## What's Inside the Buffer?



> This device always "drives" either high or low.

Current is a function of pin voltage

Never High Impedence 'Z'

Note: this one inverts the signal, but its just an example...

## I/O Port?



CSE 370 - Fall 1999-Introduction - 2

## I/O Ports



Output driver can be disconnected from the
bus pin so that input buffer can sense only the input signal

This kind of bi-directional port requires a direction control register (SFR) for each bit of output (like StrongArm...)

## The 8051 (always has to be different)

Eliminate the need for configuration bits by making outputs that can only drive strongly low (sink). There are three kinds of pins on the 8051 (of course)

- No pull up
- Weak pull up
- Weak pull up with momentary strong pullup

To use a input pin, set output value to 1 (weak or no pullup). External signals just have to overpower the weak pull up (low resistance to ground).
As output, will go from 0 to 1 slowly unless you add an external pullup

Data sheet doesn't spec the resistance of the pull up, but it specs the Amount of current that will result in a given voltage at the pin. For Example, in Ports 1,2,3 Ioh $=-25 \mathrm{uA}$ at .75 Vcc .

## I/O Ports (see 2-40 of AT89 Hardware Desc.)



It can drive a 0 , but not a 1 (sinks current). bus

No direction bit required, just write a 1 to the port register to use as input pin.

## Application: External I/O bus

Q1) How can a processor detect a collision?


Communication bus: Each processor tries to send data, but detects collision. If collision, then stop transmitting

## Summary

$q$ Port 0:
used as address bus for external address/data bus. Uses active pullup in this mode. Fast
Can use as GPIO. Must use external pullup. Pullup size is power/speed tradeoff, can sink up to 3.2 mA while maintaining a logic zero output.
$q$ Port 1 and 3:
GPIO only. External pullups are optional. Power/speed tradeoff, can sink up to 1.6 mA while maintaining a logic zero output
q Port 2:
Also used for external address bus. Has active and passive internal pullups. External pullups are optional in GPIO mode, up to 1.6 mA .

## Example Problem (See elec. specs in AT89C55)

Open $=0$
Closed $=1$


1) As big as possible!

According to Data sheet:
Processor reads a zero if Vpin < . $2 \mathrm{Vcc}-.3=0.7 \mathrm{~V}$
$\mathrm{I}_{\text {low }}$ (port 1 ) is .45 V at 50 uA . So what is max R ?
(.45/50e-6) $=9 \mathrm{Kohms}$

So the switch resistor better be smaller than 9 Kohms .4 .7 K is a good choice. 2.7 is okay but higher power!

## Careful w/ Coils (motors, valves, etc)

Steady state on current: Vcc/R Vds ~0 (Rds ~4mOhm)
But, when we try to turn off the Mosfet quickly, what happens?
-Rds goes up quickly, but Ids drops slowly)
-If Rds becomes 1K, then Vds becomes 100V


## Absolute Maximum Current Ratings

q Is there a limit to how much current we can sink if we don't care about what happens to our logic levels?
q How much current did you sink in Lab1?
q What was the voltage at the pin?
$q$ What is the maximum legal speaker power on port 0 ?
10 mA @ $80 h m s=.8 \mathrm{~mW} . .$. we want 200 mW !

## Design Meeting

How are we going to make louder more interesting sounds??
Sample rate v. Frequency
How can we generate a complex tone (muliple notes simulaneously)
How should we use timers/interrupts to do siren?
What is midi?
Spreadsheet for tone generation

## Using single bit tones



- Two tones generated by two single bit outputs.
- How do we add tone1 and tone2.


## Our Version

q Objective convert number of bits to current


## One Idea

## 5V

 increasing $B$.

## Another Idea

q Use a current amplifier (PNP Transistor)
Ice $<=\beta$ Ib (assume $\beta=100$ )

Assume Vbe = 0.7 V when "on"
Assume Vce = 1V when "on"
Assume tonel $=0 \mathrm{~V}$
Pick Rc to protect the speaker
Pick Rb to protect the processor
while tu: sistor


Is $=\left((.2 / 8)^{\wedge} .5\right) / 3=\sim 50 \mathrm{~mA}$
Rc: $5-(50 m A * 8)-$ Vce $-(50 m A * R c)=0$
so: $R c=(5-1-0.4) / .05=72 \mathrm{ohms}$
8ohms
$\mathrm{Rb}: \mathrm{Vb} / \underline{\mathrm{mA}}=\left[5-\left(8^{*} .05\right)-.7\right] / 1 \mathrm{~mA}=3.9 \mathrm{~K}$ !

## Final Circuit Design

Size R to match your speaker and to
Stay within the current limitations of the Processor.


## Ideal Solution

q Digital to Analog Converter


Speaker cares about current, not voltage What is algorithm to superimpose 1 KHz tone with 500 Hz tone With a sampling rate of 10 KHz

## Software Summation

q Add waveforms to get multiple tones (think current through speaker, not voltage)


Note that lower frequency is smoother for a given sample rate

## What should we do in the next lab?

## Synthesizer Algorithm

q Let $\sin []$ be a look up table with 256 entries ( 1 complete cycle)
q Every. 1 ms ( 10 KHz )

$$
\mathrm{P} 2=\sin [t 1]+\sin [t 2]+\sin [t 3] \ldots
$$

For $1 \mathrm{KHz}, \mathrm{t} 1+=256 / 10$ is this hard? how do we implement this?
For 500 Hz , t2 $+=256 / 20$
At 8 -bit resolution we can vary output from 0 to 255 . Hi frequencies are smoother

q Can Compute arbitrary waveforms (not just tone summations)

## Summary

q Review of basic Electronics
Capacitors
Inductors
Bipolar Transistors
MOS transistors
q Review of 8051 I/O configuration

