
CSE466 Autumn ‘00- 1

Back to RTOS

q Scheduling
Deadline
Laxity
Rate Monotonic

q Shared Code in
Multiprocessing

q Share Resources:
Deadlock avoidance

q Process Synchronization
and Communication

q Memory
Management



CSE466 Autumn ‘00- 2

Dynamic Non-preemptive Scheduling

music

serial

music_isr

serial_isr

OS

music time
slice…signal
music task

music time
slice

os time
slice

os time
slice

os time
slice

Char arrives Music task is never
more than one OS
time slice away

deadline
serial_isr
signals
serial task



CSE466 Autumn ‘00- 3

Dynamic Preemptive Scheduling

OS

T1/hi

T2/lo

ISR

Pre-emptive: hi priority tasks preempt low priority task.
Advantage: Lower latency, faster response for high

priority tasks.
Disadvantage: Potential to starve a low priority task
Tiny: no priority, round robin only. No starvation.
Priority Inversion: when T2 disables interrupts
Priority Function: any suggestions?

signal T2 signal T1, preempt T2 (time slice not up)

T2 Completes



CSE466 Autumn ‘00- 4

Scheduling Algorithms (Priority Functions)

q Egalatarian: Round Robin
Problem: We my have unused compute resources even though we don’t
meet some deadliines … it can be non optimal.
Example: system with music task and n non-critical tasks.
§ if deadline < time_tick * n + music_task then we have a chance to

miss the deadline.
§ If music is higher priority than worst case is: time_tick + music_task

q Theory: for a system with N periodic tasks. The system is schedulable if:

ΣCi/Pi <= 1 where Ci is seconds or computation per event i
and Pi is period of event I
where Ci/Pi is the fraction of time spent dealing with I

§ Let Ci = .5 and Pi = 2 Ci/Pi = .25 (1/4 of the time)
Rate monotonic scheduling: Priority αααα Frequency
At run time: Highest priority task always preempts lowest priority task.
Proven to be optimal by Liu and Layland.
Real systems rarely fit this model perfectly



CSE466 Autumn ‘00- 5

Other Scheduling Algorithms (Priority Functions)

q Earliest Deadline First
Keep list of runnable processes sorted by deadline
Algorithm always runs the first item on the list

q Least Laxity
Like earliest deadline first, but considers the expected run time of the
task. Priority = Deadline – RunTime. Sort the list according to this criteria
Run the first item on the list

q Static Priority
Various combinations
§ Static priority with least laxity as the tie breaker

q Engineering Challenge
worst case analysis to satisfy yourself that your system will always meet
your deadline given the scheduling policy



CSE466 Autumn ‘00- 6

Reentrant functions�sharing code not data

q Are there shared functions that we would like to have?
deq? enq? next (same for head or tail)?
C Library Routines!!

q Can task switching clobber local variables (parameters and automatics)?
What happens when this function is interrupted by the OS?

unsigned char next(unsigned char current, unsigned char size) {

if (current+1 == size) return 0;

else return (current+1);

} it depends on where the
parameters, automatics, and
spill values are stored… this
one is probably okay!3 places for parameters

a. Registers
b. fixed locations
c. stack…but not the hardware stack!



CSE466 Autumn ‘00- 7

Implementation Example: Reentrant, Encapsulated Queue

typedef struct qstruct {
unsigned char head;
unsigned char tail;
unsigned char *array;
unsigned char size;

} fifo;

fifo Q;
unsigned char array[QSIZE];
void producer(void) _task_ 0 {

unsigned char i;
bit fail;
initq(&Q, array, QSIZE);
os_create_task(1);
while (1) {

do { disable();
fail = enq(&Q,i);
enable();

} while (fail);
i++; // simulated data

}
void consumer(void) _task_ 1 {

bit fail;
unsigned char i;
while (1) {

os_wait();
disable();
fail = deq(&Q,&i);
enable();
if (fail)…else use(I);

}
}

Shared functions are okay if we
disallow task switch during calls.
why? re-entrant stack not
protected by Tiny OS.
What about C-libraries
(subroutine calls?)

is this okay for timing if
we don’t use it in Tone
Gen ISR (overhead)?



CSE466 Autumn ‘00- 8

Examples of Reentrant functions

int sum(tree) {
if (!tree) return 0;
return sum(tree->left) + sum(tree->right) + tree->val;

}
reason for reentrancy: re-use code
The key to reentrancy: relative addressing

Other examples of reentrancy:
two tasks share a function, ISR and task share a function



CSE466 Autumn ‘00- 9

Reentrancy in Keil C51

q In C51, most parameter passing is done through registers (up to three parameters).
Then fixed memory locations are used. Register method is reentrant, the other isn’t.

q Local (automatic) variables and temporary values in functions are also mapped to
fixed memory locations (w/ overlaying)…definitely not reentrant.

q How can we solve this: declare functions to be reentrant as in:
unsigned char next(unsigned char current, unsigned char size) reentrant {

if (current+1 == size) return 0;
else return (current+1);

}

q BUT…the stack used for reentrant functions is NOT the same as the hardware stack used for
return address, and ISR/TASK context switching. There is a separate “reentrant” stack used for
that, which is not protected by the TINY OS. It’s a different region of memory, and a fixed memory
location is used for the reentrant stack pointer. So this works for FULL and for recursion (no OS).

q Conclusion…you can have shared functions in TINY if you:
convince yourself that all parameters are passed through registers
convince yourself are no local variables that use fixed memory locations (compiler can
allocate those to registers too)
be sure not not change HW settings non-atomically
or… you disable context switching in shared functions by disabling T0 interrupts
§ Think of shared functions as critical sections. Consider impact on interrupt latency?



CSE466 Autumn ‘00- 10

Sharing Resources

q What would be an example of a shared resource in a simple 8051-like
application (other than RAM variables)

What if you have 64 control lines to manage, with no memory mapped
I/O?

8051

can Tiny OS help with this?
can memory mapped I/O help with this?



CSE466 Autumn ‘00- 11

How about these?

q Is this reentrant? … note: we don’t care about order
void setLatch(addr, data) {port1 = data, port2 = addr, E = 1, E = 0}

q How can we get atomicity here?

q Deadlock scenario:
thread-1 requests and gets port1
thread-2 requests and gets port2 then requests port1
thread-1 requests port2

q Can TinyOS help with this?

Port2 = y

Port2 = b

Port1 = a

Port1 = x

Thread 2 (a,b)Thread 1 (x,y)



CSE466 Autumn ‘00- 12

Deadlock

q Preemptable v. Nonpreemtable Resources
CPU – preemptable
Memory – Preemtable
Incoming packet processing on a network interface – non preemptable
Control of an external device like a disk drive, printer, display

q Deadlock: two threads each have a partial set of non-preemptable resources
needed to complete their tasks and are waiting for the resources held by the
other.

q Preconditions for Deadlock to occur
Mutual exclusion: each resource is either currently assigned to exactly
one thread or is available
Hold and wait: A process currently holding resources granted earlier can
request a new resource without giving up the other
Non-preemtive: Only the holder a resource can give it up
Circular Wait: see above



CSE466 Autumn ‘00- 13

Solutions to Deadlock

q Forggedaboutit
Statistical likelihood say once if fifty years. Statistical likelhood of a disk
crash is once in 10…so worry about the disk. Also consider the
consequences of its occurance!

q Detection and Recovery
Look for cycles in the request chain, then break the chain if it happens
Make sure that in any chain, there is always a thread that can tolerate
being killed!

q Prevention
Prevent at least one of the four preconditions from occurring!
§ Mutual exclusion: spool I/O so that thread can continue
§ Hold and wait: Request at resources at once.
§ Circular wait: order resources numerically and allow a process to

wait only on resources numerically higher than all that it currently
holds.



CSE466 Autumn ‘00- 14

Safety � flip side of deadlock

q No two threads access a non-sharable resource at the same time (critical
section protection)

q Access to a resource
Request Resource
Use Resource
Release Resource

q Safety is guaranteed if Request Resource is atomic. Just disable interrupts!
But we don’t want user tasks to do that.

Causes reduced predictability of system performance (latency).
A user thread could crash with interrupts disabled

q How to protect a critical section without disabling interrupts



CSE466 Autumn ‘00- 15

Coming Up

q A little more on OS
Real Time Scheduling Algorithms
Synchronization: Semaphores and Deadlock avoidance
Interprocess Communication
Concept of shared resources: Devices and Drivers

q Future
Linux and the Cerfboards
Networking
Product Safety
Java/Object Oriented Programming for Embedded Systems

q Design Meeting (Product Ideas…)


