
Section 1: Sockets API + HW 1
CSE 461 Winter 2024

Anirudh

● BS/MS student–just started the
MS!

● Research assistant in syslab (I do
OS things)

● Hobbies: trivia, violin, hiking/travel

Your TAs :)
● BS/MS student!
● First-time 461 TA
● Hobbies: learning italian

Administrivia - Course Structure
● Assignments

○ 3 group projects
■ P1: Building a client and server application
■ P2: Practicing with Software-Defined Networking (SDN)
■ P3: Experimenting to learn about latency in real-world networks (Bufferbloat)

○ About 5 homework assignments (Gradescope)
■ Detailed practice with the concepts discussed in textbook & lecture
■ Conceptual overview

○ In-person Midterm & Final Exam
○ Occasional “surprise” quizzes

● Quiz Sections
○ Intro to labs (helpful hints!) + networking software
○ Reviewing and clarifying conceptual topics (e.g. various protocols)
○ More practices with mechanics (e.g. calculations, algorithms, etc.)

● Project 1 is out, due Jan. 25
○ Can be done in groups of 2-3
○ Can be done in any language (recommend Python/Java)

■ But future labs will be fully in Python
○ Goal is to help you get familiar with some language’s Socket API
○ NEW THIS QUARTER: 10% of points on style

■ modularity, readability, consistent naming scheme….. just good
programming practices in general

■ we’ll provide some guidelines on Ed/spec

Administrivia

Socket API &
Project 1

Network Stack - OSI Model vs TCP/IP Model

7 layers vs. 5 layers

Network Stack - Packet Encapsulation

Network-Application Interface
● Defines the operations that programs

(apps) call to use the network
○ Application Layer API
○ Defined by the Operating System

■ These operations are then exposed
through a particular programming
language

■ All major Operating Systems support
the Socket API

○ Allows two computer programs potentially
running on different machines to talk

○ Hides the other layers of the network

host

appapp

hostnetwork

Project 1 - Overview
● Part 1: Simple Client

○ Send requests to attu server
○ Wait for a reply
○ Extract the information from the reply
○ Continue…

● Part 2: Simple Server
○ Server handles the Client requests
○ Multi-threaded

● This is the basis for many apps!
○ File transfer: send name, get file
○ Web browsing: send URL, get page
○ Echo: send message, get it back

host

ServerClient

host

network

Socket API
● Simple application-layer abstractions (APIs) to use the network

○ The network service API used to write all Internet applications
○ Part of all major OSes and languages; originally Berkeley (Unix) ~1983

● Two kinds of sockets
○ Streams (TCP): reliably send a stream of bytes

■ Detects packet loss with timeouts (uses adaptive timeout protocol)
■ Uses flow control: similar to selective repeat

○ Datagrams (UDP): unreliably send separate messages

Ports

Socket
Port 1

● Sockets let apps attach to the local network at different ports
○ Ports are used by OS to distinguish services / apps all using the same physical connection to

the internet
○ Think of ports like apartment numbers, allowing mail sent to a shared building address (IP)

to be sorted into the correct destination unit (application)

Socket
Port 2

app app

Socket API Operations

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

Primitive Meaning

SOCKET Create a new communication endpoint
BIND Associate a local address (port) with a socket

LISTEN Announce willingness to accept connections; (give
queue size)

ACCEPT Passively establish an incoming connection
CONNECT Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

request

reply

disconnect
4

1 1

2

3

4

connect

Using TCP Sockets
Client (host 1) Time Server (host 2)

Client (host 1) Time Server (host 2)

5: connect*

1: socket

9: send
10: recv*

12: close

6: recv*
7: send
8: recv*

11: close

request

reply

disconnect

connect

*= call blocks

1: socket
2: (bind)
3: (listen)
4: accept*

Using TCP Sockets (cont.)

Using UDP Sockets
Client (host 1) Time Server (host 2)

5: connect*

1: socket

9: sendto
10: recvfrom*

12: close

6: recvfrom*
7: sendto
8: recvfrom*

11: close

request

reply

disconnect

connect

*= call blocks

1: socket
2: (bind)
3: (listen)
4: accept*

Client Program Outline

socket() // make socket

getaddrinfo() // server and port name

 // www.example.com:80

connect() // connect to server

send() // await reply [block]

recv() // do something with data!

…

close() // done, disconnect

Server Program Outline

socket() // make socket
getaddrinfo() // for port on this host
bind() // associate port with socket
listen() // prepare to accept connections
accept() // wait for a connection [block]
…
recv() // wait for request [block]
…
send() // send the reply
close() // eventually disconnect

create a new
thread for
new client
connection!

Python Examples with socket
Server

● Python socket documentation
● UDP socket example
● socketserver (a little overkill)

listener = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

listener.bind(server_address)

while True:
try:

connection, client_addr = listener.accept()
try:

connection.recv(n_bytes)
finally:

connection.close()
except:

listener.close()

socket = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

socket.connect(server_address)
socket.sendto(message, server_address)
socket.close();

Client

https://docs.python.org/3.6/library/socket.html
https://www.studytonight.com/network-programming-in-python/working-with-udp-sockets
https://docs.python.org/3.6/library/socketserver.html

Java Examples with Socket & ServerSocket

• http://cs.lmu.edu/~ray/notes/javanetexamples/
• https://docs.oracle.com/javase/tutorial/net

working/sockets/clientServer.html

ServerSocket listener = new ServerSocket(9090);
try {
 while (true) {
 Socket socket = listener.accept();
 try {
 socket.getInputStream();
 } finally {
 socket.close();

}
 }
} finally {
 listener.close();
}

Socket socket = new Socket(server, 9090);
out = new PrintWriter(socket.getOutputStream(), \
 true);
socket.close();

Server Client

http://cs.lmu.edu/~ray/notes/javanetexamples/
https://docs.oracle.com/javase/tutorial/networking/sockets/clientServer.html
https://docs.oracle.com/javase/tutorial/networking/sockets/clientServer.html

HW1 Fundamentals

Traceroute

Local
Host

● Goal: find network path from our system to a given remote host
● Core mechanism: Time-To-Live (TTL)

○ TTL defines the number of hops a packet will travel through until it is dropped
■ TTL is decremented every hop
■ Once TTL is 0 then the packet is dropped and a report is sent to the source

. . .

Remote
Host

Resources:
● https://serverfault.com/questions/6403/what-do-the-three-columns-in-traceroute-output-mean

● Traceroute sends out three packets per TTL increment
○ To have 3 trials of data for each hop distance

● Each data point corresponds to the total RTT time

Traceroute

. . .

Local
Host

1 hop 2 hops
3 hops N-1 hops

N hops

Remote
Host

Using Traceroute

Latency

Latency &
Bandwidth

● Latency: Total time for a message to arrive on
a network

○ Round trip time (RTT) is the latency for travel
from source to destination to source

● Latency = Propagation + Transmit + Queue
○ Propagation = Distance / “Speed Of Light”

■ How long it takes for information to travel
a distance from source to destination

■ Speed varies by medium
○ Transmit = Size / Bandwidth

■ How long it takes for information to be
put onto the wire before travelling

○ Queue time
■ How long data has to wait until it’s their

turn to be transmitted

Latency

Bandwidth
● Bandwidth (data rate): The number of

bits that can be transmitted over a period
of time

○ Units of bits per second (bps)
○ Confusingly also used to refer to the

frequency range of a signal
■ In this case the units are given as hertz

(Hz)

● Throughput: The measured
performance of a system

○ Units of bits per second (bps)
● Analogy: bandwidth is a pipe and

throughput is the water

Bandwidth & Transmission Time
Transmission time = Size of data / Bandwidth

● Transmission time of 1 bit of data at a bandwidth of 1 Mbps?
○ 1 bit / 1,000,000 bps = 1/1,000,000 seconds = 1 microsecond

● Transmission time of 1 bit of data at a bandwidth of 2 Mbps?
○ 1 bit / 2,000,000 bps = 1/2,000,000 seconds = 0.5 microseconds

Bandwidth-Delay Product
● Product between bandwidth and

propagation delay
○ Units in bits (bps * s = b)

● Propagation delay is either one
way latency or RTT

○ Usually RTT

● Conceptually defines the maximum
amount of data that can be “in-flight”
at a given time

○ think the amount of water in a pipe

Exercises!

Exercise 1
Suppose we have a network link with a bandwidth of 10 Mbps. We want to
send a 100 KB file to a friend somewhere else in the network. The RTT from us
to our friend is 20 ms. How long does it take for the entire file to be delivered?

● Transmit time = 100 KB / 10 Mbps = 100,000 B / 10 Mbps
= 800,000 b / 10,000,000 bps = 0.08 seconds = 80 ms

● At t=80ms, the final bit of data is transmitted onto the wire.
○ This bit still needs to actually travel to the destination (propagation delay)

● At t=90ms, the final bit of data arrives at the destination
○ Note that we added ½ of the RTT!

Consider a point to point link 50 km in length. Suppose the propagation speed is 2
* 108 m/s. At what bandwidth in Mbps would the propagation delay equal the
transmit delay for 100 B packets?

● Propagation delay = Distance / Speed Of Light (varies by medium)
○ = 50 * 103 m / (2 * 108 m/s) = .00025 seconds = 250 microseconds

● Transmit = Size / Bandwidth
○ 250 microseconds = 100 B / x Mbps (solve for X)
○ 100 * 8 = 800 bits -> 800 bits / 250 μs = 3.2 Mbps

What about for 512 byte packets?
● 512 * 8 bits / 250 μs = 16.4 Mbps

Exercise 2

Suppose a 128-kbps point-to-point link is set up between Earth and a SpaceX
colony on Mars. The distance from Earth to Mars (when they are closest
together) is approximately 55 Gm, and data travels over the link at the speed of
light (3 * 108 m/s)

● Calculate the minimum RTT for the link.
● Calculate the delay x bandwidth product for the link.
● Say your aunt Betty takes a selfie on Olympus Mons, and sends a 5 MB

picture to you on Earth. How quickly after the picture is taken can you
receive the image from Betty?

Exercise 3

Suppose a 128-kbps point-to-point link is set up between Earth and a SpaceX
colony on Mars. The distance from Earth to Mars (when they are closest
together) is approximately 55 Gm, and data travels over the link at the speed of
light (3 * 108 m/s)

● Calculate the minimum RTT for the link.
○ RTT = 2 * Propagation delay = 2 * 55 * 109 m / (3 * 108 m/s) = 2 * 184 = 368 seconds

● Calculate the delay x bandwidth product for the link.
○ delay x bandwidth = 368 seconds * (128 * 103 bps) = 5.888 MB

● Say your aunt Betty takes a selfie on Olympus Mons, and sends a 5 MB
picture to you on Earth. How quickly after the picture is taken can you
receive the image from Betty?

○ Transmit delay for 5 MB = 40,000,000 bits / (128 * 103 bps) = 312.5 seconds
○ Total time = transmit delay + propagation delay = 312.5 + 184 = 496.5 seconds = about 9

minutes

Exercise 3

That’s it!

