time counts. This enables the programmer to override primary
controls via the invocation line.

The general controls are used to control the immediate action of the assembler.
Typically their status is set and modified during the assembly. Control lines
containing only general controls may be placed anywhere in your source code.

The table below lists all of the controls, their abbreviations, their default values,
and a brief description of each.

Name / Abbreviation Meaning ‘

DATA(date) / DA Places a date string in header (9 characters maximum).

CASE Enable case sensitive mode for symbol names.

DEBUG / DB Outputs debug symbol information to object file.

EJECT/EJ t Continue listing on next page.

ERRORPRINT[(file)] / EP Designates a file to receive error messages in addition to the
listing.

GEN/GE % Generates a full listing of macro expansions in the listing file.

NOGEN / NOGE List only the original source text in listing file.

INCLUDE(file) / IC % Designates a file to be included as part of the program.

LINK * Place Linker/Locator controls in the Assembler source code.

LIST, NOLIST /LI, NOLI Print or do not print the assembler source in the listing file.

MODBIN / MB Select MCS 251 binary mode (default).

MODSRC / MS Select MCS 251 source mode.

MPL Enable Macro Processing Language.

NOAMAKE Disable AutoMAKE information.

NOLINES Do not generate LINE number information.

NOMACRO / NOMR Disable Standard Macros

NOMOD51 / NOMO Do not recognize the 8051-specific predefined special register.

NOMOD251 / NO251 Disable the additional MCS 251 instructions.

NOOBLECT / NOOJ Designates that no object file will be created.

NOREGISTERBANK/ NORB Indicates that no banks are used.

NOSYMBOLS / NOSB No symbol table is listed.

NOSYMLIST,NO SL % Do not list the following symbol definitions in the symbol table.

OBJECT][(file)] / OJ Designate file to receive object code.

PAGELENGTH(n) / PL Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) / PW Sets maximum number of characters in each line of listing file.

PRINT[(file)] / PR Designates file to receive source listing.

NOPRINT / NOPR Designates that no listing file will be created.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 117

Name / Abbreviation Meaning ‘
REGISTERBANK(num,...) Indicates one or more banks used in program module.

REGUSE Defines register usage of assembler functions for the C optimizer.
RESTORE / RS Restores control setting from SAVE stack.

SAVE / SA £ Stores current control setting for GEN, LIST and SYMLIST.
SYMLIST, SL f List the following symbol definitions in the symbol table.
TITLE(string) / TT Places a string in all subsequent page headers.

XREF / XR Creates a cross reference listing of all symbols used in program.

1 — General controls

NOTE

Some controls like EJECT and SAVE cannot be specified on the command line.
The syntax for each control is the same when specified on the command line or
when specified within the source file. A251 will generate a fatal error for
controls that are improperly specified.

T New features in the A251 assembler and the MCS 251 architecture

118 Chapter 7. Invocation and Controls

COND / NOCOND

Abbreviation: None.

Arguments: None.

Default: COND

Control Class: General

Description: The COND control directs A251 to include unassembled

parts of a conditional IF-ELSEIF-ENDIF construct in the
listing file. Unassembled code is listed without line
numbers.

The NOCOND control prevents unassembled portions of an
IF-ELSE-ENDIF block from appearing in the listing file.

Examples: A251 SAVPLE. A51 COND
$COND
A251 SAVPLE. A51 NOCOND

$NOCOND

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 119

DATE

Abbreviation: DA

Arguments: A string enclosed within parentheses.

Default: The date obtained from the operating system.

Control Class: Primary

Description: A251 includes the current date in the header of each page in

the listing file. The DATE control allows you to specify the

date string that is included in the header. The string must

immediately follow the DATE control and must be enclosed

within parentheses. Only the first 8 characters of the date

string are used. Additional characters are ignored.
Example: A251 SAMPLE. A51 DATE(19JAN92)
$DATE(10/ 28/ 91)

T New features in the A251 assembler and the MCS 251 architecture

120 Chapter 7. Invocation and Controls

CASE T

Abbreviation: CA

Arguments: None.

Default: No case sensitivity.

Control Class: Primary

Description: The assembler is directed to operate in case sensitive mode

(CASE) or case insensitive mode. In case insensitive mode
the assembler maps lower case input characters to upper
case. CASE becomes meaningful if modules generated by
the assembler are combined with modules generated from
the C compiler. ldentifiers exported from C modules appear
always as written, the corresponding names in the assembler
module must therefore put into the object module as written,
preserving case sensitivity.

Example: SCASE
A251 SAVPLE. A51 CASE

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 121

DEBUG

Abbreviation:

Arguments:

Default:

Control Class:

Description:

Examples:

DB

None.

No debugging information is generated.
Primary

The DEBUG control instructs A251 to include debugging
information in the object file. This information is used
when testing the program with an emulator or simulator.

The DEBUG control also includes line number information
for source level debugging. This line number information
can be disabled with the NOLINES control.

A251 SAMPLE. A51 DEBUG

$DEBUG

T New features in the A251 assembler and the MCS 251 architecture

122 Chapter 7. Invocation and Controls

EJECT

Abbreviation: EJ

Arguments: None

Default: None

Control Class: General

Description: The EJECT control inserts a form feed into the listing file

after the line containing the EJECT control statement. This
control is ignored if NOLIST or NOPRINT was previously
specified.

Example: B

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 123

ERRORPRINT

Abbreviation: EP

Arguments: An optional filename enclosed within parentheses

Default: No error messages are output to the console.

Control Class: Primary

Description: The ERRORPRINT control directs A251 to output all error

messages either to the console or to a specified file. 1f no
filename is specified with the ERRORPRINT control, all
error messages are output to the console.

Examp|e5- A251 SAMPLE. A51 ERRORPRI NT(SAMPLE. ERR)

A251 SAMPLE2. A51 ERRORPRI NT

$EP

T New features in the A251 assembler and the MCS 251 architecture

124 Chapter 7. Invocation and Controls

GEN / NOGEN

Abbreviation: GE / NOGE

Arguments: None

Default: NOGEN

Control Class: General

Description: The GEN control directs A251 to expand or list all assembly

instructions contained in a macro.

The NOGEN control prevents the A251 assembler from
including macro expansion text in the listing file. Only the
macro name is listed.

Examples: A251 SAVPLE. A51 GEN
$GEN
A251 SANPLE. A51 NOGEN

$NOGEN

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 125

INCLUDE

Abbreviation: IC

Arguments: A filename enclosed within parentheses.

Default: None.

Control Class: General

Description: The INCLUDE control directs A251 to include the contents
of the specified file in the assembly of the program
immediately following the control line. INCLUDE files
may be nested up to 9 deep.
The INCLUDE control is usually used to include special
function register definition files for 8051 and MCS 251
derivatives as well as to include declarations for external
routines, variables, and macros. Files containing assembly
language code may also be included.

T New features in the A251 assembler and the MCS 251 architecture

126 Chapter 7. Invocation and Controls

LINK ¥

Abbreviation: LI

Arguments: Linker/Locator control directives enclosed in parentheses.
Default: None

Control Class: General

Description: The LINK control allows you to include Linker/Locator

control directives into the assembler source. The control
directives specified within the assembler source will be pass
to the Linker/Locator as they would be specified in the
invocation line of the linker/locator. The LINK control is
useful to correct directly in the assembler source the overlay
analysis of your application, if your program contains
indirect function calls.

For more information about Linker/Locator controls refer to
the 8051 Utilities User’s Guide.

The LINK control cannot be specified in the A251
invocation line.

Examp|e: $LI NK (ADDCALL (MYFUNC ! MYFUNC2)

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 127

LIST / NOLIST

Abbreviation: LI/ NOLI

Arguments: None

Default: LIST

Control Class: General

Description: The LIST control directs A251 to include the program

source text in the generated listing file.

The NOLIST control prevents subsequent lines of your
assembly program from appearing in the generated listing
file. If a line that would normally not be listed causes an
assembler error, that line will be listed along with the error
message.

Examples: A251 SAMPLE. A51 LI
$LI ST
A251 SAMPLE. A51 NOLI ST

$NOLI

T New features in the A251 assembler and the MCS 251 architecture

128 Chapter 7. Invocation and Controls

MACRO / NOMACRO

Abbreviation: NOMR

Arguments: None

Default: MACRO

Control Class: Primary

Description: The MACRO control instructs the A251 assembler to

recognize and process macro definitions and invocations.

The NOMACRO control disables the macro processor in
A251. Macros will not be expanded.

Exa_mp|e5- A251 SAMPLE. A51 NOVACRO

$NOVACRO

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 129

MODBIN t

Abbreviation: MB

Arguments: None

Default: MODBIN

Control Class: Primary

Description: The MODBIN control instructs the A251 assembler to

generate code for the MCS 251 architecture using the
BINARY mode of this CPU.

See also: MODSRC, NOMOD251

Exa_mp|e5- A251 SAMPLE. A51 MCODBI N

$MODBI N

T New features in the A251 assembler and the MCS 251 architecture

130 Chapter 7. Invocation and Controls

MODSRC t

Abbreviation: MS

Arguments: None

Default: MODBIN

Control Class: Primary

Description: The MODSRC control instructs the A251 assembler to

generate code for the MCS 251 architecture using the
SOURCE mode of this CPU.

See also: MODBIN, NOMOD251

Exa_mp|e5- A251 SAMPLE. A51 MODSRC

$MODSRC

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 131

MPL

Abbreviation: None

Arguments: None

Default: The Macro Processing Language is disabled.

Control Class: Primary.

Description: The MPL control enables the Macro Processing Language.
The MPL language is compatible to the Intel ASM51.
Refer to “Chapter 6._Macro Processing Language? on page
87.for more information about the MPL processor.

Examples: A251 SAMPLE. A51 NPL

$MPL

T New features in the A251 assembler and the MCS 251 architecture

132

Chapter 7. Invocation and Controls

NOAMAKE

Abbreviation: NOAM

Arguments: None.

Default: Generate AutoMAKE information.

Control Class: Primary

Description: NOAMAKE disables the project information records of the

A251 Macro Assembler for use with the automatic MAKE
utility AutoMAKE. This option disables also the register
information given with the REGUSE directive. If
NOAMAKE is used, the generated object files can be used
with older program versions of the 8051 development tool
chain.

Example: A251 SAMPLE. A51 NOAMAKE

$ NOAVAKE

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 133

NOLINES

Abbreviation:

Arguments:

Default:

Control Class:

Description:

Examples:

NOLI
None.

Line numbers for source level debugging are generated
when the DEBUG control is used.

Primary

The NOLINES control disables the line number information
for source level debugging. This control is useful when
A251 should be used in connection with old debugging tools
or emulators.

A251 SAMPLE. A51 NCOLI NES

$NOLI NES

T New features in the A251 assembler and the MCS 251 architecture

134

Chapter 7. Invocation and Controls

NOMACRO
Abbreviation:
Arguments:
Default:
Control Class:

Description:

Examples:

None.

None.

Standard Macros are fully expanded.
Primary

The NOMACRO control disables the standard macro
facility of A251. Standard macros are not expanded.

A251 SAMPLE. A51 NOVACRO

$NOVACRO

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 135

NOMOD51
Abbreviation: NOMO
Arguments: None.

Default: In A51 all special function registers of the 8051 CPU are
predefined. A251 does not define CPU special function
registers at all.

Control Class: Primary

Description: The NOMOD®51 control prevents the A51 assembler from
implicitly defining symbols for the default 8051 special
function registers. This is necessary when you want to
include a definition file to declare symbols for the special
function registers of a different 8051 derivative.

The A251 assembler supports the NOMODS51 control only
for source compatibility to the A51. However the 8051
special function registers are not predefined in A251.

ExampIeS' A251 SAMPLE. A51 NOMO

$NOMOD51

T New features in the A251 assembler and the MCS 251 architecture

136 Chapter 7. Invocation and Controls

NOMOD251 ft

Abbreviation: NO251

Arguments: None.

Default: Support the additional MCS 251 instructions.

Control Class: Primary

Description: The NOMOD251 control disables the enhance MCS 251

instruction set. Only the original 8051 instructions are
supported. With this control the A251 can be used to
generate code for the 8051 architecture only.

See also: MODBIN, MODSRC
Examples: A251 SAMPLE. A51 NO251
$NOMOD251

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 137

NOSYMBOLS

Abbreviation:

Arguments:

Default:

Control Class:

Description:

Examples:

SB/NOSB
None

A251 generates a table of all symbols used in and by the
assembly program module. This symbol table is included in
the generated listing file.

Primary

The NOSYMBOLS control prevents A251 from generating
a symbol table in the listing file.

A251 SAMPLE. A51 SYMBOLS
$SB
A251 SAMPLE. A51 NOSB

$NOSYMBOLS

T New features in the A251 assembler and the MCS 251 architecture

138 Chapter 7. Invocation and Controls

OBJECT / NOOBJECT

Abbreviation: 0OJ/NOOJ

Arguments: An optional filename enclosed within parentheses.
Default: OBJECT (basename.OBJ)

Control Class: Primary

Description: The OBJECT control specifies that the A251 assembler

generate an object file. The default name for the object file
is basename.OBJ, however, an alternate filename may be
specified in parentheses immediately following the
OBJECT control statement.

The NOOBJECT control prevents A251 from generating an
object file.

Examp|es- A251 SAVPLE. A51 OBJECT (OBJDI R\ SAVPLE. OBJ)
QJ(OBJ\ SAMPLE. OBJ)
A251 SAMPLE. A51 NOQJ

$NOOBJECT

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 139

PAGELENGTH

Abbreviation: PL

Arguments: A number between 10 and 65535 enclosed within
parentheses.

Default: PAGELENGTH (60)

Description: The PAGELENGTH control specifies the number of lines

printed per page in the listing file. The number must be a
decimal value between 10 and 65535. The default is 60.

Example' A251 SAMPLE. A51 PAGELENGTH(132)

$PL (66)

T New features in the A251 assembler and the MCS 251 architecture

140 Chapter 7. Invocation and Controls

PAGEWIDTH

Abbreviation: PW

Arguments: A number between 78 and 132 enclosed within parentheses.
Default: PAGEWIDTH (120)

Control Class: Primary

Description: The PAGEWIDTH control specifies the maximum number

of characters in a line in the listing file. Lines that are
longer than the specified width are automatically wrapped
around to the next line. The default number of characters
per line is 120.

A251 SAVPLE. A51 PW 79)

$PW(132)

Example:

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 141

PRINT / NOPRINT

Abbreviation: PR /NOPR

Arguments: An optional filename enclosed within parentheses.
Default: PRINT (basename.LST)

Control Class: Primary

Description: The PRINT control directs the A251 assembler to generate

a listing file. The default name for the listing file is
basename.LST, however, an alternate filename may be
specified in parentheses immediately following the PRINT
control statement.

The NOPRINT control prevents A251 from generating a
listing file.
Examples: A251 SAMPLE. A51 PRI NT
A251TESTPRG A51 PR(TESTPRGL. LST)
$PRI NT(LPT1)
A251 SAMPLE. A51 NOPRI NT

$NOPR

T New features in the A251 assembler and the MCS 251 architecture

142

Chapter 7. Invocation and Controls

REGISTERBANK / NOREGISTERBANK
Abbreviation: RB /NORB

Arguments: Register bank numbers separated by commas and enclosed
within parentheses; e.g., REGISTERBANK (1,2,3).

Default: REGISTERBANK (0)
Control Class: Primary
Description: The REGISTERBANK control specifies the register banks

used in the source module. This information is stored in the
generated object file for further processing by the L251
Linker/Locator.

The NOREGISTERBANK control specifies that A251
reserves no memory for the register bank.

Examples: A251 RBUSER A51 REG STERBANK(O, 1, 2)
$RB(0, 3)
A251 SAVPLE. A51 NOREG STERBANK

$NORB

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 143

REGUSE

Abbreviation: RU

Arguments: Name of a PUBLIC symbol and a register list enclosed in
parentheses.

Default: Not applicable.

Control Class: General

Description: The REGUSE control specifies the registers modified

during a function execution. The REGUSE control can be
used in combination with the C51 or C251 C compiler and
allows the global register optimization also for functions
written in assembler language. For more information about
global register optimization refer to the C51 Compiler
User’s Guide or the C251 Compiler User’s Guide.

The REGUSE cannot be specified on the A251 invocation
line.

Examples: $REGUSE MYFUNC (ACC, B, RO - R7)
$REGUSE PROCA (DPL, DPH)

$REGUSE PUTCHAR (R6, R7, CY, ACC)

T New features in the A251 assembler and the MCS 251 architecture

144 Chapter 7. Invocation and Controls

RESTORE

Abbreviation: RS

Arguments: None.

Default: None.

Control Class: General

Description: The RESTORE control fetches and restores the values of

the GEN and LIST controls that were stored by the last
SAVE control statement.

See Also: SAVE
Example:
$SAVE
$NOLI ST

$RESTO?E

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 145

SAVE

Abbreviation:

Arguments:

Default:

Control Class:

Description:

See Also:

Example:

SA
None
None
General

The SAVE control stores the current settings of the LIST
and GEN controls. Subsequent controls can modify the
LIST and GEN settings.

This control allows these settings to be saved, altered for a
number of program lines, and restored using the RESTORE
control. The SAVE control can be nested up to nine times.

RESTORE
$SAVE

$1 NCLUDE(SAMPLE. | NO)
$RESTORE

T New features in the A251 assembler and the MCS 251 architecture

146 Chapter 7. Invocation and Controls

SYMLIST / NOSYMLIST

Abbreviation: SL/NOSL

Arguments: None.

Default: SYMLIST

Control Class: General

Description: The SYMLIST control enables the listing of symbol

definitions in the symbol table.

The NOSYMLIST control prevents the A251 assembler
from listing of symbol definitions in the symbol table. The
NOSYMLIST control is useful in special function register
definition files.

ExampIeS' A251 SAMPLE. A51 NOMO

$NOMOD51

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 147

TITLE

Abbreviation:

Arguments:

Default:

Control Class:

Description:

Example:

TT

A string enclosed within parentheses.

The basename of the source file excluding the extension.
General

The TITLE control allows you to specify the title to use in
the header line of the listing file. The text to used for the
title must immediately follow the TITLE control and must
be enclosed in parentheses. A maximum of 60 characters
may be specified for the title.

A251 SAMPLE. A51 Tl TLE(Oven Control | er Version 3)

$TT(Race Car Controller)

T New features in the A251 assembler and the MCS 251 architecture

148

Chapter 7. Invocation and Controls

XREF

Abbreviation:

Arguments:
Default:

Description:

Example:

XR
None.
No error references are listed.

The XREF control directs the A251 assembler to generate a
cross reference table of the symbols used in the source
module. The alphabetized cross reference table will be
included in the generated listing file.

A251 SAMWPLE. A51 XREF

$XREF

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 149

Directives for Conditional Assembly

The directives for conditional assembly belong to the class of general controls.
Conditional assembly can be used to implement different program versions of
different memory models with one source file. Therefore only one source
module must be maintained to satisfy several applications

Text blocks to be conditionally assembled are enclosed by IF, ELSEIF, ELSE
and ENDIF.

The SET and RESET directives may be used in the invocation line of the
assembler. The remaining instructions for conditional assembly are only
allowed within the source file and cannot be part of the assembler invocation
line.

IF blocks may be nested to a maximum of ten. If a block is not translated the
nested conditional blocks which are part of this block also skipped.

Conditional Assembly Controls

Conditional assembly controls allow you to write 8051 assembly programs with
sections that can be included or excluded from the assembly based on the value
of a constant expression. Blocks that are to be conditionally assembled are
enclosed by IF, ELSEIF, ELSE, and ENDIF control statements.

The conditional control statements IF, ELSE, ELSEIF, and ENDIF can be
specified only in the source program. They are not allowed on the invocation
line. Additionally, these controls can be specified both with and without the
leading dollar sign ($).

When prefixed with a dollar sign, the conditional control statements can only
access symbols defined by the SET and RESET controls.

When specified without a dollar sign, the conditional control statements can
access all symbols except those defined by the SET and RESET controls. These
control statements can access parameters in a macro definition.

IF blocks may be nested up to 10 levels deep, however, if an IF, ELSEIF, or
ELSE block is not assembled, any IF blocks nested therein are also not
assembled.

T New features in the A251 assembler and the MCS 251 architecture

150 Chapter 7. Invocation and Controls

The following table lists the conditional assembly control statements.

Control Meaning ‘
IF Translate block if condition is true
ELSE Translate block if the condition of a previous IF is false.
ELSEIF Translate block if condition is true and a previous IF or ELSEIF is false.
ENDIF Marks end of a block.
RESET Set symbols checked by IF or ELSEIF to false.
SET Set symbols checked by IF or ELSEIF to true or to a specified value.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 151

SET

Abbreviation:

Arguments:

Default:

Control Class:

Description:

Example:

None.

A list of symbols with optional value assignments separated
by commas and enclosed within parentheses. For example:

SET (symbol [= number| [, symbol [= number] ...])
None.
General

The SET control assigns numeric values to the specified
symbols. Symbols that are specified with an equal sign (=)
and a numeric value are assigned the specified value.
Symbols that do not include an explicit value assignment are
assigned the value OFFFFh.

These symbols can be used in IF and ELSEIF control
statements for conditional assembly. They are only used for
control of the assembler using the conditional assembly
controls. These symbols are administered separately and do
not interfere with the other code, bit, data and xdata
symbols.

A251 SAVPLE. A51 SET(DEBUGL=1, DEBUG=0, DEBUG3=1)
$SET (TESTCODE = 0)

$SET (DEBUGCCDE, PRI NTCODE)

T New features in the A251 assembler and the MCS 251 architecture

152 Chapter 7. Invocation and Controls

RESET

Abbreviation: None.

Arguments: A list of symbols separated by commas and enclosed within
parentheses. For example:
RESET (symbol |, symbol ...])

Default: None

Control Class: General

Description: The RESET control assigns a value of 0000h to the
specified symbols. These symbols can then be used in IF
and ELSEIF control statements for conditional assembly.
These symbols are only used for control of the assembler
using the conditional assembly controls. They are
administered separately and do not interfere with the other
code, bit, data and xdata symbols.

Example: A251 SAMPLE. A51 RESET(DEBUGL, DEBUR, DEBUGB)

$RESET (TESTCODE)

$RESET (DEBUGCODE, PRI NTCODE)

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 153

1=

Abbreviation: None

Arguments: A numeric expression

Default: None

Control Class: General

Description: The IF control begins an IF-ELSE-ENDIF construct that
is used for conditional assembly of 8051 program code. The
specified numeric expression is evaluated and if it is non—
zero (TRUE) the IF block is assembled. If the expression is
zero (FALSE), the IF block is not assembled and the
subsequent blocks of the IF construct are evaluated.
IF blocks can be terminated by an ELSE, ELSEIF, or
ENDIF control statement.

Example:

$| F (DEBUG VAR = 3)
Versi on_3: MV DPTR, #TABLE_3

$ ENDI F

T New features in the A251 assembler and the MCS 251 architecture

154

Chapter 7. Invocation and Controls

ELSEIF

Abbreviation:

Arguments:
Default:

Description:

Example:

None
A numeric expression.
None

The ELSEIF control is used to introduce an alternative
program block after an IF or ELSEIF control. The
ELSEIF block is only assembled if the specified numeric
expression is non-zero (TRUE) and if previous IF and
ELSEIF conditions in the IFFELSE-ENDIF construct
were FALSE. ELSEIF blocks are terminated by an
ELSEIF, ELSE, or ENDIF control.

$IF SWTCH = 1 ; Assenble if switch is 1

1
N

$ELSEI F SW TCH - Assenble if switchis 2

1
w

$ELSEI F SW TCH - Assenble if switchis 3

$ENDI F

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 155

ELSE
Abbreviation:
Arguments:

Default:

Control Class:

Description:

Example:

None.

None.

None.

General

The ELSE control is used to introduce an alternative
program block after an IF or ELSEIF control. The ELSE
block is only assembled if previous IF and ELSEIF
conditions in the IFFELSE-ENDIF construct were all

FALSE. ELSE blocks are terminated with an ENDIF
control.

$| F (DEBUG) . TRUE when DEBUG <> 1
$ELSEI F (TEST)
$ELSE

$ENDI F

T New features in the A251 assembler and the MCS 251 architecture

156 Chapter 7. Invocation and Controls

ENDIF

Abbreviation: None

Arguments: None

Default: None

Control Class: General

Description: The ENDIF control terminates an IF-ELSE-ENDIF
construct. When A251 encounters an ENDIF control
statement, it concludes processing the IF block and resumes
assembly at the point of the IF block. Since IF blocks can
be nested, this may involve continuing in another IF block.
The ENDIF control must be preceded by an IF, ELSEIF, or
ELSE control block.

Example:
$I F TEST

$ENDI F

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 157

Chapter 8. Error Messages

This chapter lists the error messages generated by A251. The following sections
include a brief description of the possible error messages along with a
description of the error and any corrective actions you can take to avoid or
eliminate the error.

Fatal errors terminate the assembly and generate a message that is displayed on
the console. Non—fatal errors generate a message in the assembly listing file but
do not terminate the assembly.

Fatal Errors

Fatal errors cause immediate termination of the assembly. These errors usually
occur as a result of an invalid command line. Fatal errors are also generated
when the assembler cannot access a specified source file or when the macros are
nested more than 9 deep.

Fatal errors produce a message that conforms to one of the following formats:

A251 FATAL ERROR —

FI LE: <file in which the error occurred>
LI NE: <line in which the error occurred
ERROR: <corresponding error message>

A251 TERM NATED.

or

A251 FATAL ERROR —

ERROR: <error message with description>
A251 TERM NATED.

where

FI LE is the name of an input file that could not be opened.
LI NE is the line where the error occurred

ERROR is the fatal error message text explained below.

T New features in the A251 assembler and the MCS 251 architecture

158 Chapter 8. Error Messages

Fatal Error Messages

ATTEMPT TO SHARE FI LE
A file is used both for input and output (e.g. list file uses the same name as
the source file).

BAD NUMERI C CONSTANT
The numeric argument to the given control is illegal.

CAN T ATTACH FI LE
The given file can’t be opened for read access.

CAN T CREATE FILE
The given file can’t be opened for write/update access.

CAN' T HAVE GENERAL CONTROL | N | NVOCATI ON LI NE
The given control is allowed in $control lines within the source file only (for

text and not in the command line. Refer to “Chapter 7._Invocation and i

Controls® on page 113ifor more information about the A251 controls.

CAN' T REMOVE FI LE
The given temporary file could not be removed for some reason.

CONFLI CTI NG CONTROL
The given control conflicts with an earlier control (for example
$NOMOD251 MODSRC).

CONTROL LI NE TOO LONG (500)
A $-control line has more than 500 characters.

DI SK FI LE REQUI RED
The given file does not represent a disk file.

ERRORPRI NT— AND LI ST-FI LE CANNOT BE THE SAME
It is illegal to direct the listing file output and the errorprint output to the
console at the same time.

EXPECTED DELI M TER ‘ (* AFTER CONTROL
The given control requires a brace enclosed argument

EXPECTED DELIM TER ‘)‘ AFTER ARGUVENT
The given control requires a brace enclosed argument

FI LE DOES NOT EXI ST
The given file does not exist.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 159

FILE IS READ ONLY
The given file does not permit write/update access.

FI LE WRI TE ERROR
The given file could not be written to (check free space)

| DENTI FI ER EXPECTED
The given control requires an identifier as it’s argument, for example SET
(VAR1=1234H).

| LLEGAL FILE NAME, VOLUME OR DI RECTORY NAME
The name of the file is invalid or designates an invalid file.

| NVOCATI ON LI NE TOO LONG
The invocation line is longer than 500 characters.

LI M T EXCEEDED: BALANCED TEXT LENGTH
The maximum length of a balanced text string is 65000 characters.

LI M T EXCEEDED: | NCLUDE OR MACRO NESTI NG
The maximum nesting level for MPL-macros is 50. The maximum nesting
level of standard macros plus include files is 10.

LI M T EXCEEDED: MACRO DEFI NI TI ON LENGTH
The maximum definition length of a standard macro is 20000 characters.
MPL macros are limited to 65000 characters.

LI M T EXCEEDED: MORE THAN 16000 SYMBOLS
The number of symbols (labels, equ/set symbols, externals, segment-symbols)
must not exceed 16000 per source file.

LI M T EXCEEDED: SOURCE LI NE LENGTH (500)
A single source line must not exceed the 500 characters per line limit.

LIM T EXCEEDED: TOO MANY EXTERNALS (65535)
The number of external symbols must not exceed 65535 per source module.

LIM T EXCEEDED: TOO MANY EXTERNALS (65535)
The number of externals must not exceed 65535 per source module.

LIM T EXCEEDED: TOO MANY SEGVENTS (65535)
The number of segments must not exceed 65535 per source module.

NON- NULL ARGUVMENT EXPECTED
The argument to the given control must not be null (for example $PRINT()).

OUT OF MEMORY
The assembler has run out of memory. Remove unnecessary drivers from
your system configuration.

T New features in the A251 assembler and the MCS 251 architecture

160 Chapter 8. Error Messages

OUT OF RANGE NUMERI C VALUE
The numeric argument to the given control is out of range (for example
$PAGEWIDTH(3000)).

UNKNOWN CONTROL
The given control is undefined.

Non-Fatal Errors

Non-fatal errors usually occur within the source program and are typically
syntax errors. When one of these errors is encountered, the assembler attempts
to recover and continue processing the input file. As more errors are
encountered, the assembler will produce additional error messages. The error
messages that are generated are included in the listing file.

Non-fatal errors produce a message using the following format:

*** ERROR nunber INline (file, LINE line): error nmessage

or

*** WARNI NG nunber INline (file, LINE [ine): warning nessage

where

number is the error number.

l'ine corresponds to the logical line number in the source file.

file corresponds to the source or include file which contains the
error.

LI NE corresponds to the physical line number in <file>.

error nessage is descriptive text and depends on the type of error
encountered.

The logical line number in the source file is counted including the lines of all
include files and may therefore differ from the physical line number. For that
reason, the physical line number and the associated source or include file is also
given in error and warning messages.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 161

Example
11 MOV RO, # 25 * | 10
N

*** ERROR #4 |N 11 (TEST. A51, LINE 11), |LLEGAL CHARACTER

* % %

The caret character (*) is used to indicate the position of the incorrect character
or to identify the point at which the error was detected. It is possible that the
position indicated is due to a previous error. If a source line contains more than
one error, the additional position indicators are displayed on subsequent lines.

The following table lists the non—fatal error messages that are generated by
A251. These messages are listed by error number along with the error message
and a brief description of possible causes and corrections.

NOTE
Errors marked by T are MCS 251 specific and are not generated by the A51
assembler.

Number Non-Fatal Error Message and Description ‘
1 | LLEGAL CHARACTER | N NUMERI C CONSTANT

This error indicates that an invalid character was found in a numeric constant.
Numeric constants must begin with a decimal digit and are delimited by the
first non—numeric character (with the exception of the dollar sign). The base of
the number decides which characters are valid.

Base 2: 0,1 and the base indicator B

Base 8: 0-7 and the base indicator O or Q

Base 10: 0-9 and the base indicator D or no indicator
Base 16: 0-9, A—F and the base indicator H

Base 16: Oxhhhh, 0-9, and A-F

2 M SSI NG STRI NG TERM NATOR
The ending string terminator was missing. The string was terminated with a
carriage return.

3 | LLEGAL CHARACTER
The assembler has detected a character which is not in the set of valid
characters for the 51/251 assembler language (for example °).

4 BAD | NDI RECT REG STER | DENTI FI ER

This error occurs if combined registers are entered incorrectly; e.g.,
@R7, @R3, @PC+A, @DPTR+A.

5 | LLEGAL USE OF A RESERVED WORD
This error indicates that a reserved word is used for a label.

T New features in the A251 assembler and the MCS 251 architecture

162 Chapter 8. Error Messages

Number Non-Fatal Error Message and Description ‘
6 DEFI NI TI ON STATEMENT EXPECTED
The first symbol in the line must be part of a definition. For example:
VAR1 EQU 12
7 LABEL NOT PERM TTED

A label was detected in an invalid context.

8 ATTEMPT TO DEFI NE AN ALREADY DEFI NED LABEL

A label was defined more than once. Labels may be defined only once in the
source program.

9 SYNTAX ERROR
A51/A251 encountered an error processing the line at the specified token.

10 ATTEMPT TO DEFI NE AN ALREADY DEFI NED SYMBOL

An attempt was made to define a symbol more than once. The subsequent
definition was ignored.

11 STRI NG CONTAI NS ZERO OR MORE THAN TWD CHARACTERS
Strings used in an expression can be a maximum of two characters long (16
bits).

12 | LLEGAL OPERAND

An operand was expected but was not found in an arithmetic expression. The
expression is illegal.

13 ')' EXPECTED

A right parenthesis is expected. This usually indicates an error in the definition
of external symbols.

14 BAD RELOCATABLE EXPRESSI ON

A relocatable expression may contain only one relocatable symbol which may
be a segment symbol, external symbol, or a symbol belonging to a relocatable
segment. Mathematical operations cannot be carried out on more than one
relocatable symbol.

15 M SSI NG FACTOR

A constant or a symbolic value is expected after an operator.

16 DI VI DE BY ZERO ERRCR

A division by zero was attempted while calculating an expression. The value
calculated is undefined.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 163

Number Non-Fatal Error Message and Description ‘
17 I NVALI D BASE I N BI T ADDRESS EXPRESSI ON

This error indicates that the byte base in the bit address is invalid. This
occurs if the base is outside of the range 20h—2Fh or if it lies between 80h and
OFFh and is not evenly divisible by 8. For the 251 chip, the byte base address
must be in range 20H-OFFH with no restrictions. Note that with symbolic
operands, the operand specifies an absolute bit segment or an addressable
data segment.

18 QUT OF RANGE OR NON-TYPELESS Bl T-OFFSET

The input of the offset (base.offset) in a bit address must be a typeless
absolute expression with a value between 0 and 7.

19 I NVALI D REQ STER FOR EQU/ SET

The registers RO-R7, A and C may be used in SET or EQU directives. No
other registers are allowed.

20 I NVALI D SI MPLE RELOCATABLE EXPRESSI ON

A simple relocatable expression is intended to represent an address in a
relocatable segment. External symbols as well as segment symbols are not
allowed. The expression however may contain more symbols of the same
segment. Simple relocatable expressions are allowed in the instructions ORG,
EQU, SET, CODE, XDATA, IDATA, BIT, DATA, DB and DW.

21 EXPRESSI ON W TH FORWARD REFERENCE NOT PERM TTED

Expressions in EQU and SET directives may not contain forward references.

22 EXPRESSI ON TYPE DOES NOT MATCH | NSTRUCTI ON

The expression does not conform to the 8051/251 conventions. A #, /Bit,
register, or numeric expression was expected.

23 NUMERI C EXPRESSI ON EXPECTED

A numeric expression is expected. The expression of another type is found.

24 SEGVENT-TYPE EXPECTED

The segment type of a definition was missing or invalid.

25 RELOCATI ON-TYPE EXPECTED

An invalid relocation type for a segment definition was encountered. One of
the following is valid: UNIT, PAGE, INPAGE, INBLOCK and
BITADDRESSABLE (for A251: same as before plus INSEG and
EBITADDRESSABLE).

T New features in the A251 assembler and the MCS 251 architecture

164 Chapter 8. Error Messages

Number Non-Fatal Error Message and Description ‘

26 I NVALI D RELCCATI ON-TYPE

The types PAGE and INPAGE are only allowed for the CODE/ECODE and
XDATA segments. INBLOCK/INSEG is only allowed for the CODE/ECODE
segments and BITADDRESSABLE is only for the DATA segment (maximum
length 16 Bytes). EBITADDRESSABLE is allowed for DATA segments
(maximum length 96 Bytes). The type UNIT is the default for all segment
types if no input is entered.

27 LOCATI ON COUNTER MAY NOT PO NT BELOW SEGVENT-BASE

An ORG directive used in a segment defined by the AT address directive may
not specify an offset that lies below the segment base. The following example
is, therefore, invalid:

CSEG AT 1000H
ORG 800H

28 ABSCLUTE EXPRESSI ON REQUI RED

The expression in a DS or DBIT instruction must be an absolute typeless
expression. Relocatable expressions are not allowed.

29 SEGVENT-LI M T EXCEEDED

The maximum limit of a segment was exceeded. This limit depends on the
segment and relocation type. Segments with the attribute DATA should not
exceed 128 bytes. BITADDRESSABLE segments should not exceed 16 bytes
and INPAGE segments should not exceed 2 KBytes.

30 SEGVENT-SYMBOL EXPECTED

The operand to an RSEG directive must be a segment symbol.

31 PUBLI C-ATTRI BUTE NOT PERM TTED
The PUBLIC attribute is not allowed on the specified symbol.

32 ATTEMPT TO RESPECI FY MODULE NAME

An attempt was made to redefine the name of the module by using a second
NAME directive. The NAME directive may only appear once in a program.

33 CONFLI CTI NG ATTRI BUTES
A symbol may not contain the attributes PUBLIC and EXTRN simultaneously.

34 ', EXPECTED

A comma is expected in a list of expressions or symbols.

35 ' (' EXPECTED
A left parenthesis is expected at the indicated position.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 165

Number Non-Fatal Error Message and Description ‘

36 I NVALI D NUMBER FOR REQ STERBANK

The expression in a REGISTERBANK control must be an absolute typeless
number between 0 and 3.

37 OPERATI ON I NVALID I N TH S SEGVENT
8051/251 instructions are allowed only within CODE/ECODE segments.

38 NUMBER OF OPERANDS DOES NOT MATCH | NSTRUCTI ON

Either too few or too many operands were specified for the indicated
instruction. The instruction was ignored.

39 REG STER-CPERAND EXPECTED
A register operand was expected but an operand of another type was found.

40 I NVALI D REG STER

The specified register operand does not conform to the 8051/251 conventions.

41 M SSI NG ‘ END' STATEMENT

The last instruction in a source program must be the END directive. The
preceding source is assembled correctly and the object is valid.

42 I NTERNAL ERROR (PASS-2), CONTACT TECHN CAL SUPPORT
This error occurs if a symbol in Pass 2 contains a value different than in Pass
1.

43 RESPECI FI ED PRI MARY CONTROL, LI NE | GNORED

A control was repeated or conflicts with a previous control. The control
statement was ignored.

44 M SPLACED PRI MARY CONTROL, LI NE | GNORED

A primary control was misplaced. Primary controls may be entered in the
invocation line or at the beginning of the source file (as $ instruction). The
processing of primary controls in a source file ends when the first non
empty/non comment line containing anything but a primary control is
processed.

45 UNDEFI NED SYMBOL (PASS-2)

The symbol is undefined.

46 CODE/ ECODE-ADDRESS EXPECTED

An operand of memory type CODE/ECODE or a typeless expression is
expected.

T New features in the A251 assembler and the MCS 251 architecture

166 Chapter 8. Error Messages

Number Non-Fatal Error Message and Description ‘
47 XDATA-ADDRESS EXPECTED

An operand of memory type XDATA or a typeless expression is expected.

48 DATA-ADDRESS EXPECTED

An operand of memory type DATA or a typeless expression is expected.

49 | DATA-ADDRESS EXPECTED

An operand of memory type 'IDATA' or a typeless expression is expected.

50 Bl T-ADDRESS EXPECTED

An operand of memory type BIT or a typeless expression is expected.

51 TARGET QUT OF RANGE

The target of a conditional jump instruction is outside of the +127/-128 range
or the target of an AJMP or ACALL instruction is outside the 2 KByte memory
block.

52 VALUE HAS BEEN TRUNCATED TO 8 BI TS

The result of the expression exceeds 255 decimal. Only the 8 low—order bits
are used for the byte operand.

53 M SSI NG ' USI NG | NFORVATI ON

The absolute register symbols ARO through AR7 can be used only if a USING
registerbank directive was specified. This error indicates that the USING
directive is missing and the assembler cannot assign data addresses to the
register symbols.

54 M SPLACED CONDI TI ONAL CONTRCL
An ELSEIF, ELSE, or ENDIF control must be preceded by an IF instruction.

55 BAD CONDI TI ONAL EXPRESSI ON
The expression to the IF or ELSEIF control is invalid. These expressions must
be absolute and may not contain relocatable symbols.

The $IF and $ELSEIF can only access symbols defined with the $SET and
$RESET controls. Both IF and ELSEIF allow access to all symbols of the
source program.

56 UNBALANCED | F—ENDI F—CONTROLS

Each IF block must be terminated with an ENDIF control. This is also true with
skipped nested IF blocks.

57 SAVE STACK UNDERFLOW

A $RESTORE control instruction is then valid only if a $SAVE control was
previously given.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 167

Number Non-Fatal Error Message and Description ‘

58 SAVE STACK OVERFLOW

The context of the GEN, COND, and LIST controls may be stored by the
$SAVE control up to a maximum of 9 levels.

59 MACRO REDEFI NI TI ON

An attempt was made to define an already defined macro.

60 ERROR- 60
Not generated by A51/251.

61 MACRO TERM NATED BY END OF FI LE, M SSI NG ‘ ENDM
An attempt was made to define an already defined macro.

62 TOO MANY FORMAL PARAMVETERS (16)

The number of formal parameters to a macro is limited to 16.

63 TOO MANY LOCALS (16)
The number of local symbols within a macro is limited to 16.

64 DUPLI CATE LOCAL/ FORVAL

The number of local or formal identifier must be distinct.

65 | DENTI FI ER EXPECTED

While parsing a macro definition, an identifier was expected but something
different was found.

66 “EXITM | NVALI D QUTSI DE A MACRO
The EXITM (exit macro) keyword is illegal outside a macro definition.

67 EXPRESSI ON TOO COVPLEX

A too complex expression was encountered. This error occurs, if the number
of operands and operators in one expression exceeds 50.

68 UNKNOAN CONTROL OR BAD ARGUMENT(S)
The control given in a $-control line or the argument(s) to some control are
invalid.

69 M SPLACED ELSEI F/ ELSE/ ENDI F CONTROL

These controls require a preceding IF control.

70 LI M T EXCEEDED: | F-NESTI NG (10)
IF controls may be nested up to a level of 10.

T New features in the A251 assembler and the MCS 251 architecture

168 Chapter 8. Error Messages

Number Non-Fatal Error Message and Description ‘
71 NUMERI C VALUE QUT OF RANGE

The value of a numeric expression is out of range (for example $PAGEWIDTH
(2048) where only values in range 80 to 132 are allowed).

72 TOO MANY TOKENS | N SOURCE LI NE

The number of tokens (identifiers, operators, punctuation characters and end
of line) exceeds 200. The source line is truncated at 200 tokens.

72 TOO MANY TOKENS | N SOURCE LI NE

The number of tokens (identifiers, operators, punctuation characters and end
of line) exceeds 200. The source line is truncated at 200 tokens.

73 TEXT FOUND BEYOND END STATEMENT - | GNORED

Text following the END directive is not processed by the assembler.

74 REG STER USAGE: UNDEFI NED REG STER NAME

A register name argument given to the REGUSE control does not represent
the name of a register.

75 ' REG STER USAGE' REQUI RES A PUBLI C CODE SYMBOL

The register usage value must be assigned to a public symbol, which
represents a CODE symbol. For the A251, the name of a public procedure
(near of far) with memory type CODE/ECODE is also valid.

76 MULTI PLE REG STER USES d VEN TO ONE SYMBOL
The register usage value may be assigned to a symbol or procedure only
once.

77 I NSTRUCTI ON NOT AVAI LABLE t

The given instruction is not available in the current mode of operation.

78 ERROR 78
Not generated by A51/251.

79 I NVALI D ATTRI BUTE t

The OVERLAYABLE attribute given in a segment definition is not valid for
code and constant segments.

80 I NVALI D ABSOLUTE BASE/ OFFS VALUE t

The absolute address given in a segment definition does not conform to the
memory type of the segment (for example DATA AT 0x1000).

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 169

Number Non-Fatal Error Message and Description ‘
81 EXPRESSI ON HAS DI FFERENT MEMORY SPACE f

The expression given in a symbol definition statement does not have the
memory space required by the directive, for example:

VAR1 CODE EXPR
where ‘EXPR’ has a memory type other than CODE or NUMBER.

82 LABEL STATEMENT MUST BE W THI N CODE/ ECODE SEGVENT t
The LABEL statement is not allowed outside a CODE or ECODE segment.

83 TYPE | NCOWPATI BLE W TH G VEN MEMORY SPACE t

The type given in an external declaration is not compatible to the given
memory space. The following examples shows an invalid type since a bit can
never reside in code space:

EXTRN CODE:BIT (bitO, bit1)

84 OPERATOR REQUI RES A CODE/ ECODE ADDRESS t

The type override operators NEAR and FAR cannot be applied to addresses
with memory type other than CODE and ECODE.

85 I NVALI D OPERAND TYPE t

An expression contains invalid typed operands to some operator, for example
addition/unary minus on bit-type operands.

86 PROCEDURES CAN' T BE NESTED ft
A251 does not support nested procedures.

87 UNCLOSED PROCEDURE

A251 detected an unclosed procedure after scanning the source file.

88 VALUE HAS BEEN TRUNCATED TO 16 BI TS *
The displacement value given in a register expression (WRn+disp16,
DRk+disp16) has been truncated to 16 bits.

89 ERROR- 89 +
Not generated by A51/251.

90 ‘FAR RETURN I N ‘ NEAR PRCCEDURE *

The return far instruction (ERET) was encountered in a procedure of type
NEAR (the code may not work).

T New features in the A251 assembler and the MCS 251 architecture

170 Chapter 8. Error Messages

Number Non-Fatal Error Message and Description ‘
91 TYPE M SVATCH t

The operand type of an instruction operand does not match the requested type
of the instruction, for example:

MOV WR10,Byte_Memory_Operand. ; Word/Byte mismatch
Use a type override to avoid the warning as shown:

MOV WR10,WORD Byte_Memory_Operand

92 MCS 251 | NSTRUCTI ON I N NON 251 MODE *

The assembler encountered an MCS 251 instruction in $SNOMOD251 mode of
operation. $NOMOD251 limits the instructions to the set for the MCS 51
family of controllers.

93 ERROR- 93
Not generated by A51/251.

94 VALUE DOES NOT MATCH | NSTRUCTI ON t
The short value given in a INC/DEC Rn,#short is not one of 1,2,4.

95 I LLEGAL MEMORY CLASS SPECI FI ER t

The memory class specifier in a segment definition statement does not
correspond to one of the predefined memory class names (CODE, ECODE,
BIT, EBIT ...).

96 ACCESS TO M SALI GNED ADDRESS t
A word instruction accesses a misaligned (odd) address. This warning is
generated only if the $WORDALIGN control was given.

97 ‘FAR REFERENCE TO ‘ NEAR LABEL ft
An ECALL/AJMP instruction to some label of type NEAR has been detected.

98 ‘ NEAR REFERENCE TO ‘' FAR LABEL t

An ACALL/AJMP/SJIMP or conditional jump instruction to some label of type
FAR has been detected.

150 PREVMATURE END OF FI LE ENCOUNTERED

The MPL macro processor encountered the end of the source file while
parsing a macro definition.

151 <name>: | DENTI FI ER EXPECTED

The macro or function given by <name> in the error message expected an
identifier but found something else.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 171

Number Non-Fatal Error Message and Description ‘

152 MPL FUNCTI ON <nane>: <char act er> EXPECTED
The MPL function <name> expected a specific character in the input stream
but found some other character.

153 <name>: UNBALANCED PARENTHESI S

While scanning balanced text, the macro processor expected a ‘)’ character,
but found some other character.

154 EXPECTED <i dentifi er>

The macro processor expected some specific identifier (for example ELSE) but
found some other text.

155 ERROR- 155
Not generated by A51/251.

156 FUNCTI ON ‘ MATCH : | LLEGAL CALL PATTERN

The call pattern to the MPL function match must be a formal parameter
followed by a delimiter followed by another formal parameter.

157 FUNCTI ON ‘ EXIT' | N BAD CONTEXT
The EXIT function must not appear outside a macro expansion, %REPEAT or
%WHILE.

158 | LLEGAL METACHARACTER <char act er >

The metacharacter may not be @, (,), *, TAB, EOL, A-Z,a-z, 0-9, _and ?.

159 CALL PATTERN - DELIM TER <del i miter> NOT FOUND
The actual parameters in a macro call do not match the call pattern defined in
the macro definition of that macro.

160 CALL TO UNDEFI NED MACRO <macr oname>

An attempt to activate an undefined macro has been encountered .

161 ERROR- 161
Not generated by A51/251.

162 INVALID DI T ‘character’ I N NUMBER

An ill formed number has been encountered. For numbers, the rules are
equal to the numbers in the assembler language with the exception of $ signs,
which are not supported within the MPL.

163 UNCLOSED STRI NG OR CHARACTER CONSTANT

A string or character constant is terminated by an end of line character instead
of the closing character.

T New features in the A251 assembler and the MCS 251 architecture

172 Chapter 8. Error Messages

Number Non-Fatal Error Message and Description ‘
164 I NVALI D STRI NG OR CHARACTER CONSTANT

A string or character constant may contain one or two characters.

165 EVAL: UNKNOWN EXPRESSI ON | DENTI FI ER
An MPL expression contains an unknown identifier.

166 <t oken>: | NVALI D EXPRESSI ON TOKEN
An MPL expression contains a token which neither represents an operator nor
an operand.

167 <function> D V/ MDD BY ZERO

The evaluation of an expression within the MPL function <function> yields a
division or modulus by zero.

168 EVAL: SYNTAX ERROR | N EXPRESSI ON

An expression is followed by one or more erroneous tokens.

169 CAN' T OPEN FI LE <nane of file>
The file given in an $INCLUDE directive cannot be opened.

170 <nane of file> IS NOT A DI SK FI LE

An attempt was made to open a file which is not a disk file (for example
$INCLUDE (CON).

171 ERROR | N | NCLUDE DI RECTI VE

The argument to the INCLUDE directive must be the brace enclosed name of
the file, for example $INCLUDE (REG251.INC).

172 CAN' T REDEFI NE PREDEFI NED MACRO ‘ SET’

The .predefined %SET macro can’t be redefined.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 173

Appendix A. 8051/251 Instruction Sets

This appendix lists the 8051 and MCS 251 microcontroller instruction sets. The A
8051 and MCS 251 instructions are listed in alphabetical order and according to
their hexadecimal opcodes. The following terms are used in the descriptions.

Identifier Explanation ‘

A Accumulator

AB Register Pair A & B

B Multiplication Register

© Carry Flag

DPTR Data pointer

PC Program Counter

Rn Register RO - R7 of the currently selected Register Bank.

Rm t Register RO - R15 of the currently selected Register File.

WRj T Register WRO - WR30 of the currently selected Register File.

DRk T Register DRO - DR28, DR56, DR60 of the currently selected Register File.

dir8 8-bit data address; Data RAM location (00:00 - 00:7F) or a SFR (S:80 - S:FF)

dirl6 T 16-bit data address; Data RAM location (00:00 - 00:FFFF).

@RI Data RAM location (00:00 - 00:FF) addressed indirectly through R1 or RO.

@WRj T Data RAM location (0 - 64K) addressed indirectly through WRO - WR30.

@DRk T Data RAM location (0 - 16M) addressed indirectly through register DR60, DR56,
DRO - DR28.

#data8 8-bit constant included in instruction.

#datal6 16-bit constant included in instruction.

#short T constant 1, 2 or 4 included in instruction (251 only).

addrl6 16-bit destination address. Used by LCALL & LIMP. A branch can be anywhere
within a 64KB segment of the program memory address space.

addrll 11-bit destination address. Used by ACALL & AJMP. The branch will be within the
same 2KByte block of program memory of the first byte of the following instruction.

rel Signed (two’s complement) 8-bit offset byte. Used by SIMP and conditional
jumps. Range is -128 .. +127 bytes relative to the first byte of the following
instruction.

bit8 Direct addressed bit in Data RAM Location (8051 compatible).

bitll t Direct addressed bit in Data RAM or Special Function Register.

@Wrj+dis T Data RAM location (0 - 64K) addressed displaced through (WRO - WR30) +
displacement value (251 only).

@DRk+dis T Data RAM location (0 - 16M) addressed displaced through (DR60, DR56, DR28 -
DRO) + displacement value (251 only).

T New features in the A251 assembler and the MCS 251 architecture

174 Appendix A. 8051/251 Instruction Sets

ACAL L Absolute Subroutine CALL CYy AC N OV Zz
Mnemonic Description Bytes Bytes
Binary | Source t
ACALL | addrl1 Absolute Subroutine Call 2 2
ADD ADD destination, source CYy AC N ov Z
Addition X X X X X
Mnemonic Description Bytes Bytes
Binary | Source t
ADD A,Rn Add register to accumulator 1 2
ADD A,dir8 Add direct byte to accumulator 2 2
ADD A @RI Add indirect RAM to accumulator 1 2
ADD A #data8 Add immediate data to accumulator 2 2
ADD Rm,Rm Add byte register to byte register 3 2
ADD WRj,WRj t Add word register to word register 3 2
ADD DRk,DRk T Add double word register to dword register 3 2
ADD Rm, #data8 t Add 8 bit data to byte register 4 3
ADD Wrj#datalé T | Add 16 bit data to word register 5 4
ADD Drk,#datal6 t | Add 16 bit unsigned data to dword register 5 4
ADD Rm,dir8 f Add direct address to byte register 4 3
ADD WR;,dir8 t Add direct address to word register 4 3
ADD Rm,dirl6 t Add direct address (64K) to byte register 5 4
ADD WR;,dirl6 t Add direct address (64K) to word register 5 4
ADD Rm,@WRj T Add indirect address (64K) to byte register 4 3
ADD Rm,@DRk t Add indirect address (16M) to byte register 4 3
ADDC ADDC destination, source CYy AC N ov Z
Addition with Carry X X X X X
Mnemonic Description Bytes Bytes
Binary | Source t
ADDC [A,Rn Add register to accumulator with carry flag 1 2
ADDC | A,dir8 Add direct byte to accumulator with carry flag 2 2
ADDC | A @RI Add indirect RAM to accumulator with carry 1 2
flag
ADDC | A#data8 Add immediate data to accumulator with carry 2 2
flag

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 175

Absolute JUMP CYy AC N OV Z
AJMP

Mnemonic Description Bytes Bytes
Binary | Source t

AIMP | addr11 Absolute Jump 2 2
ANL ANL. destination, source CYy AC N ov Z
Logical AND - — X — X
Mnemonic Description Bytes Bytes
Binary | Source ¥
ANL A,Rn AND register to accumulator 1 2
ANL A,dir8 AND direct byte to accumulator 2 2
ANL A @RI AND indirect RAM to accumulator 1 2
ANL A #data8 AND immediate data to accumulator 2 2
ANL dir,A AND accumulator to direct byte 2 2
ANL dir,#data8 AND immediate data to direct byte 3 3
ANL Rm,Rm AND byte register to byte register 3 2
ANL WRj,WRj t AND word register to word register 3 2
ANL Rm,#data8 t AND 8 bit data to byte register 4 3
ANL Wrj,#datalé t | AND 16 bit data to word register 5 4
ANL Rm,dir8 f AND direct address to byte register 4 3
ANL Wrj,dir8 t AND direct address to word register 4 3
ANL Rm,dirl6 t AND direct address (64K) to byte register 5 4
ANL Wrj,dirlé t AND direct address (64K) to word register 5 4
ANL Rm,@WRj T AND indirect address (64K) to byte register 4 3
ANL Rm,@DRk t AND indirect address (16M) to byte register 4 3
ANL ANL' destination, source CYy AC N ov Z
Logical AND for bit variables X — X — X
Mnemonic Description Bytes Bytes
Binary | Source T
ANL C,bit8 AND direct bit to carry; from BIT space 2 2
ANL C,bitll t AND direct bit to carry; from EBIT space 4 3

T New features in the A251 assembler and the MCS 251 architecture

176

Appendix A. 8051/251 Instruction Sets

AN L/ ANL/ destination, source CYy AC N OV Z
Logical AND for bit variables X — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
ANL C,/bit8 AND complement of direct bit to carry; BIT 2 2
space
ANL C,/bitll t AND complement of dir bit to carry; EBIT 4 3
space
CJ N E COMPARE destination, sourceand |CY AC N OV Z
jump if not equal X — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
CINE A,dir8,rel Compare dir byte to acc. and jump if not equal 3 3
CJINE A #data8,rel Compare imm. data to acc. and jump if not 3 3
equal
CJINE Rn,#data8,rel Compare imm. data to reg and jump if not 3 4
equal
CJINE @Ri,#data8,rel | Compare imm. data to indir and jump if not 3 4
equal
C L R CLEAR Operand Cy AC N oV Z
- — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
CLR | bit1l t Clear accumulator 1 1
C L R CLEAR Bit Operand CYy AC N OV Z
Mnemonic Description Bytes Bytes
Binary | Source t
CLR C Clear carry 1 1
CLR bit8 Clear direct bit from BIT space 2 2
CLR bitll t Clear direct bit from EBIT space 4 3

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler

177

CMP

COMPARE Operands

Cy AC N OV Z

X X X X X
Mnemonic Description Bytes Bytes
Binary | Source t
CMP Rm,Rm ft Compare registers 2
CMP WRj,WRj T Compare word registers 3 2
CMP DRk,DRKk t Compare double word registers 3 2
CMP Rm,#data8 t Compare register with immediate data 4 3
CMP Wrj#datalé t | Compare word register with immediate data 5 4
CMP Drk,#00 t | Compare dword reg with zero extended data 5 4
CMP Drk #ff t | Compare dword reg with one extended data 5 4
CMP Rm,dir8 f Compare register with direct byte 4 3
CMP WR;,dir8 t Compare word register with direct word 4 3
CMP Rm,dirl6 t Compar register with direct byte (64K) 5 4
CMP WR;j,dirl6 t Compare word register with direct byte (64K) 5 4
CMP Rm,@WRj T Compare register with indirect address (64K) 4 3
CMP Rm,@DRk t Compare register with indirect address (16M) 4 3
CPL COMPLEMENT Operand Cy AC N OV Z
- — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
CPL | A Complement accumulator 1 1
C P L COMPLEMENT Bit Operand CYy AC N OV Z
Mnemonic Description Bytes Bytes
Binary | Source t
CPL C Complement carry 1 1
CPL bit8 Complement direct bit from BIT space 2 2
CPL bitll t Complement direct bit from EBIT space 4 3

T New features in the A251 assembler and the MCS 251 architecture

178

Appendix A. 8051/251 Instruction Sets

DA DECIMAL ADJUST Accumulator CYy AC N OV Z
for Addition X — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
DA | A Decimal adjust accumulator 1 1
DEC DECREMENT Operand with a Cy AC N oV Z
constant - — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
DEC A Decrement accumulator 1 1
DEC Rn Decrement register 1 2
DEC dir Decrement dir byte 2 2
DEC @RI Decrement indir RAM 1 2
DEC Rm,#short 1 Decrement byte register with 1, 2 or 4 3 2
DEC WR;j,#short t Decrement word register with 1, 2 or 4 3 2
DEC DRk, #short T Decrement double word register with 1, 2 or 4 3 2
D |V DIVIDE Operands CYy AC N OV Z
o — X X X
Mnemonic Description Bytes Bytes
Binary | Source t
DIV AB Divide A by B 1 1
DIV Rm,Rm Divide byte register by byte register 3 2
DIV WRj,WRj t Divide word register by word register 3 2
DJ NZ DECREMENT Operand and Jump if [CY AC N OV Z
Not Zero - — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
DJINZ Rn,rel Decrement register and jump if not zero 3 3
DJNZ dir8,rel Decrement direct byte and jump if not zero 3 3

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler

179

ECALL

Extended Subroutine CALL

Cy AC N OV Z

Mnemonic Description Bytes Bytes
Binary | Source t

ECALL | addr24 Extended subroutine call 5 4

ECALL | DRk Extended subroutine call 3 2

EJMP

Extended JUMP

Cy AC N OV Z

Mnemonic Description Bytes Bytes
Binary | Source t

EJMP addr24 Extended jump 5 4

EJMP DRk Extended jump 3 2

ERET

RETURN from extended

Cy AC N OV Z

Subroutine —_ = = = =

Mnemonic Description Bytes Bytes
Binary | Source t

ERET |DRk Return from subroutine 1 1

INC

INCREMENT Operand with a

Cy AC N OV Z

constant - — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
INC A Increment accumulator 1 1
INC Rn Increment register 1 2
INC dir Increment direct byte 2 2
INC @RI Increment indirect RAM 1 2
INC Rm,#short t Increment byte register with 1, 2 or 4 3 2
INC WRj,#short T Increment word register with 1, 2 or 4 3 2
INC Drk,#short T Increment double word register with 1, 2 or 4 3 2
INC DPTR Increment Data Pointer 1 1

T New features in the A251 assembler and the MCS 251 architecture

180 Appendix A. 8051/251 Instruction Sets

J B JUMP if Bit is set CY|AC| N |OV]| Z

Mnemonic Description Bytes Bytes
Binary | Source t

JB bit8,rel Jump if dir bit (from BIT space) is set 3 3

JB bitll,rel t Jump if dir bit (from EBIT space) is set 5 4

J BC JUMP if Bit is set and clear bit Cy AC N OV Zz

Mnemonic Description Bytes Bytes
Binary | Source t

JBC bit8,rel Jump if dir bit (BIT space) is set and clear bit 3 3

JBC bitll,rel t Jump if dir bit (EBIT space) is set and clear bit 5 4

J C JUMP if Carry is set Cy AC N OV Zz

Mnemonic Description Bytes Bytes
Binary | Source t

JC | rel Jump if carry is set 2 2

J E JUMP if equal Cy AC N OV Z

Mnemonic Description Bytes Bytes
Binary | Source t

JE | rel T Jump if equal 3 2

J G JUMP if greater than CYy AC N oV Zz

Mnemonic Description Bytes Bytes

Binary | Source t

JG | rel t Jump if greater than 3 2

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 181

J L E JUMP if less than or equal CYy AC N OV Zz

Mnemonic Description Bytes Bytes
Binary | Source t

JLE | rel t Jump if less than or qual 3 2

J M P JUMP indir relative to DPTR CYy AC N ov Zz

Mnemonic Description Bytes Bytes
Binary | Source t

JMP | @A+DPTR Jump indir relative to DPTR 1 1

J N B JUMP if Bit is Not set CYy AC N oV Zz

Mnemonic Description Bytes Bytes
Binary | Source t

JNB bit8,rel Jump if dir bit (from BIT space) is not set 3 3

JNB bitll,rel t Jump if dir bit (from EBIT space) is not set 5 4

J NC JUMP if Carry is Not set CYy AC N OV Zz

Mnemonic Description Bytes Bytes
Binary | Source t

JNC | rel Jump if carry is not set 2 2

J N E JUMP if Not Equal Cy AC N OV Z

Mnemonic Description Bytes Bytes

Binary | Source t

JINE | rel Jump if not equal 3 2

T New features in the A251 assembler and the MCS 251 architecture

182

Appendix A. 8051/251 Instruction Sets
J NZ JUMP if Accumulator is Not Zero Cy AC N OV Zz
Mnemonic Description Bytes Bytes
Binary | Source t
INZ | rel Jump if accumulator is not zero 2 2
J SG JUMP if greater than (Signed) CYy AC N oV Z
Mnemonic Description Bytes Bytes
Binary | Source t
JSG | rel T Jump if greater than (signed) 3 2
J SGE JUMP if greater than or Equal CYy AC N OV Zz
(Signed) —_ — —
Mnemonic Description Bytes Bytes
Binary | Source t
JSGE | rel t Jump if greater than or equal (signed) 3 2
J SL JUMP if Less than (Signed) CYy AC N oV Z
Mnemonic Description Bytes Bytes
Binary | Source t
JSL | rel T Jump if less than (signed) 3 2
J SL E JUMP if Less than or Equal CYy AC N OV Zz
(Signed) —_ —
Mnemonic Description

Bytes Bytes
Binary | Source t

JSLE |rel 1

Jump if less than or equal (signed) 3 2

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler

J Z JUMP if Accumulator is Zero Cy AC N OV Zz
Mnemonic Description Bytes Bytes
Binary | Source t
Jz | rel Jump if accumulator is zero 2 2
LCALL Long Subroutine CALL Cy AC N OV Z
Mnemonic Description Bytes Bytes
Binary | Source t
LCALL | @WRj T Long Subroutine Call indirect via word register 3 2
LCALL | addri6 Long Subroutine Call 3 3

LJ M P Long JUMP CYy AC N OV Z
Mnemonic Description Bytes Bytes
Binary | Source t
LIMP @WRj T Long Jump indirect via word register 3 2
LIMP addrl6 Long Jump 3 3
MOV MOV destination, source CYy AC N ov Z
Move data —_ = = = =
Mnemonic Description Bytes Bytes
Binary | Source t
MOV | ARn Move register to accumulator 1 2
MOV | A,dir8 Move direct byte to accumulator 2 2
MOV | A,@Ri Move indirect RAM to accumulator 1 2
MOV | A,#data8 Move immediate data to accumulator 2 2
MOV | Rn,A Move accumulator to register 1 2
MOV | Rn,dir8 Move direct byte to register 2 3
MOV | Rn,#data8 Move immediate data to register 2 3
MOV | dir8,A Move accumulator to direct byte 2 2
MOV | dir8,Rn Move register to direct byte 2 3
MOV | dir8,dir8 Move direct byte to direct byte 3 3
MOV | dir8,@Ri Move indirect RAM to direct byte 2 3

T New features in the A251 assembler and the MCS 251 architecture

184

Appendix A. 8051/251 Instruction Sets

MOV MOV destination, source CYy AC N OV Z
Move data —_ = = = =
Mnemonic Description Bytes Bytes
Binary | Source t
MOV | dir8,#data8 Move immediate data to direct byte 3 3
MOV | @RIi,A Move accumulator to indirect RAM 1 2
MOV | @Ri,dir8 Move direct byte to indirect RAM 2 3
MOV | @Ri#data8 Move immediate data to indirect RAM 2 3
MOV | DPTR,#datal6 Load Data Pointer with 16-bit constant 3 3
MOV | Rm,Rm Move byte register to byte register 3 2
MOV | WRj,WRj T Move word register to word register 3 2
MOV | DRKk,DRk T Move dword register to dword register 3 2
MOV | Rm,#data8 t Move 8 bit data to byte register 4 3
MOV | WRj,#datal6 T Move 16 bit data to word register 5 4
MOV | DRk,#0datal6é t | Move 16 bit zero extended data to dword reg. 5 4
MOV | DRk, #1datal6 T | Move 16 bit one extended data to dword reg. 5 4
MOV | Rm,dir8 t Move dir address to byte register 4 3
MOV | WR;j,dir8 T Move direct address to word register 4 3
MOV | DRK,dir8 t Move direct address to dword register 4 3
MOV | Rm,dirl6 t Move direct address (64K) to byte register 5 4
MOV | WRj,dirlé t Move direct address (64K) to word register 5 4
MOV | DRk,dirl6 T Move direct address (64K) to dword register 5 4
MOV | Rm,@WRj t Move indirect address (64K) to byte register 4 3
MOV | Rm,@DRk T Move indirect address (16M) to byte register 4 3
MOV | WRj,@WRj t Move indirect address (64K) to word register 4 3
MOV | WRj,@DRk t Move indirect address (16M) to word register 4 3
MOV | dir8,Rm T Move byte register to direct address 4 3
MOV | dir8, WRj T Move word register to direct address 4 3
MOV | dir8,DRk t Move dword register to direct address 4 3
MOV | dirl6,Rm *t Move byte register to direct address (64K) 5 4
MOV | dirl6,WRj t Move word register to direct address (64K) 5 4
MOV | dirl6,DRk T Move dword register to direct address (64K) 5 4
MOV | @WRj,Rm T Move byte register to direct address (64K) 4 3
MOV | @DRk,Rm T Move byte register to indirect address (16M) 4 3
MOV | @WRj,WRj T Move word register to indirect address (64K) 4 3
MOV | @DRk,WRj t Move word register to indirect address (16M) 4 3
MOV | Rm,@WRj+dis T | Move displacement address (64K) to byte reg. 5 4
MOV | WRj,@WRj+dis Move displacement address (64K) to word 5 4
T reg.
MOV | Rm,@DRk+dis 1 | Move displacement address (16M) to byte reg. 5 4

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler

185

MOV MOV destination, source CYy AC N OV Z
Move data —_ = = = =
Mnemonic Description Bytes Bytes
Binary | Source t
MOV | WRj,@DRk+dis T | Move displacement address (16M) to word 5 4
reg.
MOV | @WRj+dis,Rm 1 | Move byte reg. to displacement address (64K)
MOV | @WRj+dis,WRj Move word reg. to displacement address 4
T (64K)
MOV | @DRk+dis,Rm 1 | Move byte reg. to displacement address (16M)
MOV | @DRk+dis,WRj T | Move word reg. to displacement address
(16M)
MOV | C,bit8 Move dir bit to carry
MOV | C,bitll T Move dir bit from 8 bit address location to
carry
MOV | bit8,C Move carry to dir bit 2
MOV | bit11,C t Move carry to dir bit from 16 bit address
location

MOVC MOV destination, source CYy AC N OV Z
Move Code byte —_ = = = =
Mnemonic Description Bytes Bytes
Binary | Source t
MOVC | A,@A+DPTR Move code byte relative to DPTR to 1 1
accumulator
MOVC | A @A+PC Move code byte relative to PC to accumulator 1 1

MOVH

MOVH destination, source CcY

Move data to high word of DR

AC N OV Z

Mnemonic Description Bytes Bytes
Binary | Source T
MOVH | DRk, #datal6 T | Move 16-bit imm. data to high word of dword 3 2
reg.

T New features in the A251 assembler and the MCS 251 architecture

186

Appendix A. 8051/251 Instruction Sets

MOVS MOVS destination, source CYy AC N OV Z
Move byte to word (signed ext.) —_ = = = =
Mnemonic Description Bytes Bytes
Binary | Source t
MOVS | WRj,Rm t Move byte register to word register 3 2
MOVX MOV destination, source CYy AC N oV Z
External RAM access —_ = = = =
Mnemonic Description Bytes Bytes
Binary | Source t
MOVX | A,@Ri Move xdata RAM (8 bit address) to 1 2
accumulator
MOVX | A/ @DPTR Move xdata RAM (16 bit address) to 1 1
accumulator
MOVX | @Ri,A Move accumulator to xdata RAM (8 bit 1 2
address)
MOVX | @DPTR,A Move accumulator to xdata RAM (16 bit 1 1
address)
MOV destination, source CY

MOVZ

Move byte to word (zero ext.) —

AC N OV Z

Mnemonic Description Bytes Bytes
Binary | Source t
MOvVZ | WRj,Rm T Move byte reg. to word reg. (zero extended) 3 2
M U L MULTIPLY Operands Cy AC N OV Zz
0O — X X X
Mnemonic Description Bytes Bytes
Binary | Source t
MUL AB Multiply A and B 1 1
MUL Rm,Rm f Multiply byte register with byte register 3 2
MUL WRj,WRj t Multiply word register with word register 3 2

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 187

NOP No Operation CYy AC N oV Zz
Mnemonic Description Bytes Bytes
Binary | Source t
NOP | No operation 1 1
ORL ORL destination, source CYy AC N oV Z
Logical OR - — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
ORL A,Rn OR register to accumulator 1 2
ORL A,dir8 OR dir byte to accumulator 2 2
ORL A,@Ri OR indir RAM to accumulator 1 2
ORL A #data8 OR immediate data to accumulator 2 2
ORL dir,A OR accumulator to dir byte 2 2
ORL dir,#data8 OR immediate data to dir byte 3 3
ORL Rm,Rm OR byte register to byte register 3 2
ORL WRj,WRj t OR word register to word register 3 2
ORL Rm,#data8 t OR 8 bit data to byte register 4 3
ORL WRj,#datalé t | OR 16 bit data to word register 5 4
ORL Rm,dir8 OR dir address to byte register 4 3
ORL WR;,dir8 t OR dir address to word register 4 3
ORL Rm,dirl6 t OR dir address (64K) to byte register 5 4
ORL WR;,dirl6 t OR dir address (64K) to word register 5 4
ORL Rm,@WRj T OR indir address (64K) to byte register 4 3
ORL Rm,@DRk t OR indir address (16M) to byte register 4 3
ORL ORL destination, source CYy AC N ov Z
Logical OR for bit variables X — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
ORL C,bit8 OR direct bit to carry; from BIT space 2 2
ORL C,bit1l t OR direct bit to carry; from EBIT space 4 3

T New features in the A251 assembler and the MCS 251 architecture

188

Appendix A. 8051/251 Instruction Sets

ORL/ ORL/ destination, source CYy AC N OV Z
Logical OR with Complement - — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
ORL C,/bit8 OR complement of direct bit to carry; BIT 2 2
space
ORL C,/bitll t OR complement of dir bit to carry; EBIT space 4 3
PO P POP Operand from Stack CYy AC N oV Z
Mnemonic Description Bytes Bytes
Binary | Source t
POP Rm Pop byte register from stack 3 2
POP WRj t Pop word register from stack 3 2
POP DRk ft Pop double word register from stack 3 2
POP dir8 Pop direct byte from stack 2 2
P USH PUSH Operand onto Stack CYy AC N oV Z
Mnemonic Description Bytes Bytes
Binary | Source t
PUSH |Rm f Push byte register onto stack 3 2
PUSH |WRj t Push word register onto stack 3 2
PUSH |DRk ft Push double word register onto stack 3 2
PUSH | dir8 Push direct byte onto stack 2 2
PUSH | #data8 T Push immediate data onto stack 4 3
PUSH | #datal6 t Push immediate data (16 bit) onto stack 5 4
RET RETURN from Subroutine CYy AC N oV Z
Mnemonic Description Bytes Bytes
Binary | Source t
RET | Return from subroutine 1 1

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler

189

R ETl RETURN from Interrupt CYy AC N OV Z
Mnemonic Description Bytes Bytes
Binary | Source t
RETI | Return from interrupt 1 1
RL ROTATE Accumulator Left CY AC N ov Z
- — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
RL | A Rotate accumulator left 1 1
RLC ROTATE Accumulator Left through [CY AC N OV Z
the Carry X — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
RLC | A Rotate accumulator left through the carry 1 1
RR ROTATE Accumulator Right Cy AC N OV Z
- — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
RR | A Rotate accumulator right 1 1
RRC ROTATE Accumulator Right CYy AC N OV Zz
through the Carry X — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
RRC | A Rotate accumulator right through the carry 1 1

T New features in the A251 assembler and the MCS 251 architecture

190

Appendix A. 8051/251 Instruction Sets

SETB SET Bit Operand CYy AC N OV Zz
Mnemonic Description Bytes Bytes
Binary | Source t
SETB C Set carry 1 1
SETB bit8 Set direct bit from BIT space 2 2
SETB bitll t Set direct bit from EBIT space 5 4

SJ M P Short JUMP CY AC N OV Z

Mnemonic Description Bytes Bytes
Binary | Source t

SIMP | rel Short jump (relative address) 2 2

S L L SHIFT Register Left Cy AC N OV Zz
X — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
SLL Rm t Shift byte register left 3 2
SLL WRj T Shift word register left 3 2
SRA SHIFT Register Right (arithmet.) CYy AC N OV Zz
sign extended X — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
SRA Rm t Shift byte register right; sign extended 3 2
SRA WRj T Shift word register right; sign extended 3 2
SRL SHIFT Register Right (logic) zero CYy AC N OV Zz
extended X — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
SRL | Rm t Shift byte register right; zero extended 3 2

T New features in the A251 assembler and the MCS 251 architecture

191

A51 Assembler / A251 Assembler
SRL SHIFT Register Right (logic) zero CYy AC N OV Zz
extended X — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
SRL | WRj t Shift word register right; zero extended 3 2
SUB SUB destination, source CYy AC N ov Z
Subtraction X X X X X
Mnemonic Description Bytes Bytes
Binary | Source t
SUB Rm,Rm Subtract byte register from byte register 3 2
SuUB WRj,WRj T Subtract word register from word register 3 2
SUB DRKk,DRk T Subtract dword register from dregister 3 2
SUB Rm #data t Subtract 8 bit data from byte register 4 3
SUB Wrj,#datalé T [Subtract 16 bit data from word register 5 4
SuUB Drk,#datal6 t | Subtract 16 bit unsigned data from dword reg. 5 4
SUB Rm,dir 1 Subtract direct address from byte register 4 3
SUB Wrj,dir t Subtract direct address from word register 4 3
SUB Rm,dirl6 t Subtract direct address (64K) from byte 5 4
register
SUB Wrj,dirl6 t Subtract direct address (64K) from word 5 4
register
SUB Rm,@WRj T Subtract indirect address (64K) from byte reg.
SuUB Rm,@DRk t Subtract indirect address (16M) from byte reg.

SUBB

SUBB destination, source

Cy AC N OV Z

Subtraction with Borrow X X X X X
Mnemonic Description Bytes Bytes
Binary | Source t
SUBB | ARn Subtract register from accumulator with 1 2
borrow
SUBB | A,dir8 Subtract direct byte from accumulator with 2 2
borrow
SUBB |[A@Ri Subtract indirect byte from accumulator with 1 2
borrow
SUBB | A#data8 Subtract immediate data from accumulator 2 2
with borrow

T New features in the A251 assembler and the MCS 251 architecture

192

Appendix A. 8051/251 Instruction Sets

SWAP SWAP Nibbles within the CYy AC N OV Z
Accumulator - — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
SWAP | A Swap nibbles within the accumulator 1 1
TRAP JUMP to the Trap Interrupt CYy AC N oV Z
Mnemonic Description Bytes Bytes
Binary | Source t
TRAP | Trap T Jumps to the trap interrupt vector 2 1
XCH EXCHANGE Operands CYy AC N OV Z
Mnemonic Description Bytes Bytes
Binary | Source t
XCH A,Rn Exchange register with accumulator 2 2
XCH A,dir8 Exchange direct byte with accumulator 2 2
XCH A,@RIi Exchange indirect byte with accumulator 1 2

XCHD

EXCHANGE Digit

Cy AC N OV Z

Mnemonic Description Bytes Bytes
Binary | Source t
XCHD | A @Ri Exchange low-order digit in indir. RAM with 1 2
accumulator

XRL

EXCL.-OR destination, source

Cy AC N OV Z

Logical Exclusive-OR - — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
XRL A,Rn Exclusive-OR register to accumulator 1 2
XRL A,dir8 Exclusive-OR direct byte to accumulator 2 2
XRL A,@Ri Exclusive-OR indirect byte to accumulator 1 2

T New features in the A251 assembler and the MCS 251 architecture

193

A51 Assembler / A251 Assembler
XRL EXC_L.-OR dest_ination, source CYy AC N OV Z
Logical Exclusive-OR - — X — X
Mnemonic Description Bytes Bytes
Binary | Source t
XRL A #data8 Exclusive-OR immediate data to accumulator 2 2
XRL dir8,A Exclusive-OR accumulator to direct byte 2 2
XRL dir8,#data8 Exclusive-OR immediate data to direct byte 3 3
XRL Rm,Rm Exclusive-OR byte register to byte register 3 2
XRL WRj,WRj t Exclusive-OR word register to word register 3 2
XRL Rm,#data8 t Exclusive-OR 8 bit data to byte register 4 3
XRL WRj,#datalé t | Exclusive-OR 16 bit data to word register 5 4
XRL Rm,dir8 Exclusive-OR direct address to byte register 4 3
XRL WR;,dir8 t Exclusive-OR direct address to word register 4 3
XRL Rm,dirl6 t Exclusive-OR direct address (64K) to byte reg. 5 4
XRL WR;,dirl6 t Exclusive-OR direct address (64K) to word 5 4
reg.
XRL Rm,@WRj t Exclusive-OR indirect address (64K) to byte 4 3
reg.
XRL Rm,@DRk t Exclusive-OR indirect address (16M) to byte 4 3
reg.

T New features in the A251 assembler and the MCS 251 architecture

194 Appendix A. 8051/251 Instruction Sets

MCS 251 Opcode Map

The MCS 251 opcode map is based on the 8051 microcontroller opcode map. It
is arranged as two separate maps, one for binary compatible mode, and one for
assembly compatible mode. The mode of operation is configurable at reset.

In binary compatible mode the default opcode map is the 8051 microcontroller
map with 255 opcodes and one ESCAPE prefix (A5). If one wants to execute a
new MCS 251 instruction the opcode must be proceeded with the ESCAPE
prefix. This allows the user to take advantage of the new MCS 251 instructions.
Unused opcodes in the ESCAPE map are reserved for future use.

At initialization the user may choose to configure the part to take optimum
advantage of the new MCS 251 instructions. In this mode the opcode map
remains the same except for the register and register indirect instructions of 8051
microcontroller. These instructions, with opcodes with lower nibble between 6
and F, are moved to the ESCAPE map. The new MCS 251 instructions are
moved to this freed up space. Unused opcodes are reserved for future use. The
displaced 8051 based instructions keep the same machine code (opcode +
operand bytes) except that each must now be proceeded by the ESCAPE (A5)
prefix. The MCS 251 instructions keep the same machine code, except they no
longer need to be proceeded by the ESCAPE (A5) byte.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 195

8051 Microcontroller Instructions

Binary 0 1 2 3 4 5 6-7 8-F
Mode
Source 0 1 2 3 4 5 A5x6- A5x8-A5xF
Mode A5X7
0 NOP AIMP LIMP RR INC INC INC INC
adr1l ADR16 A A dir @Ri Rn
1 JBC ACALL LCALL RRC DEC DEC DEC DEC
bit,rel adrll adrl6 A A dir @Ri Rn
2 JB AIMP RET RL ADD ADD ADD ADD
bit,rel adr1l A A#data A,dir A @RI ARnN
3 JNB ACALL RETI RLC ADDC ADDC ADDC ADDC
bit,rel adrll A A t#data A, dir A @RI ARn
4 JC AIMP ORL ORL ORL ORL ORL ORL
rel adr1l dir,A dir,#data A#data A,dir A @RI ARnN
5 JNC ACALL ANL ANL ANL ANL ANL ANL
rel adrll dir,A dir,#data A t#data A,dir A @RI ARn
6 JZ AIMP XRL XRL XRL XRL XRL XRL
rel adr1l dir,A dir,#data A#data A,dir A @RI ARnN
7 INZ ACALL ORL JMP MOV MOV MOV MOV
rel adrll c,bit @A+DPTR A t#data dir,#data @RI #data Rn,#data
8 SIMP AIMP ANL MOvC DIV MOV MOV MOV
rel adr1l C,bit A,@A+DPTR AB dir,dir dir, @Ri dir,Rn
9 MOV ACALL MOV MovC SUBB SUBB SUBB SUBB
DPTR,#d16 adrll bit,c A,@A+DPTR| A#data A,dir A @RI ARn
A ORL AIMP MOV INC MUL ESC MOV MOV
C,/bit adr1l C,bit DPTR AB @Ri,dir Rn,dir
B ANL ACALL CPL CPL CINE CINE CINE CJINE
C,/bit adrll bit C A #d8,rel Adir,rel @Ri #d8,rel | Rn#d8,rel
C PUSH AIMP CLR CLR SWAP XCH XCH XCH
dir adril bit C A A dir A @RI A,Rn
D POP ACALL SETB SETB DA DJINZ XCHD DJINZ
dir adrll bit C A dir,rel A @RI Rn,rel
E MOVX AIMP MOVX CLR MOV MOV MOV
A,@DPTR adr1l A @RI A A,dir A @RI ARnN
F MOV ACALL MOVX CPL MOV MOV MoV
@DPTR,A adrll @Ri,A A dir,A @Ri,A Rn,A

T New features in the A251 assembler and the MCS 251 architecture

196 Appendix A. 8051/251 Instruction Sets

MCS 251 Instructions

Binary A5x8 A5x9 ASXA A5xB A5xC A5xD ASXE ASXF
Mode
Source x8 x9 XA xB xC xD XE xF
Mode
0 JSLE MOV Rm MOvZ lN;S;?smsj/ SRA
| WRj+di WRj,R J
e @WRjtdis J.Rm MOV reg,ind reg
1 JSG MOV@WR] | Movs D%Crkir;q‘(’)"r tRV SRL
+di j ’
rel dis,Rm WRj,Rm MOV ind reg reg
2 JLE MOV Rm, ADD ADD ADD ADD
rel @DRk+dis Rm,Rm WRj,WRj reg,op2 DRk,DRk
3 JG MOV@DRk SLL
rel +dis,Rm reg
4 JSL MOV Wrj, ORL ORL ORL
rel @WRjj+dis Rm,Rm [WRj,WRj | reg,op2
5 JSGE MOV@WR]j ANL ANL ANL
rel + dis,WRj Rm,Rm | WRj,WRj reg,op2
6 JE MOV Wrj, XRL XRL XRL
rel @DRk+dis Rm,Rm WRj,WRj reg,op2
7 JINE MOV @Drk MoV MoV MoV MOV MOV
rel +dis,WRj opl,reg Rm,Rm | WRj,WRj reg,op2 DRk,DRk
8 LIMP@WR]j EIMP DIV DIV
EJMP@DRk addr24 Rm,Rm | WRj,WRj
9 LCALL@WR ECALL SuUB SUB SuUB SuB
ECALL@DRk addr24 Rm,Rm | WRj,WRj reg,op2 DRk,DRk
A BIT ERET MUL MUL
instructions Rm,Rm WRj,WRj
B TRAP CMP CMP CMP CMP
Rm,Rm | WRj,WRj reg,op2 DRk,DRk
C PUSH
opl
D POP
opl
E
F

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 197

Appendix B. Directive Summary

Directive Format Description ‘

BIT symbol BIT bit_address Define a bit address in bit data space.

BSEG BSEG [AT absolute address] Define an absolute segment within the
bit address space.

CODE symbol CODE code_address Assign a symbol name to a specific
address in the code space.

CSEG CSEG [AT absolute address] Define an absolute segment within the
code address space.

DATA symbol DATA data_address Assign a symbol name to a specific
on-chip data address.

DB [label:] DB expression [, expression ...] Generate a list of byte values.

DBIT [label:] DBIT expression Reserve a space in bit units.

DD [label:] DD expression [, expression ...] Generate a list of double word values.

DS [label:] DS expression Reserve space in byte units.

DSB t [label:] DSB expression Reserve space in byte units.

DSD t [label:] DSD expression Reserve space in double word units.

DSEG DSEG [AT absolute address] Define an absolute segment within the

indirect internal data space.

DSW [label:] DSW expression Reserve space in word units;
advances the location counter of the
current segment.

DW [label:] DW expression [, expression ...] Generate a list of word values.

END END Indicate end of program.

EQU EQU expression Set symbol value permanently.
EVEN ft EVEN Ensure word alignment for variables.
EXTRN EXTRN class [:type] (symbol [, symbol ...]) Defines symbols referenced in the

EXTERN t EXTERN class [:type] (symbol [,symbol ...]) current module that are defined in
other modules.

IDATA symbol IDATA idata_address Assign a symbol name to a specific
indirect internal address.

ISEG ISEG [AT absolute address] Define an absolute segment within the
internal data space.

LABEL t name[:] LABEL [type] Assign a symbol name to a address
location within a segment.

LIT symbol LIT ’literal string’ Assign a symbol name to a string.

NAME NAME modulname Specify the name of the current
module.

ORG ORG expression Set the location counter of the current
segment.

PROC t name PROC [type] Define a function start and end.

ENDP t name ENDP

T New features in the A251 assembler and the MCS 251 architecture

198 Appendix B. Directive Summary

Directive Format Description ‘

PUBLIC PUBLIC symbol [, symbol ...] Identify symbols which can be used
outside the current module.

RSEG RSEG seg Select a relocatable segment.

SEGMENT seg SEGMENT class [reloctype] [alloctype] Define a relocatable segment.

SET SET expression Set symbol value temporarily.

USING USING expression Set the predefined symbolic register

address and reserve space for the
specified register bank.

XDATA symbol XDATA xdata_address Assign a symbol name to a specific
off-chip data address.
XSEG XSEG [AT absolute address] Define an absolute segment within the

external data address space.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 199

Appendix C. Control Summary

Name and Abbreviation Description ‘

DATA(date) / DA Places a date string in header (9 characters maximum).

CASE Enable case sensitive mode for symbol names.

DEBUG / DB Outputs debug symbol information to object file.

EJECT/EJ ¢ Continue listing on next page.

ERRORPRINT[(file)] / EP Designates a file to receive error messages in addition to the
listing.

GEN/GE ¢ Generates a full listing of macro expansions in the listing file.

NOGEN / NOGE ¢ List only the original source text in listing file.

INCLUDE(file) / IC ¢ Designates a file to be included as part of the program.

LINK & Place Linker/Locator controls in the Assembler source code.

LIST, NOLIST /LI, NOLI & Print or do not print the assembler source in the listing file.

MODBIN / MB Select MCS 251 binary mode (default).

MODSRC / MS Select MCS 251 source mode.

MPL Enable Macro Processing Language.

NOAMAKE Disable AutoMAKE information.

NOLINES Do not generate LINE number information.

NOMACRO / NOMR Disable Standard Macros

NOMOD51 / NOMO Do not recognize the 8051-specific predefined special register.

NOMOD251 / NO251 Disable the additional MCS 251 instructions.

NOOBLECT / NOOJ Designates that no object file will be created.

NOREGISTERBANK/ NORB Indicates that no banks are used.

NOSYMBOLS / NOSB No symbol table is listed.

NOSYMLIST,NO SL ¢ Do not list the following symbol definitions in the symbol table.

OBJECT[(file)] / OJ Designate file to receive object code.

PAGELENGTH(n) / PL Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) / PW Sets maximum number of characters in each line of listing file.

PRINT[(file)] / PR Designates file to receive source listing.

NOPRINT / NOPR Designates that no listing file will be created.

REGISTERBANK(num,...) Indicates one or more banks used in program module.

REGUSE ¢ Def_im_es register usage of assembler functions for the C
optimizer.

RESTORE /RS ¢ Restores control setting from SAVE stack.

SAVE / SA ¢ Stores current control setting for GEN, LIST and SYMLIST.

SYMLIST, SL ¢ List the following symbol definitions in the symbol table.

TITLE(string) / TT Places a string in all subsequent page headers.

XREF / XR Creates a cross reference listing of all symbols used in program.

T New features in the A251 assembler and the MCS 251 architecture

200 Appendix C. Control Summary

+ — Marks general controls

Directives for Conditional Assembly

Control Meaning ‘
IF Translate block if condition is true

ELSE Translate block if the condition of a previous IF is false.

ELSEIF Translate block if condition is true and a previous IF or ELSEIF is false.

ENDIF Marks end of a block.

RESET Set symbols checked by IF or ELSEIF to false.

SET Set symbols checked by IF or ELSEIF to true or to a specified value.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 201

Appendix D. Macro Summary

This appendix lists the standard macro functions as well as the MPL built-in
functions.

Standard Macro Functions

Directive Description ‘
ENDM Ends a macro definition.
EXITM Causes the macro expansion to immediately terminate.
IRP Specifies a list of arguments to be substituted, one at a time, for a specified
parameter in subsequent lines.
IRPC Specifies an argument to be substituted, one character at a time, for a
specified parameter in subsequent lines.
LOCAL Specifies up to 16 local symbols used within the macro.
MACRO Begins a macro definition and specifies the name of the macro and any
parameters that may be passed to the macro.
REPT Specifies a repetition factor for subsequent lines in the macro.

MPL Built-in Functions.

%’text end-of-line” or %’text’

%(balanced-text)

%*DEFINE(call-pattern)[local-symbol-list](macro-body)
%*DEFINE(macro-name[parameter-list]) [LOCAL local-list] (macro-body)
%n text-n-characters-long

%EQS(argl,arg2)

%EV AL (expression)

WEXIT

%GES(argl,arg2)

%GTS(argl,arg2)

T New features in the A251 assembler and the MCS 251 architecture

202 Appendix D. Macro Summary

%IF(expression) THEN (balanced-testl) [ELSE (balanced-text2)] FI
%IN

%LEN(balanced-text)

%LES(argl,arg2)

%LTS(argl,arg2)

%MATCH(identifierl delimiter identifier2) (balanced-text)
%METACHAR (balanced-text)

%NES(argl,arg2)

%OUT (balanced-text)

%REPEAT (expression) (balanced-text)

%SET (macro-id,expression)
%SUBSTR(balanced-text,expressionl,expression2)

%WHILE(expression) (balanced-text)

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 203

Appendix E. Reserved Symbols

The A251 assembler recognizes a number of predefined or reserved symbols.
These are symbols that are reserved by the assembler and may not be redefined
in your program. Reserved symbol names include instruction mnemonics,
directives, operators, and register names. The following is a list of the symbol
names reserved by the A251 assembler.

A CPL

AB CSEG
ACALL DA

ADD DATA
ADDC DB
AJMP DBIT
AND DD ft
ANL DEC
ARO DIV

AR1 DJNZ
AR2 DPTR
AR3 DRO f
AR4 DR12 t
AR5 DR16 t
AR6 DR20 ft
AR7 DR24
AT DR28 t
BIT DR4 t
BITADDRESSABLE DR56 t
BLOCK DR60 t
BSEG DR8 t
BYTE t DS
BYTEO t DSB t
BYTE1 t DSD t
BYTE2 t DSEG
BYTE3 t DSW t
C DW
CALL DWORD ¢
CJINE EBIT f
CLR EBITADDRESSABLE t
CMP ECALL t
CODE ECODE ¥
CONST ¢ EDATA T

T New features in the A251 assembler and the MCS 251 architecture

Appendix E. Reserved Symbols

EJMP t
ELSE
ELSEIF
END
ENDIF
ENDM
ENDP
EQ
EQU
ERET t
EVEN
EXITM
EXTERN t
EXTRN
FAR T
GE

GT
HCONST ¥
HDATA 1
HIGH
IDATA
IF
INBLOCK
INC
INPAGE
INSEG
IRP
IRPC
ISEG
JB

JBC

JC

JE

JG

JLE
JMP
INB
INC
INE
INZ
JSG
JSGE

JSL
JSLE

JZ
LABEL ¥
LCALL
LE

LIT t
LIMP
LOCAL
LOW
LT
MACRO
MOD
MOV
MOVC
MOVH ft
MOVS ¢
MOVX
MOVZ t
MUL
NAME
NCONST t
NE
NEAR t
NOP
NOT
NUL
NUMBER
OFFS ¥
OR
ORG
ORL
OVERLAYABLE
PAGE
PC

POP
PROC t
PUBLIC
PUSH
RO

R1

R2

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler

205

R3
R4
R5
R6
R7
R8 f
RO
R10 t
R11 t
R12 t
R13 t
R14 t
R15 t
REPT
RET
RETI
RL
RLC
RR
RRC
RSEG
SEG
SEGMENT
SET
SETB
SHL
SHR
SIMP
SLL f
SRA ¥
SRL t
SUB

SUBB
SWAP
TRAP *
UNIT
USING
WORD
WORDO t
WORD?2 t
WRO t
WR2 t
WR4 t
WR6 t
WRS8 t
WR10
WR12
WR14
WR16
WR18
WR20
WR22
WR24
WR26
WR28
WR30
XCH
XCHD
XDATA
XOR
XRL
XSEG

—+ =+ —+ —+ —+ —+ —+ —+ —+ —+ —+

T New features in the A251 assembler and the MCS 251 architecture

206

Appendix E. Reserved Symbols

In addition to the above symbols the A51 assembler predefines the Special
Function Register (SFR) set of the 8051 CPU. This SFR definitions can be
disabled with the A51 control NOMODS51. The predefined SFR symbols are
also reserved symbols and may not be redefined in your program. The following
is a list of the SFR names reserved by the A51 assembler when NOMOD®51 is

not given.

AC
ACC
B
CY
DPH
DPL
EA
ES
ETO
ET1
EXO
EX1
FO
IE
IEO
IE1
INTO
INT1
ITO
IT1
ov

PO

P1

P2

P3

PS
PSW
PTO
PT1
PX0
PX1
RB8
RD
REN
RI
RSO
RS1
RXD
SBUF
SCON
SMO

SM1
SM2
SP

T1
B8
TCON
TFO
TF1
THO
TH1
Tl
TLO
TL1
TMOD
TO
TRO
TR1
TXD
WR

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 207

Appendix F. Listing File Format

This appendix describes the format of the listing file generated by the assembler.

Assembler Listing File Format

The A251 assembler, unless overridden by controls, outputs two files: an object
file and a listing file. The object file contains the machine code. The listing file
contains a formatted copy of your source code with page headers and, if
requested through controls (SYMBOL or XREF), a symbol table.

Sample A251 Listing
A251 MACRO ASSEMBLER ASAMPLEL 25/ 01/ 95 15:02: 23 PACGE 1
DOS MACRO ASSEMBLER A251 Vx.y

OBJECT MODULE PLACED | N ASAMPLEL. OBJ
ASSEMBLER | NVOKED BY: F:\ RK\ ZX\ ASM A251. EXE ASAMPLE1. A51 XREF

LOC oBJ LI NE SOURCE
1 $NOMOD51
2 $I NCLUDE (REGB2. | NC)
+1 3 +1 $SAVE
+1 106 +1 $RESTORE
107
108 NAME SAMPLE
109
110 EXTRN CODE (PUT_CRLF, PUTSTRI NG
111 PUBLIC TXTBIT
112
—————— 113 PROG SEGMVENT CODE
—————— 114 PCONST SEGVENT CODE
—————— 115 VARL SEGMVENT DATA
—————— 116 BI TVAR SEGVENT BI T
—————— 117 STACK SEGMVENT | DATA
118
—————— 119 RSEG STACK
000000 120 DS 10H ; 16 Bytes Stack
121
000000 122 CSEG AT O
123 USING 0 ; Register-Bank O
124 ; Execution starts at address O on power-up.
000000 020000 F 125 JMP START
126
—————— 127 RSEG PROG
128 ; first set Stack Pointer
000000 758100 F 129 START: MOV SP, #STACK- 1
130
131 ; Initialize serial interface
132 ; Using TIMER 1 to CGenerate Baud Rates
133 ; Oscillator frequency = 11.059 MHz
000003 758920 134 MOV TMOD, #00100000B ;C/T =0, Mde =2
000006 758DFD 135 MOV TH1, #0FDH
000009 D28E 136 SETB TR1
00000B 759852 137 MOV SCON, #01010010B
138
139 ; clear TXTBIT to read form CODE- Menory

T New features in the A251 assembler and the MCS 251 architecture

208

Appendix F. Listing File Format

00000E C200 F 140
141
A251 MACRO ASSEMBLER ASAMPLEL
142
143
000010 144
145
000010 900000 F 146
000013 120000 E 147
000016 120000 E 148
149
000019 8000 F 150
151
------ 152
000000 54455354 153
000004 2050524F
000008 4752414D
00000C 00
154
155
------ 156
000000 157
158
159
160
------ 161
0000. 0 162
163
164

A251 MACRO ASSEMBLER ASAMPLEL

XREF SYMBOL TABLE LI STI NG

CLR TXTBIT

25/ 01/ 95 15: 02: 23 PAGE 2

; This is the main program It is a |oop,

; which displays the a text on the console.

REPEAT:

; type nessage
MoV DPTR, #TXT

PUTSTRI NG

PUT_CRLF

CALL

CALL
; repeat

SIMP REPEAT
RSEG
DB

PCONST

TXT: ' TEST PROGRAM , 00H

; only for denpnstration

RSEG VARL
DUMWY: DS 21H
TXTBIT = 0 read text from CODE Menory

TXTBIT = 1 read text from XDATA Menory
RSEG BI TVAR
TXTBIT: DBIT 1

END

25/ 01/ 95 15: 02: 23 PAGE 3

NAME TYPE VALUE ATTR BUTES / REFERENCES

Bl TVAR . B SEG 000001H REL=UNIT, ALN=BIT 116# 161
DUMMY. . D ADDR 000000H R SEG=VARL 157#

PCONST . C SEG 00000DH REL=UNI T, ALN=BYTE 114# 152
PROG . . . C SEG 00001BH REL=UNI T, ALN=BYTE 113# 127
PUTSTRI NG C ADDR ------- EXT 110# 147

PUT_CRLF . C ADDR ------- EXT 110# 148

REPEAT . C ADDR 000010H R SEG=PROG 144# 150

SAMPLE . 108

STACK. | SEG 000010H REL=UNI T, ALN=BYTE 117# 119 129
START. C ADDR 000000H R SEG=PROG 125 129#

TXT. . . C ADDR 000000H R SEG=PCONST 146 153#

TXTBI T . B ADDR 0000H.0 R SEG=BI TVAR 111 140 162#
VARL . D SEG 000021H REL=UNI T, ALN=BYTE 115# 156
REG STER BANK(S) USED: 0

ASSEMBLY COMPLETE. 0 WARNING(S), 0 ERROR(S)

Listing File Heading

Every page has a header on the first line. It contains the words “A251 MACRO
ASSEMBLER?” followed by the title, if specified. If the title is not specified,

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 209

then the module name is used. It is derived from the NAME directive (if
specified), or from the root of the source filename. On the extreme right side of
the header, the date (if specified) and the page number are printed.

In addition to the normal header, the first page of listing includes the A251
listing file header. This header shows the assembler version number, the file
name of the object file, if any, and the entire invocation line.

Source Listing

The main body of the listing file is the formatted source listing. A section of
formatted source is shown in the following.

Sample Source Listing
LOC oBJ LI NE SOURCE

000006 758DFD 135 MOV TH1, #0FDH

The format for each line in the listing file depends on the source line that appears
on it. Instruction lines contain 4 fields. The name of each field and its meanings
is shown in the list below:

Loc shows the location relative or absolute (code address) of the first byte of
the instruction. The value is displayed in hexadecimal.

oBJ shows the actual machine code produced by the instruction, displayed in
hexadecimal.

If the object that corresponds to the printed line is to be fixed up (it contains
external references or is relocatable), an F is printed after the OBJ field. The
object fields to be fixed up contain zeros.

LI NE shows the INCLUDE nesting level, if any, the number of source lines
from the top of the program, and the macro nesting level, if any. All values in
this field are displayed in decimal numbers.

SOURCE shows the source line as it appears in the file. This line may be
extended onto the subsequent lines in the listing file.

DB, DW, and DD directives are formatted similarly to instruction lines, except
the OBJ field shows the data values placed in memory. All data values are
shown. If the expression list is long, then it may take several lines in the listing

T New features in the A251 assembler and the MCS 251 architecture

210 Appendix F. Listing File Format

file to display all of the values placed in memory. The extra lines will only
contain the LOC and OBJ fields.

The directives that affect the location counter without initializing memory (e.g.
ORG, DBIT, or DS) do not use the OBJ field, but the new value of the location
counter is shown in the LOC field.

The SET and EQU directives do not have a LOC or OBJ field. In their place the
assembler lists the value that the symbol is set to. If the symbol is defined to
equal one of the registers, then REG is placed in this field. The remainder of the
directive line is formatted in the same way as the other directives.

Format for Macros, Include Files, and
Save Stack
In the listing file, the assembler displays the macro nesting level, the include file

level, and the level of the SAVE/RESTORE stack. These nesting levels are
shown before and after the LINE number as shown in the following listing.

LOC OBJ LI NE SOURCE
1 $GEN ; Enable Macro Listing
2
3 MYMACRO MACRO ; A sanpl e nmacro
4 I NC A ; Macro Level 1
5 MACRO2
6 ENDM
7
8 MACRG2 MACRO ; Macro 2
9 NOP ; Macro Level 2
10 ENDM
11
12
------ 13 MYPROG SEGVENT CODE
------ 14 RSEG MYPROG
15
000000 7400 16 MoV A #0
17 MYMACRO
000002 04 18+1 I NC A ; Macro Level 1
19+1 MACRO2
000003 00 20+2 NOP ; Macro Level 2
21 $I NCLUDE (MYFILE.INC) ; A include file
+1 22 ; This is a coment ; I'nclude Level 1
+1 23 MACRO2
000004 00 +1 24+1 NOP ; Macro Level 1
000005 7401 25 MOV A #1
26 +1 $SAVE ; Save Directive
27 +1 MYNMACRO ; SAVE Level 1
000007 04 28+1+1 I NC A ; Macro Level 1
29+1+1 MACRO2
000008 00 30+2+1 NOP ; Macro Level 2
31 +1 $RESTORE
000009 00 32 NOP
33 END

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 211

Symbol Table

The symbol table is a list of all symbols defined in the program along with the
status information about the symbol. Any predefined symbols used will also be
listed in the symbol table. If the XREF control is used, the symbol table will
contain information about where the symbol was used in the program.

The status information includes a NaMVE field, a TYPE field, a VALUE field, and an
ATTRI BUTES field.

The TvYPE field specifies the type of the symbol: ADDR if it is a memory
address, NUMB if it is a pure number (e.g., as defined by EQU), SEG if itisa
relocatable segment, and REG if a register. For ADDR and SEG symbols, the
segment type is added.

The vALUE field shows the value of the symbol when the assembly was
completed. For REG symbols, the name of the register is given. For NUMB and
ADDR symbols, their absolute value (or if relocatable, their offset) is given,
followed by A (absolute) or R (relocatable). For SEG symbols, the segment size
is given here. Bit address and size are given by the byte part, a period (.),
followed by the bit part. The scope attribute, if any, is PUB (public) or EXT
(external). These are given after the VALUE field.

The ATTRI BUTES field contains an additional piece of information for some
symbols: relocation type for segments, segment name for relocatable symbols.

Example Symbol Table Listing

SYMBOL TABLE LI STI NG

NAME TYPE VALUE ATTR BUTES
BITVAR. B SEG 000001H REL=UNI T, ALN=BI T
DUMWY. D ADDR 000000H R SEG=VAR1

PCONST C SEG 00000DH REL=UNI T, ALN=BYTE
PROG. C SEG 00001BH REL=UNI T, ALN=BYTE
PUTSTRING C ADDR ------- EXT

PUT_CRLF C ADDR ------- EXT

REPEAT C ADDR 000010H R SEG=PROG

SAWPLE

STACK. I SEG 000010H REL=UNI T, ALN=BYTE
START. C ADDR 000000H R SEG=PROG

Mo 6 0 0 0 o o o C ADDR 000000H R SEG=PCONST

TXTBIT B ADDR 0000H. 0 R SEG=BI TVAR

VARL D SEG 000021H REL=UNI T, ALN=BYTE

If the XREF control is used, then the symbol table listing will also contain all of
the line numbers of each line of code that the symbol was used. If the value of

T New features in the A251 assembler and the MCS 251 architecture

212 Appendix F. Listing File Format

the symbol was changed or defined on a line, then that line will have a hash mark
(#) following it. The line numbers are displayed in decimal.

Listing File Trailer

At the end of the listing, the assembler prints a message in the following format:

REG STER BANK(S) USED: [r r r r]

ASSEMBLY COMPLETE. (n) WARNING(S), (m ERROR(S)

where

r are the numbers of the register banks used.

n is the number of warnings found in the program.
m is the number of errors found in the program.

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 213

Appendix G. Program Template

The following code template contains guidelines and hints on how to write your
own assembly modules. This template, TEMPLATE.A51, is stored in the
\C51\ASM subdirectory.

TEMPLATE.A51
$NOVOD51 ; disable predefined 8051 registers
$I NCLUDE (REGB2. | NC) ; include CPU definition file (for exanple, 8052)

Change nanes in |owercase to suit your needs.

This assenbly tenplate gives you an idea of how to use the A251/A51
Assenbler. You are not required to build each nodule this way-this is only
an exanpl e.

If you use this tenplate, nake sure you renpve any unused segnent decl arations,
as well as unused variabl e space and assenbly instructions.

This file cannot provide for every possible use of the A251/ A51 Assenbl er.
Refer to the A51/A251 User's Guide for nore information.

; All entries except the END statenent at the End O File are optional.

; Here, you nay inport synbols form other nodul es.

EXTRN CODE (code_synbol) ; May be a subroutine entry declared in
; CODE segnents or with CODE directive.

EXTRN DATA (data_synbol) ; May be any synbol declared in DATA segnents
; segnents or with DATA directive.

EXTRN BIT (bit_synbol) ; May be any synbol declared in BIT segnents
; or with BIT directive.

EXTRN XDATA (xdata_synbol) ; May be any synbol declared in XDATA segnents
; or with XDATA directive.

EXTRN NUMBER (typel ess_synbol); May be any synbol declared with EQU or SET
; directive

; You may include nore than one synbol in an EXTRN statenent.

Here, you may export synbols to other nodules. You may use up to 256
PUBLI C synbol s in one nodul e.

T New features in the A251 assembler and the MCS 251 architecture

214 Appendix G. Program Template

PUBLI C code_entry
PUBLI C typel ess_nunber
PUBLI C xdata_vari abl e
PUBLI C bit_variable

; You may include nore than one synbol in a PUBLIC statenent.

Put the STACK segnent in the main nodul e.

L?STACK SEGVENT | DATA ; ?STACK goes into | DATA RAM
RSEG ?STACK ; switch to ?STACK segnent .
DS 5 ; reserve your stack space

5 bytes in this exanple.

DATA SEGMENT- - Reserves space in DATA RAM -Delete this segrment if not used.
’dat a_seg_nane SEGVENT DATA ; segnment for DATA RAM

RSEG dat a_seg_nane ; switch to this data segnent
data_variable: DS 1 ; reserve 1 Bytes for data_variable
data_vari abl el: DS 2 ; reserve 2 Bytes for data_variablel

XDATA SEGMENT- - Reserves space in XDATA RAM -Del ete this segnment if not used.
Xdata_seg_name SEGVENT XDATA . segment for XDATA RAM

RSEG xdata_seg_name ; switch to this xdata segnment
xdat a_vari abl e: DS 1 ; reserve 1 Bytes for xdata_variable
xdat a_array: DS 500 ; reserve 500 Bytes for xdata_array

| NPAGE XDATA SEGMVENT- - Reserves space in XDATA RAM page (page size: 256 Bytes)
| NPAGE segnents are useful for @RO addressing nethodes.
Delete this segnent if not used.

page_xdata_seg SEGVENT XDATA | NPAGE ; | NPAGE segnent for XDATA RAM
RSEG xdata_seg_name ; switch to this xdata segnment
xdat a_vari abl el: DS 1 ; reserve 1 Bytes for xdata_variablel

: ABSOLUTE XDATA SEGVENT- - Reserves space in XDATA RAM at absol ute addresses.
; ABSOLUTE segnents are useful for nmenory napped I/0O
; Delete this segnent if not used.

XSEG AT 8000H ; switch absol ute XDATA segnent @ 8000H
Xl O DS 1 ; reserve 1 Bytes for Xl O port
XCONFI G DS 1 ; reserve 1 Bytes for XCONFI G port

Bl T SEGVENT- - Reserves space in BIT RAM -Del ete segnent if not used.
i)i t _seg_name SEGMENT BI T ; segnent for BIT RAM
RSEG bi t _seg_nane ; switch to this bit segnent
bit _vari abl e: DBl T 1 ; reserve 1 Bit for bit_variable
bit_variablel: DBIT 4 ; reserve 4 Bits for bit_variablel

Add constant (typel ess) nunbers here.

{ypel ess_nunber EQU ODH ; assign 0D hex

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 215

typel ess_nuni EQU t ypel ess_nunber - 8 ; evaluate typel ess_nunil

$SEJECT

Provide an LIJMP to start at the reset address (address 0) in the mai n nodul e.
You may use this style for interrupt service routines.

CSEG AT 0 ; absol ute Segnent at Address O

LIMP start ; reset location (junp to start)

RSEG code_seg_nane ; switch to this code segnent

USING O ; state register_bank used
; for the follow ng program code.

start: MoV SP, #?STACK- 1 ; assign stack at begi nni ng

; Insert your assenbly program here. Note, the code bel ow is non-functional.

ORL | E, #82H ; enable interrupt system (tinmer 0)
SETB TRO ; enable tiner 0
repeat _| abel : MoV A, dat a_synbol
ADD A #typel ess_synbol
CALL code_synbol
MoV DPTR, #xdat a_synbol
MOVX A, @PTR
MoV R1, A
PUSH AR1
CALL sub_routinel
POP AR1
ADD A R1
JMWP repeat _| abel
code_entry: CALL code_synbol
RET
code_t abl e: DwW repeat _| abel
DW code_entry
DB typel ess_nunber
DB 0

: To include an interrupt service routins, provide an LIJMP to the ISR at the
; interrupt vector address.

CSEG AT O0OBH ; OBH is address for Tinmer O interrupt
LIMP ti mer Oi nt

; Gve each interrupt function its own code segnent.
int0_code_seg SEGVENT CCDE ; segnent for interrupt function
RSEG int0_code_seg ; switch to this code segnent
USING 1 ; register bank for interrupt routine
timerQint: PUSH PSW
MoV PSW #08H ; register bank 1
PUSH ACC
MoV R1, data_vari abl e
MoV DPTR, #xdat a_vari abl e
MOVX A, @PTR
ADD A R1
MoV data_vari abl el, A

T New features in the A251 assembler and the MCS 251 architecture

216 Appendix G. Program Template

CLR A

ADD A, #0

MOV data_vari abl e1+1, A
POP ACC

POP PSW

RETI

END ; End OF File

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 217

Appendix H. Assembler Differences

This appendix lists the differences between the Intel ASM-51 assembler, the
Keil A51 assembler, and the Keil A251 assembler.

Differences Between A51 and A251

Assembly modules written for the A51 assembler may be assembled using the
A251 macro assembler. However, since the A251 macro assembler supports the
MCS 251 architecture, the following incompatibilities may arise when A51
assembly modules are assembled with the A251 assembler.

32-Bit Values in Numeric Evaluations

The A51 assembler uses 16-bit values for all numerical expressions.
TheA251 macro assembler uses 32-bit values. This may cause problems
when overflows occur in numerical expressions. For example:

val ue EQU (8000H + 9000H) / 2

generates the result 800h in A51 since the result of the addition is only a
16-bit value (1000h). However, the A251 assembler calculates a value of
8800h.

8051 Pre-defined Special Function Register Symbol Set

The default setting of A51 pre-defines the Special Function Register (SFR)
set of 8051 CPU. This default SFR set can be disabled with the A51 control
NOMODS51. A251 does not pre-define the 8051 SFR set. The control
NOMODS51 is accepted by A251 but does not influence any SFR definitions.

More Reserved Symbols

The A251 macro assembler has more reserved symbols as A51. Therefore it
might be necessary to change user-defined symbol names. For example the
symbol ECALL cannot be used as label name in A251, since the MCS 251
has a new instruction with that mnemonic.

T New features in the A251 assembler and the MCS 251 architecture

218 Appendix H. Assembler Differences

Object File Differences

A251 uses the Intel OMF-251 file format for object files. A51 uses an
extended version of the Intel OMF-51 file format. The OMF-51 file format
limits the numbers of external symbols and segments to 256 per module. The
OME-251 file format does not have such a limit on the segment and external
declarations.

Differences between A51 and ASM51

Assembly modules written for the Intel ASM51 macro assembler can be re-
translated with the A51 macro assembler. However you have to take care about
the following differences:

Enable the MPL Macro Language
If your assembly module contains Intel ASM51 macros, the A51 MPL macros

need to be enable with the MPL control.

8051 Pre-defined Interrupt Vectors

The Intel ASM51 pre-defines the following symbol names if MOD51 is
active: RESET, EXTIO, EXTIL, SINT, TIMERO, TIMER1. A51 does not
pre-define this symbol names.

More Reserved Symbols

Since the A51 macro assembler supports also conditional assembly and
standard macros, A51 has more reserved symbols then Intel ASM51.
Therefore it might be necessary to change user-defined symbol names. For
example the symbol IF cannot be used as label name in A51, since it is a
directive for conditional assembly.

Object File Differences

A51 generates line number information for source level debugging and file
dependencies for AutoMAKE. For compatibility to previous A51 versions
and to ASM51, the line number information can be disabled with the A51
control NOLINES. The AutoMAKE information can be disabled with the
A51 control NOAMAKE.

Differences between A251 and ASM51

Assembly modules written for Intel ASM51 can be re-translated with the A251
macro assembler. However, since the A251 macro assembler supports also the

H

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 219

MCS 251 architecture, the following incompatibilities can arise when ASM51
modules are re-translated with A251.

32-Bit Values in Numeric Evaluations

A51 uses for all numerical expressions 16-bit numbers whereas the A251
macro assembler uses 32-bit values. This can cause problems when
overflows occur in numerical expressions. For example:

Val ue EQU (8000H + 9000H) / 2

has the result 800H in A51 since the result of the addition is only a 16-bit
value (1000H), whereas the A251 calculates VValue as 8800H.

8051 Pre-defined Symbols

The default setting of Intel ASM51 pre-defines the Special Function Register
(SFR) set and symbol names for reset and interrupt vectors of 8051 CPU.
This default symbol set can be disabled with the ASM51 control
NOMODS51. A251 does not pre-define any of the 8051 SFR or interrupt
vector symbols. The control NOMOD51 is accepted by A251 but does not
influence any symbol definitions.

More Reserved Symbols

The A251 macro assembler has more reserved symbols as ASM51.
Therefore it might be necessary to change user-defined symbol names. For
example the symbol ECALL cannot be used as label name in A251, since the
MCS 251 has a new instruction with that mnemonic.

Enable the MPL Macro Language
If your assembly module contains Intel ASM51 macros, the A251 MPL
macros need to be enable with the MPL control.

Object File Differences

A251 uses the Intel OMF-251 file format for object files. A51 uses an
extended version of the Intel OMF-51 file format. The OMF-51 file format
limits the numbers of external symbols and segments to 256 per module. The
OME-251 file format does not have such a limit on the segment and external
declarations.

Ab51 generates also line number information for source level debugging and

file dependencies for AutoMAKE. For compatibility to previous A51

versions and to ASM51, the line number information can be disabled with the H
A51 control NOLINES. The AutoMAKE information can be disabled with

the A51 control NOAMAKE.

T New features in the A251 assembler and the MCS 251 architecture

220 Appendix H. Assembler Differences

T New features in the A251 assembler and the MCS 251 architecture

A51 Assembler / A251 Assembler 221

Glossary

A251
The command used to assemble programs using the A251 Macro Assembler.

A51
The command used to assemble programs using the A51 Macro Assembler.

argument
The value that is passed to macro or function.

arithmetic types
Data types that are integral, floating-point, or enumerations.

array
A set of elements all of the same data type.

ASCII
American Standard Code for Information Interchange. This is a set of 256
codes used by computers to represent digits, characters, punctuation, and
other special symbols. The first 128 characters are standardized. The
remaining 128 are defined by the implementation.

basename
The part of the file name that excludes the drive letter, directory name, and
file extension. For example, the basename for the file C:\ SAMPLE\ SI O. A51
is sl o

batch file
A text file that contains MS-DOS commands and programs that can be
invoked from the command line.

BCD
See Binary-Coded Decimal (BCD)

Binary-Coded Decimal
A system that is used to encode decimal numbers in binary form. In BCD,
each decimal digit of a number is encoded as a binary value 4 bits long. A
byte can hold 2 BCD digits — one in the upper 4 bits (or nibble) and one in the
lower 4 bits (or nibble).

BL51
The command used to link object files and libraries using the 8051 Code
Banking Linker/Locator.

222

Glossary

C51
The command used to compile programs using the 8051 Optimizing C Cross
Compiler.

constant exp ression

Any expression that evaluates to a constant non-variable value. Constants

may include character, integer, enumeration, and floating-point constant
values.

DS51
The command used to load and execute the DS51 Debugger/Simulator.
environment table

The memory area used by MS-DOS to store environment variables and their
values.

environment variable
A variable stored in the environment table. These variables provide MS-DOS
programs with information like where to find include files and library files.
escape sequence
A backslash (‘\’) character followed by a single letter or a combination of

digits that specifies a particular character value in strings and character
constants.

expression

A combination of any number of operators and operands that produces a
constant value.

function

A combination of declarations and statements that can be called by name that
perform an operation and/or return a value.

function call

An expression that invokes and possibly passes arguments to a function.
in-circuit emulator (ICE)
A hardware device that aids in debugging embedded software by providing

hardware-level single-stepping, tracing, and break-pointing. Some ICEs
provide a trace buffer that stores the most recent CPU events.

include file

A text file that is incorporated into a source file using the SINCLUDE
control.

A51 Assembler / A251 Assembler 223

keyword
A reserved word with a predefined meaning for the assembler.

LIB51
The command used to manipulate 8051 library files using the 8051 Library
Manager.

library
A file that stores a number of possibly related object modules. The linker can
extract modules from the library to use in building a target object file.

macro
An identifier that represents a series of lines of assembly text that is defined
using the MACRO control.

memory model
Any of the models that specifies which memory areas are used for function
arguments and local variables.

mnemonic
An ASCII string that is used to represent a machine language opcode in an
assembly language instruction.

monitor51
An 8051 program that can be loaded into your target CPU to aid in debugging
and rapid product development through rapid software downloading.

object
An area of memory that can be examined. Usually used when referring to the
memory area associated with a variable or function.

object file
A file, created by the compiler, that contains the program segment
information and relocatable machine code.

OH51
The command used to convert absolute object files into other hexadecimal
file formats using the Object File Converter.

opcode
Also called operation code. An opcode is the first byte of a machine code
instruction and is usually represented as a 2—digit hexadecimal number. The
opcode indicates the type of machine language instruction and the type of
operation to perform.

224 Glossary

operand
A variable or constant that is used in an expression.

operator
A symbol that specifies how to manipulate the operands of an expression;
e.g.,+ - * 1

parameter
The value that is passed to a macro or function.

pointer
A variable that contains the address of another variable, function, or memory
area.

relocatable
Able to be moved or relocated. Not containing absolute or fixed addresses.

RTX51 Full
An 8051 Real-Time Executive that provides a multitasking operating system
kernel and library of routines for its use.

RTX51 Tiny
A limited version of RTX51.

scope
The sections of a program where an item (function or variable) can be
referenced by name. The scope of an item may be limited to file, function, or
block.

SFR
An SFR or Special Function Register is a register in the 8051 internal data
memory space that is used to read an write to the hardware components of the
8051. This includes the serial port, timers, counters, 1/0 ports, and other
hardware control registers.

source file
A text file containing assembly program code.

Special Function Register
See SFR.

stack
An area of memory, indirectly accessed by a stack pointer, that shrinks and
expands dynamically as items are pushed onto the stack and popped off of the
stack. Items in the stack are removed on a LIFO (last-in, first-out) basis.

A51 Assembler / A251 Assembler 225

string
An array of characters that is terminated with a null character (‘\0”).

string literal
A string of characters enclosed within double quotes (* ™).

TS51
The command used to load and execute the 8051 TS51 Target Debugger.

two’s complement
A binary notation that is used to represent both positive and negative
numbers. Negative values are created by complementing all bits of a positive
value and adding 1.

whitespace character
Characters that are used as delimiters in C programs such as space, tab,
newline, etc.

wild card
One of the MS-DOS characters (? or *) that can be used in place of characters
in a filename.

226 Glossary

8051 Utilities

227

Index
B s 33
(0] o 1=1 -1 (o] GRS 33
0] 0 LC] 1 (0] SO 33
Bal0] o<1 - Lo SR 33
010 1=T -1 (o (S 33
et 79,83
Y] S [5] £-1 0] G 33
[, OPEratOr ..c.vevveeeceeee e 33
S04 1=] -1 o (S 34
SR 0] 1= 1 (o] S 34
SO 0] 1= 1 (o] 34
S o]0 [=] -1 o (S 34
Do) 0 [=] -1 o (S 34
0] 1= ¢ 1 (o] 34
1, macro operatorcccoceevvererenn. 79,83
%, Macro operatorccc.cereennee. 79,82
&, MACro Operator..........cccccvereennee. 79,80
<, Macro operatorcceceverurnee. 79,81
>, Macro operatorccocevereenen. 79,81
8051 Address SPaceccevververerieinnns 11
8051 Register Filecccccevvvivivinanns 14
A
A, TEQISTEN v 25
A251, defined.......ccoooevencieneneen, 219
A51, definedccooevviiiiiiiiie 219
AB, TegISterovvivereeeeee e 25
Additional items, notational
CONVENLIONSocviviiiiierieesie e iv

Address

Direct DATA Addresses............... 27

Program Addressesccccevuvnenn. 28
Address Control.........ccccoeevineiinenn, 66
Address COUNErccvvrevrereenennns 32
Addresses

Direct BIT Addressesc.c....... 28
Allocation TYPe.....cocvvvvvvviveieeeie 48
Allocation types

BIT s 48

BYTE ..o, 48
DWORD......ccotvtreinieneenienee e, 48
PAGEcoiiitrec e 48
SEG .o 48
WORD ...ocoorviiineineeee e, 48
ampersand character.............ccocvevenneen. 79
AND, 0peratorccoccvvvvrieerieernenne 34
angle bracketscccoevevierieivninnnnn, 79
ARO, register.......cccvvvviveivereiesinieannns 25
ARL, register......ccccvvvvviveiereiesnieannns 25
AR2, regiSter......ccccvvvviviierereseseanens 25
AR3, regiSter....cccovvvvveieie s e 25
AN/ N (T 1)] G 25
AN ZE T (10151] G 25
ARG, regiSter.......cccvvvviveirereiesinrnannns 25
AR, regiSter....cccvvvvreeiee e 25
argument, defined..........cccccovevvvnnnnne. 219
Arithmetic operatorsccoevveviernen. 33
arithmetic types, defined................... 219
array, definedccooovevvivniveieienn, 219
ASCII, defined........cccoovvvivennnnnnn 219
Assembler Controls..........ccoceevvnene. 113
Assembler Directives..........ccoceeeuennen. 41
Introduction.........c.ccoveveverineniennn 41
Assembly Programsccccceeevvenenen. 19
AL SION e 112
AT, relocation typeccocvvvrvrenannns 47
B
basename, defined............cccocerennnen. 219
batch file, defined.........ccccovvviinnens 219
BCD, definedccccooevvveneiiinenn 219
Binary nUMDErS........c.cocevvvvvivininenns 30
Binary operators..........cccocevevivrnnnannns 34
Binary-Coded Decimal, defined....... 219
BIT, allocation typecccceevvvevernennn. 48
BIT, Operatorccocvevevvevivenienenne 35
BIT, segment typeccccvevvevervennnne, 46
BITADDRESSABLE, relocation
EYPC. et 47
BL51, definedcooeovverciiinenen 219
BLOCK, allocation typecccv.... 48

228 Index
bold capital text, use ofccccueeee. iv GEN...ooii e 122
braces, use ofccovvriininiicnn, iv IF e 151
Bracket Function............ccccooevvevninnnn 92 INCLUDE ..ot 123
BSEG, directive......ccccccvvvevveieenenen, 49 LINK e, 124
BYTE, allocation typeccceueee. 48 LIST oo 125
BYTE, 0peratorccccceeeeveriienennnnn. 36 MACRO ..o, 126
BYTEQ, operatorcccoeeeevernennn. 36 MODBIN.......cooiiiiiiieeeeee, 127
BYTEL, operatorccccoeeevrvernennnn. 36 MODSRC ...t 128
BYTEZ2, operatorccccceevriernnnnn. 36 MPL...ooiii e 129
BYTES, operatorcccoeeeevernnnnn. 36 NOAMAKE.........cccooiiiiiieieene. 130

NOCOND......coce v, 116
C NOGEN.......cooiviiiiiiiic e, 122
- NOLINES..........covivieviicviee, 131
G TEGISHE sy 25 N[OTHES) SN 125
C51, defined.....cccovvveveeeeiiieeeeeeen 220 NOMACRO. ... 132
CA, controloooovveeeeeiiieeieeeen 118 NOMOD251 ..o 134
carat character...........ccooeveiererieene, 159 NOMODS. ..o 133
CASE, control......ccccceveeevvieciiieeeenn 118 NOOBIECT oo 136
Character constants..........cc.ccoeevvenae 31 NOPRINT oo 139
Choices, notational conventions iv NOREGISTERBANK 140
CIBSS. oo 46 NOREGUSEcccccccorcrrrvrrrrn 141
ClaSS OPEratorS........cooevssvvvvvssssien 35 NOSYMBOLScoovrrrricrnes 135
CODE ...covvvvvmmsssssmnnissssssssssnnnssssssss 26 NOSYMLIST .cooceverrerrrnne 144
CODE, directivecvevveeeeviiciiieeeeenn 52 OBIECT woooo 136
CODE, external symbol segment PAGELENGTH...ooccccccocrrrrneen 137
A S 65 PAGEWIDTH ..ocooooevvvrrrrernn 138
CODE, OPErator..........ccooooosnmeuussseniss 35 PRINT oo 139
CODE, segment typeccccceereenuenne 46 REGISTERBANK ..o oo 140
Command liNe.........cceoceovvvessscen 111 REGUSE ...oocccccverrrvenesssnee 141
Comment FUNCEION........c.cccvvirciienne 91 RESET .o 150
CommMENtS.....c.cceeeviieeeeciee e 21 RESTORE oo 142
COND, control.........cccceevvvecvnieeeeennn 116 SAVE oo 143
(010 NES) VO 26 SET. 149
CONST, OPEraOr....covvveesssssnvenssssesss 35 S VTR S 144
CONST, segment typeccceevrrueee 46 TITLE.. 145
constant expression, defined............ 220 DG L= 146
Controls courier typeface, use ofco....... iv
A I 118 CSEG, directive.............occoocccccverrrnn 49
M 116 CUBSTR FUNCHONcoooooevvecernns 102
DATE ...t 117
DEBUG.......cccceiiivieeicciein 119 D
EJECT oo 120
ELSE ...t 153 DA, control..........ccovvvrivcinincinnnn, 117
ELSEIF ..o 152 DATA, directive.......ccccoeeveiiiineninnne. 52
ENDIF....cccoiiiiiiiieeeee 154 DATA, external symbol segment
ERRORPRINTccoceviiieiie 121 TP et 65

8051 Utilities

229

DATA, Operator..........cccoceeveeneniiennnns 35
DATA, segment type.......cccceveerennns 46
DATE, controlccccceveniniinnnnne. 117
DB, cONtrol........cccooeeveieiiiinee 119
DB, direCtiVvecccooeeveieieie e 55
DBIT, directive........cccoeveiviencninnene. 57
DD, directivecoeveieieiireeee 56
DEBUG, control.........cccccevenenennnnne. 119
Decimal numbers.........ccccocvvverenennnne 30
Defining @ Macroccccoeeevereniennnne 72
Differences between A251 and
ASMBL ... 216
32-bit evaluationccceeenee. 217
8051 Symbolsccccovviiiiiin 217
Macro Processing Language........ 217
Object Fileccooviiiiiiiiie 217
Reserved Symbols...........cccccceee.e. 217
Differences Between A51 and
A251 i, 215
32-bit evaluationccceeeenee. 215
8051 Special Function
RegISters......coovvriieie e 215
Object Fileocoviiiiiiiiiie 216
Reserved Symbols...........ccccceee.e. 215
Differences between A51 and
ASMBL ..., 216
Interrupt Vectors........cccocvevienens 216
Macro Processing Language........ 216
Object Fileocooveiiiiiiiiie 216
Reserved Symbols...........ccccceeee. 216
Differences to the 8051cc..c...... 16
Compatiblityccccoeeriieniiinnne 17
Program Status Word.................... 17
Stack Pointer........c.ccocvvveniiennnne 17
TIiMINg ISSUES....cc.ceveiiiiiricrieins 17
Directives
BSEG ... 49
CODE ...t 52
CSEG....coiiiiiiieeeee, 49
DATA .o 52
DBt 55
DBIT ..ot 57
DD ot 56
DS o 58
DSB ..ot 58

DSEG ..., 49
DSWi...oiiiiiiecie e 59
DW ..o 55
END ..ooooveeeieceece e, 69
ENDP ...oveeeeeceeee e, 61
EQU .o, 51
EVEN. ..o, 67
EXTERN.......cooveviieeeeecie e, 64
EXTRN oo, 64
IDATA ..ot 52
ISEG...cco oo 49
LABEL.....cc.coveeiieceeceeeee, 63
LIT o, 53
NAME ..., 65
ORG ..o, 66
PROC ...t 61
PUBLIC ..., 64
RSEG ...t 49
SEGMENTcoovviiiieeee e, 45
USING ..., 67
XDATA. ..ot 52
XSEG ..o 49
Displayed text, notational
CONVENLIONS ...vvveiieeciveece e iv
Document conventions............c...ccue... iv
dollar sign
location counter.........cccccveeeveennen. 33
used inanumberccceeeeeveennee. 31
double brackets, use of..........c...covenee. iv
double semicolon........c..cccoeevveeeneenne, 79
DPTR, registerccccovevenencnenennns 25
DS, direCtivecocevvivveeeceeiiiie e, 58
DS51, definedcccovvvevieeiiieene, 220
DSB, direCtive......ccccocvveeeeeeirieccreeenen. 58
DSD, direCtiveccccceeevieeeieeirieenen, 60
DSEG, directive......ccccevveeeveeiiieennn, 49
DSW, directive.........ccoeeevreirveecneeenen. 59
DW, direCtive......cccovvvevceeiiriecreeenen. 55
DWORD, operator...........cccccvervenneene. 36
E
EBIT, Operator..........cccooeeveeieiiennnnne 35
EBIT, segment typeccccceeevrvrnnnnne 46
ECODE, operator........ccccoveveeveriennenne 35
ECODE, segment typeccccecvveueene 46

230 Index
ECONST, operatorcccoeeereenene 35 G
ECONST, segment type.......ccccceeeuee 46
EDATA. ... 27 GEN, controlccooeviiiiiiiienns 122
EDATA, OPEratorccocovvrrveeneens 35 GT, OPErator.......coooeiieveessinnienes 34
EDATA, SEgMeNt type...........vvvvvvveee 46 GTE, Operatorcccecevvnvnennneenn 34
EJ, cONtrol.......ccocooiiiiiiiieee 120
EJECT, CONLIOl oo 120 H
Z”:Eﬁﬁi 32'35;2“."'@;;5% ----------------------- v HCONST, Operatorcc........ 35
ELSE, COMOL .. 183 DATAL o
ELSEIF_, cor_1tro| 152 HDATA, OPEFatorooeeeerrererrenn, 35
END, directive........cccoeeveviivireeiirieeenns 69 HDATA, SegMent type................orvvr. 46
ENDIF, gontr_ol """"""""""""""""""" 154 Hexadecimal numbers............ccccocve.. 30
ENDP, direCtive.......ccoevveviveeeiirieeens 61 HIGH, OPETAtOrevvceerrereeeee, 36
environment table, defined............... 220 '
environment variable, defined.......... 220
EP, control ... 121 I
EQ, Operatorcccceeveveiiiiccicncnnnn, 34 IC, CONIOL ..ot 123
EQU, directive......ccovivvviieiieiec, 51 ICE, definedcoovveeeeeeeeeeeeeeeeeeen 220
Error Messagesccoovecverienieninns 155 IDATA e, 26
Fatal Errors ..., 155 IDATA, dir€CtiVecveerereeeeeeern 52
Non-Fatal Errorsc.cccvvnnee 158 IDATA, external symbol
ERRORLEVELcccoovviviiinenne, 112 SEYMENL tYPE..vovvvevierereeieree v, 65
ERRORPRINT, control.................... 121 IDATA, OPEFatorccvvrvevrrreereenens 35
Escape Function.............ccccevciin. 92 IDATA, segment typecccceveerenenes 46
escape sequence, defined................. 220 IF FUNCLION ..o 99
EVAL Function.........ccccceeeevvvevveennen. 97 IF, CONLIOL e, 151
EVEN, directive........cccooevvvnciinennn 67 INBLOCK, relocation type 47
exclamation mark.........cocoovveeeeviineen. 79 in-circuit emulator, defined 220
EXIT Function.........coceeevveeviveecneenne, 101 include file, defined........c.ccoevvevenn.... 220
Expression INCLUDE, control.........ccc.cceevvrnnee. 123
Classes.......ocouvieeiieiiiicis 38 INPAGE, allocation type................... 48
expression, definedc..... 220 INPAGE, relocation type 47
EXPressions.......c.ccoeevveneinenencns 30,37 INSEG, relocation typecccecvneee. 47
EXTERN, directive..........ccccoevvenne. 64 Internal Data Memoryccc.coo...... 12
External Memory ..o, 12 Invoking @ Macrocccceeveveeennnn, 83
External symbol segment types.......... 65 INVOKINg A251ccvevevererereeecrerne 111
EXTRN, directive..........cccovvcrninn. 64 ISEG, dir€CtiVe......ovevieeeeeieeeee e 49
italicized text, use of........cccccceverennn iv
F
FAR, Operatorccccoveevennenneinenn 36 K
Filename, notational conventions........ iv Key names, notational
Files generated by A251 112 CONVENLIONS........veevevererereieececvereinans iv
function call, defined 220 keyword, defined............ccccoevevennnnn. 221

function, defined..........ccocoeevvineennee. 220

8051 Utilities 231

L Macro repeating blocks............c......... 75
— MACRO, control..........cccceeevvveeunennne. 126
LABEL, direCtiveccooovvvvvnnnnnn 63 macro, definedcccovvveeveeeenens 221
LaDEIS ..o 23 Macros and reCursion............cooveeeee... 78
LabelS in MACr0S..c.ocvveseveserrerrn 4 MATCH FUNCHONcooeercrrnec 103
LEN FUunctioncccooevevvveveee e 102 MB,C@HUO' _______________________________________ 127
LI, control.....ooovvvvviiiiininiinnas 124,125 MCSg 251 ArChiteCturecc..... 9
L|B51, deflned 221 MCS 251 Reglster Filew 14
library, defined ... 221 MEMOrY ClaSSES........c...vrrrrrrrrrrrrereee 13
LINK, controlccoeeeveevvvieecneeennen. 124 CODE..o 26
L|ST, (630] 011 (0] I ROR TR 125 CONST oo 26
Listing File Format..........cccccoeiennene 205 EDATA oo 27
File Headlng 207 HDATA oo 27
File Trailer.....ccoooooeveeeiieeie, 210 IDATA oo 26
Include File Level....................... 208 XDATA .o 26
Macro Level..........ccociiioninni 208 Memory Initialization 55
Save Stack Level..........c....... 208 Memory Modelcccovvrreerrnnnn. 10
Source LiSting......cccceevvevinieninnne 207 memory model, defined 221
Symbol Table........cooooonnn 209 Memory Reservation.............c..co...... 57
LlT, C_“reCtlve 53 METACHAR Function ...ooweevieiii . 93
Location COUNEETcccorrvvesinnnes 32 Miscellaneous operators..................... 36
LOW,_ OPEratorccueeveiieeeeeee e 36 mnemonic, defined..........ooovvvvnn.. 221
LST fileS ..o 113 MOD, operator lllllllllllllllllllllllllllllllllll 33
LT, Operator .. 34 MODB'N, CONION oo 127
LTE, Operatorc.cccocvereenieneeiiennns 34 MODSRC, CONIOl vveooveooereor. 128
monitor51, defined...........ccccevvenenee. 221
M MPL Functions
Macro definition..........cccceeeeeiieeenenns 72 Brackel.........cccovvvvvniiiiiiinisinn 92
Macro definitions nested 7 COMMENL.......ooovvvvvvrvrrrriissssnen o1
Macro direCtives........coeveviieieeieenens 72 AT S 92
Macro invocation..........c..cceeeviveeenens 83 EVAL s 97
Macro labelscccoeviieiciciiriecie, 74 EXIT 101
MacCro Operators..........cccoceereeneeiennens 79 II_FEN """""""""""""""""""""""""""""" 182
P 29@2 LEN.,
7 MATCH .. 103
oo 79,80 METACHAR ..coovvnssiinssensssinises 93
.. 79,83 REPEAT .oovvorsssiissnssssiinissssn... 100
S e 79,81 SET oo %
S 79,81 SUBSTR oot 102
NUL . 79 WHILE. ... 99
MACro Parameters..............ooo... 73 MPL, controI............: 129
Macro Processing Language............... 85 MPL, Macro Processing
Macro Errors......cccccvevceeiiinninnn, 109 Lang_uage
MPL Eunctions ... 91 delimiters.......ccoceevveveiiecieieennn, 105
MPL Macro. ... 85 MS,Controlccoeveevececiecieceenen, 128

OVEIVIEW.....cevieeeeeie e 85

232 Index
N OJ, control........cooovvriiie, 136
— Omitted text, notational
NAME, directive........ccccoooovvinrnnnene. 65 CONVENTIONS.vieeeeeeeeeeeeseeeeneneeans iv
NAMES ..o 22 opcode, definedcccccveveeieiennne, 221
NE, Operatorcccovvveverieninnennin. 34 operand, defined..............oovvecovereveenn. 222
NEAR, Operator.........cccccevvvvververinnen. 36 OPEIANGS ... 24
Nesting macro definitions.................. 77 OPETALETS .ovveeooeeveeeeeeeeeeeeeeeseeeeeee 30
NO251, controlccccvrervivreennnnn, 134 OPETALOT ovveeeeeeeee e 33
NOAM, control.........oovvvieriinnnnne. 130 ATTEAMELIC v 33
NOAMAKE, control............cc.cc...... 130 DINAIY......cveveeieeieee e, 34
NOCOND, control...........cceeeveennee.. 116 class........ o 35
NOGEN, control........ccccoovvvvenninnn. 122 MISCEIANEOUS ... 36
NOLI,controlccoceovvvrencinennnn, 131 PrECEUBNCE ... 37
NOLINES, control...........ccecevveennne.. 131 relational ..o 34
NOLIST, control..........ccccoervvinnnnnn. 125 BYPE corvvveeeeeeeee e eeeee e 35
NOMACRO, control............cc.cc...... 132 operator, definedcccooevvivnnen. 222
NOMO, control..........ccceveniienenn. 133 Operators
NOMOD251, control............c.ceee... 134 G 33
NOMOD51, control.........ccccevreennee. 133) N 33
NOOBJECT, controlccuene... 136 * 33
NOOJ, control........ccceeevveevieecneenen, 136 o 33
NOPR, controlcc.ccceveeevveeceeennen. 139 I 33
NOPRINT, control...........cceeeveennee.. 139 < 34
NORB, control.......c...ccoceeeveeiveenn.. 140 <= 34
NOREGISTERBANK, control........ 140 <> 34
NOREGUSE, control............cc......... 141 = 34
NORU, control..........ccoeeevveeveeennn. 141 > 34
NOSB,controlcc.ccoveeevveeirieennnn. 135 S= 34
NOSL, control........ccccceveeviveiieenen. 144 AND o 34
NOSYMBOLS, control 135 1 S 35
NOSYMLIST, control..................... 144 22 1 HR 36
NOT, OPErator...........oooovvvvvrisseriinssans. 34 22 =0 36
NUL, Macro Operator........................ 9 221 = 36
NULL macro parameters 9 22 A= 36
NUMBER, external symbol 22 =< 36
SEgMENT tYPE ..o 65 CODE...ooo 35
NUMDES...oovvvviiiians 30 (070 NI} 35
DATA ..o, 35
@) DWORD.....oveeveerrereereereeneenees 36
S 113 EBIT o 3
object file, defined ... 221 BCODE oo 3
OBJECT, CONIO oo 136 BCONST wooorvrerrsrs e 3
object, definedc.ccooeeveiinicns 221 EDATA oo 35
Octal NUMDErS......ccccoeiieiicecee, 30 BQ v 34
OFFS, relocation type........ccccccoeeeeenee. 47 g’?‘rR ''''''''''''''''''''''''''''''' gi

OH51, definedcccoovevveeiieeeee, 221

8051 Utilities

233

GTE oo 34
HCONST ..o, 35
HDATA ..o, 35
HIGH ..o, 36
IDATA ..o, 35
LOW ..o 36
LT oo 34
LTE i 34
MOD. ..o, 33
NE .o, 34
NEAR ..o, 36
NOT .o 34
OR. e 34
SHL..coieeieiceeceeceece e, 34
SHR ..o, 34
WORD. ..., 36
WORDO ..o, 36
WORD2......coveeieiiieecie e, 36
XDATA oo 35
XOR.oii e 34
Operators used in Macros 79
Optional items, notational
CONVENLIONS.....ceovvieerieceree et iv
OR, 0PErator........cccceveeveeirieeiieseene 34
ORG, direCtiVe......coceevveeceeecrieccreeennen, 66
Output files......coovriiiiiiiiieee, 112
OVERLAYABLE, relocation
TYPE e 47
P
PAGE, allocation typecccceeeueeene 48
PAGELENGTH, control 137
PAGEWIDTH, control..................... 138
parameter, definedcc.ccoceeenee. 222
Parameters in macros...........cc.cceeeeune.ne 73
PC, registercooovveiineeieienc s 25
PL, control.........ccoceevvvivieeiieecieeenee, 137
pointer, defined.........c.ccoovviiinnn 222
PR, control.........ccocevviivieeiiiccieeenen. 139
Precedence of operators............ccocc..... 37
PRINT, control........cc.cccoveevvveecnneenen. 139
Printed text, notational
CONVENLIONS.....eeovveeerie et iv
PROC, directive.......cocovveeviveeiieeinnnnns 61
Procedure Declaration.............cccu.... 61

Program Linkage........c.cccooevenerennnne. 64
Program Memorycccocveeiiiinnnnne 12
Program Template............ccooeevennnnn. 211
PUBLIC, directiveccoceevnereenne. 64
PW, control........c.ccoevvveneiinineinen, 138
R
RO, regiSter.......ccooviieeeneeieceeeeene 25
R, regiSter.....cccvviieieiiee e 25
R2, regiSter.....cccoveiiiieee e 25
R3, regiSter.....cccoveiieieee e 25
R4, regiSter.......ccoviiriiiiie e 25
RS, regISter.....ccvveiiiieee e 25
R, regiSter.......ccoviieieeie e 25
R7, regiSter.....cccoviiiiieie e 25
RB, control........ccccoevviineiienee, 140
Recursive macros.........ccoceovvvrervnnennes 78
Register NAMeScoceeeveveneneeiene 24
REGISTERBANK, control.............. 140
REGUSE, control.........cc.ccoceevienienne 141
Relational operatorsc.ccocevveuenne. 34
relocatable, defined............cccoerenene 222
Relocation TYpe......ccccovvenenenieeienn 47
Relocation types
AT o 47
BITADDRESSABLE................... 47
INBLOCK ..o, 47
INPAGE ..., 47
INSEG......cooiiiiiiiee e, 47
OFFS ...t 47
OVERLAYABLEcccoovvnnnnn. 47
REPEAT Functionccoccevvenienne 100
Repeating blocks..........ccocvviinnnne. 75
RESET, control.........cccccoevevneniennns 150
RESTORE, controlccccoceevenennen. 142
RS, CONLrolocovvveiciiieieee, 142
RSEG, directiveccccovvereincienenns 49
RTX51 Tiny, defined..........cccoeeenee. 222
RTX51, definedcccoooevvivncnienns 222
RU, controlccccooeivieniiienecen, 141
Running A251......cccceoiiiiiinines 111
S
SA, CONtrol.....coooviriiiiiiiicrcees 143

sans serif typeface, use of.................... iv

234 Index
SAVE, control........ccccvoeeiiinnicnne 143 Symbol Namescccceeeveveneneninne. 22
SB, control........ccccooeiiviiiiciciee 135 SYMDOIS....ciiiii 22
scope, definedccocevvieiieicnnnnn, 222 SYMLIST, controlccccevveeennennn. 144
SEG, allocation typeccccecevenuenne. 48
Segment Controls.........cccovvevievienienne. 42 T

Location Counter.........ccc.oevveeeveenns 42
Segment types TEMPLATE.A5L...coooviiviieiees 211
Y 46 TITLE, CONrOl oo 145
CODE...ooiooi 46 TS51, defined......ocoovveveeeeeeeee, 223
CONST oo 46 TT, controleveeeeeeeeeeeeee 145
DATA oo 46 two’s complement, defined............... 223
EBIT oo 46 Type OpPerators........ccccveveeneeneeiennens 35
ECODEccoov v 46
ECONST oot 46 U
EDATA ..o 46 Unary +, operatorccocevvenvenennne 33
HCONST ..o 46 Unarv - operator 33
HDATA oo 46 S el o
IDATA .. 46 USING, directive........ccocveevineeeiinieens
XDATA. ... 46
SEGMENT, direCtiveco.vovor..... 45 \
Segments Variables, notational
abSOIULe ... 44 CONVENLIONS.eeveeeeeeereeeeereereeeeeeeae iv
default ... 45 vertical bar, Use OFcococvveveereeninn iv
GENEIIC. cuiiieii et 43
SEACK c.vveicieeecie e 43
semicolon characterccccccvveeveennee. 21 W
SET FUNCLIONovvverevreeieeieen, 96 WHILE FUNCtion..........ocovvvinininins 99
SET, CONIOl..vviirerererereeeeeeeererenna, 149 whitespace character, defined........... 223
SFR, definedooovoveveveveeeeeierenen, 222 wild card, defined.........cccceevvevnennen. 223
SHL, OPEratorcccovvvevverrnrnrennen. 34 WORD, allocation type.........c.cccueuee. 48
SHR, OPEratorccccoeevrrrverernnnnn 34 WORD, Operatorcccceuveeneeiuennens 36
SL, CONIOL .o eeeereans 144 WORDO, 0peratorcccouveveeiiennnns 36
source file, defined........cocoocvvvvrinnnn. 222 WORD2, 0peratorccouvevnienn. 36
Special Function Register,
definedc.ooovveeiieiiiecce e 222 X
Special Function Registers................. 16
stack, defined........cccevveeeiiiiiieiinnns 222 XDATA"": """ s 26
Standard Macros..........ccceeeeevveeeveennne.. 71 XDATA, GIrECUVE....vvvsovvvesvs 52
Statements........ccccccveeeeiiiecee e 19 XDATA, external symbol 65
SEGMENE tYPE..vvvveeereiee e,
OECUNGS 20 XDATA, ODEIGOT 35
INSErUCtiONS. ..o, 20 XDATA, SEgMENt type.....ooeesvvvesve 46
string literal, defined............ccoceeuee. 223 XOR, OPBIAIOF wovrevvrss s 34
String, defined ..o 223 XR, control.......ccccoevviivieiiiiiiiecine 146
SHNGS .o 32 XREF, C(_)ntro_l """"""""""""""""""""" 146
XSEG, direCtivecocovveverieireecree, 49

Symbol Definition..........cccoceverenenn. 51

8051 Utilities 235

	Chapter 1. Introduction
	What is an Assembler?
	How to Develop A Program
	Advantages of Modular Programming
	Efficient Program Development
	Multiple Use of Subprograms
	Ease of Debugging and Modifying

	Modular Program Development Process
	Segments, Modules, and Programs
	Program Entry and Exit
	Assembly
	Relocation and Linkage
	Keeping Track of Files

	Writing and Assembling Programs

	Chapter 2. 8051 and MCS 251 Architecture
	New Features of the MCS 251 Architecture
	8051 and MCS 251 Memory Model
	8051 Address Space
	Program Memory
	Internal Data Memory
	External Memory
	Memory Classes

	8051 and MCS 251 Register File
	Special Function Registers

	Differences to the 8051
	8051 Compatibility
	Timing Issues
	Stack Pointer (SPX)
	Program Status Word
	PSW Bit Definitions

	Chapter 3. Writing Assembly Programs
	Assembly Statements
	Directives
	Controls
	Instructions

	Comments
	Symbols
	Symbol Names

	Labels
	Operands
	Special Assembler Symbols
	Immediate Data
	Indirect Addresses
	IDATA
	XDATA
	CODE and CONST †
	EDATA †
	HDATA †
	Direct Data Addresses
	Direct Bit Addresses
	Program Addresses
	Relative Jumps
	In-Block Jumps and Calls (ACALL and AJMP)
	Long Jumps and Calls (LJMP and LCALL)
	Extended Jumps and Calls (EJMP and ECALL)
	Generic Jump and Call (JMP and CALL)

	Expressions and Operators
	Numbers
	Characters
	Character Strings
	Location Counter

	Operators
	Arithmetic Operators
	Binary Operators
	Relational Operators
	Class Operators
	Type Operators †
	Miscellaneous Operators
	Operator Precedence

	Expressions
	Expression Classes
	Relocatable Expressions
	Simple Relocatable Expressions
	Extended Relocatable Expressions

	Chapter 4. Assembler Directives
	Introduction
	Segment Controls
	Location Counter
	Generic Segments
	Stack Segment
	Absolute Segments
	Default Segment
	SEGMENT
	RSEG
	BSEG, CSEG, DSEG, ISEG, XSEG

	Symbol Definition
	EQU, SET
	CODE, DATA, IDATA, XDATA
	LIT †

	Memory Initialization
	DB
	DW
	DD †

	Memory Reservation
	DBIT
	DS
	DSB †
	DSW †
	DSD †

	Procedure Declaration †
	PROC / ENDP †
	LABEL †

	Program Linkage
	PUBLIC
	EXTRN / EXTERN
	NAME

	Address Control
	ORG
	EVEN †
	USING

	Other Directives
	END

	Chapter 5. Standard Macros
	Directives
	Defining a Macro
	Parameters
	Labels
	Repeating Blocks
	REPT
	IRP
	IRPC
	Nested Definitions
	Nested Repeating Blocks
	Recursive Macros

	Operators
	NUL Operator
	& Operator
	< and > Operators
	% Operator
	;; Operator
	! Operator

	Invoking a Macro

	Chapter 6. Macro Processing Language
	Overview
	Creating and Calling MPL Macros
	Creating Parameterless Macros
	MPL Macros with Parameters
	Local Symbols List
	Macro Processor Language Functions
	Comment Function
	Escape Function
	Bracket Function
	METACHAR Function
	Numbers and Expressions
	Numbers
	Character Strings
	SET Function
	EVAL Function
	Logical Expressions and String Comparison

	Conditional MPL Processing
	IF Function
	WHILE Function
	REPEAT Function
	EXIT Function

	String Manipulation Functions
	LEN Function
	SUBSTR Function
	MATCH Function

	Console I/O Functions
	Advanced Macro Processing
	Literal Delimiters
	Blank Delimiters
	Identifier Delimiters
	Literal and Normal Mode

	MACRO Errors

	Chapter 7. Invocation and Controls
	Running A251
	Command Files
	DOS ERRORLEVEL
	Output Files

	Assembler Controls
	Directives for Conditional Assembly
	Conditional Assembly Controls

	Chapter 8. Error Messages
	Fatal Errors
	Fatal Error Messages

	Non–Fatal Errors

	Appendix A. 8051/251 Instruction Sets
	MCS 251 Opcode Map
	8051 Microcontroller Instructions

	Appendix B. Directive Summary
	Appendix F. Listing File Format
	Assembler Listing File Format
	Listing File Heading
	Source Listing
	Format for Macros, Include Files, and Save Stack
	Symbol Table
	Listing File Trailer

	Appendix G. Program Template
	Appendix H. Assembler Differences
	Differences Between A51 and A251
	Differences between A51 and ASM51
	Differences between A251 and ASM51

	Glossary
	Index

