
1

CSE 466 – Fall 2000 - Introduction - 1

Process Synchronization and Communication

q How to we protect a critical section without disabling interrupts?

CSE 466 – Fall 2000 - Introduction - 2

Process Synchronization

The term “semaphore” means
signal. It comes from the railroads.

A semaphore requires some form of
mutual exclusion in hardware: like disabling
interrupts. By making it an OS call, we leave implementation
up to the OS/HW. Same system call on many HW platforms.

critical
section

need a HW
interlock to prevent
simultaneity



2

CSE 466 – Fall 2000 - Introduction - 3

Semaphore Implementations

q Some processors have a Test-and-Set Instruction
provides hardware level atomicity for synchronizing critical sections, just like using
the memory mapped I/O system provides atomicity for device I/O (single instructions
are atomic)

example:
bit flag
…
while (flag != false);
flag = true;
<excute code in critical section>
…

q If processor has a test and set operation, it could look like this in ass’y code

loop: tst flag, loop; //sometimes they just skip the next instruction

< execute critical section >

q But we still don’t want to rely on our compiler…so we use a system call
semaphore s; // declare a semaphore
while(!os_set(s)); // os_set(semaphore) is a system call…OS guarantees atomicity
<execute critical section>

bad time for an interrupt?

CSE 466 – Fall 2000 - Introduction - 4

A Better Semaphore

q Problem with first semaphore: busy-waiting. OS can’t tell the difference between busy
waiting and doing real work?

q How can we solve this? Try a blocking semaphore

struct sem {

processQueue Q;

int count;

};

void os_init_sem(sem *s) {

s count = MAX_PROC_IN_SECTION; // probably one

}

void os_wait(sem *s) {

disable();
s count--;

if (s count < 0) {

block calling process and put it in s queue;

start any process in the ready-to-run queue;

}
enable();

}

Is there and opportunity
for deadlock detection?

void os_signal(sem *s) {
disable();
s count++;
if (s count < 0) {

move proc. from
s->queue to
ready queue;

}
enable();

}

sem *cs1;
….
os_wait(cs1);
<execute critical section>
os_signal(cs1);
// tiny has wait and signal
// but they are thread
// specific



3

CSE 466 – Fall 2000 - Introduction - 5

Better than Semaphores

q They’re kinda like goto…makes your multithreaded system into spaghetti

q Hard to tell if you have created a deadlock situation

q An alternative? The Monitor: you see this in Java with “synchronized” methods
Only one thread can be executing in a monitor at a time. The compiler builds in all
of the os_calls and semaphores needed to protect the critical section
No chance of forgetting to signal when leaving! unless of course a process dies in
the monitor!
Basic idea…bury semaphores in the compiler

class queue {

Vector data;

queue() { data = new Vector();}

synchronized void put (Object x) {

data.add(x);

}

synchronized Object get(Object x) {

data.remove(0);

}

}

class top {
q = new queue();
Producer p = new Producer(q);
Consumer c = new Consumer(q);
p.run();
c.run();

}

individual methods can also be synchronized

CSE 466 – Fall 2000 - Introduction - 6

Message Passing

q Use queues, or queues of buffers

q Use monitors/semaphores to protect the queues

q Doesn’t work if we are dealing with processes rather than threads…separate address
space. Process a can’t just send process b a pointer! They can’t access the same
queue!

q So instead, provide inter-process message passing system calls
os_send(destination, message);
os_receive(source, message);
Maybe implemented as a critical section in the OS

q Design Consideration
Efficiency: do we have to copy from address space to another
Space: how much space is there for messages? Who allocates the space?
Authentication
End-to-End guarantees, protocol.

q We will see more of this in Linux, along with semaphores and other synchronization
and communication primitives

q This also leads into networking…what if the processes are on different machines?



4

CSE 466 – Fall 2000 - Introduction - 7

Back to Comparative Real Time OSes

38uS – 280uS

What is this?

Compare to
uClinux at
~400Kbytes.

actually 16
semaphores

CSE 466 – Fall 2000 - Introduction - 8

Threads and Stacks

q Process: entire address space is private (processes can be multi-threaded)

q Threads: heap is public, but stack is private. What if stack wasn’t private?

DATA

regs

OS

globals

stack
task 1
context

context
swap

DATA

regs

OS

globals

stack

task 1
contextsp

?

sp

task 2
context



5

CSE 466 – Fall 2000 - Introduction - 9

regs

OS

globals
sp

stack 3

How TINY manages the stack

q One stack/thread

stack 1
stack 2

regs

OS

globals
sp

stack 3

stack 1

stack 2

regs

OS

globals
sp

stack 3

stack 1

stack 2

worst case stack size is sum of worst case
for each task, plus ISR’s.

CSE 466 – Fall 2000 - Introduction - 10

Reentrant Stack

regs

OS

globals

hw-sp

stack 3

stack 1
stack 2

re-stack 3

re-stack 1
re-stack 2

Why not use the regular (Hardware
Stack) for reentrant stack frames?

re-sp



6

CSE 466 – Fall 2000 - Introduction - 11

Lab 4

q Why does Tiny limit the tasks to Reg Bank 0?

q Write a program using Tiny OS that causes a context switch to occur with a fair
amount of data (calls) on the stack (least two threads). Then use the simulator to
trigger an interrupt.

determine the latency to the start of the interrupt routine
Are interrupts disabled for the entire context switch process? if so then explain the
experiment you did to prove this…otherwise
How is it possible to allow interrupts during context switch? Make sure your
interrupt routine also has some subroutine calls so that you can see what
happens to the stack.

q If one thread signals another thread, then executes a wait before the end of the OS
timeslice, does the signalled thread start running immediately or only at the beginning
of the next timeslice?

q Turn in answers to the questions along with your test code. Include clear explanations
for how you arrived at your answers.

q The Keil debugger has many utilities to help you: Dissassembler, memory window,
timer window for timer 0, elapsed time in machine cycles and seconds, etc.

q Turn in clearly explained incontravertible proof of your answers.

CSE 466 – Fall 2000 - Introduction - 12

Embedded System Types

q Data flow dominated Systems
our music player
a network router
queues, messages, packets, routing

q Control Dominated Systems
Software State machines, distributed state
management/synchronization, e.g. power plant, autopilot, etc.


