
Sections Week 3

Mohan Kukreja, Anirudh Kumar

Administrivia

● Project-1 is due Today at 11:00 PM
● Homework 2 is due on 30th January 11:00PM

Internet Checksum

● Sum is defined in 1s complement arithmetic (must add back carries)
○ And it’s the negative sum

● “The checksum field is the 16 bit one's complement of the one's complement sum

of all 16 bit words …” – RFC 791

● In other words, it’s the value that when added to the header, the result is 0xffff

Example Problem 1

Message: 0x466F726F757A616E

Solution 1

1) First sum
normally

2) Add the back
carry

3) Negate

 466F
 726F
 757A
 616E

 18FC6

 8FC6
 1

 8FC7

 ~8FC7

 7038

7038

Example Problem 2

Message: 0x466F726F757A616E7038

Solution 2

1) First sum
normally

2) Add the back
carry

3) Negate

 466F
 726F
 757A
 616E
 7038

 1FFFE

 FFFE
 1

 FFFF

 ~FFFF

 0000

0x0000

CRC

● Uses a generator polynomial and polynomial division to calculate a
error-detecting code.

● For a polynomial of degree n, it creates a check of n bits.

Example Problem 1

Message: 0b10100110
Polynomial: x + 1

Solution 1

← The actual remainder is 0, and thus the CRC
remainder is 0.

← Note: use XOR instead of
minus.

0b0

Example Problem 2

Message: 0b11100101
Polynomial: x3 + x2

Solution 1

← The actual remainder is 1, we add n bits then re-zero out to
get CRC, done above.

← The actual
CRC

0b100

Interesting Things to Note

● x + 1 as a generator polynomial results in a parity bit.
● Has the nice property of being easy to implement in

hardware.
● Doesn’t guard against intentional changing of data.

Hamming Distance & Hamming Code

● Review: Distance is the number of bit flips needed to change
D1 to D2

● Hamming distance of a coding is the minimum error distance between any pair of
codewords (bit-strings) that cannot be detected

● Error detection:
○ For a coding of distance d+1, up to d errors will always be detected

● Error correction:
○ For a coding of distance 2d+1, up to d errors can always be corrected

by mapping to the closest valid codeword

Why Error Correction is Hard

● If we had reliable check bits we could use them to narrow down the position of
the error

○ Then correction would be easy
● But error could be in the check bits as well as the data bits!

○ Data might even be correct

● Gives a method for constructing a code with a distance of 3
○ Uses n = 2k – k – 1, e.g., n=4, k=3
○ Put check bits in positions p that are powers of 2, starting with position 1
○ Check bit in position p is parity of positions whose p-th

● LSBit is same as p’s
○ Plus an easy way to correct [soon]

Hamming Code

Hamming Code

● Example: data=0101, 3 check bits
○ 7 bit code, check bit positions 1, 2, 4

Hamming Code

● Example: data=0101, 3 check bits
○ 7 bit code, check bit positions 1, 2, 4
○ Check 1 covers positions 1, 3, 5, 7
○ Check 2 covers positions 2, 3, 6, 7
○ Check 4 covers positions 4, 5, 6, 7

Hamming Code

● To decode:
○ Recompute check bits (with parity sum including the check bit)
○ Arrange as a binary number
○ Value (syndrome) tells error position

■ Value of zero means no error
■ Otherwise, flip bit to correct

Hamming Code

Hamming Code

Hamming Code

Hamming Code

Hamming Code

● Example: bad message 0100111
○ 7 bit code, check bit positions 1, 2, 4 • Check 1 covers positions 1, 3, 5, 7
○ Check 2 covers positions 2, 3, 6, 7
○ Check 4 covers positions 4, 5, 6, 7

