Sections Week 3

Mohan Kukreja, Anirudh Kumar

Administrivia

- Project-1 is due Today at 11:00 PM
- Homework 2 is due on 30th January 11:00PM

Internet Checksum

- Sum is defined in 1s complement arithmetic (must add back carries)
 - And it's the negative sum
- "The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words ..." – RFC 791
- In other words, it's the value that when added to the header, the result is 0xffff

Example Problem 1

Message: 0x466F726F757A616E

Solution 1

466F		
726F	8FC6	0.507
757A	1	~8FC/
616E		
	8FC7	7038
18FC6		
l) First sum	2) Add the back	3) Negate
normally	carry	

Example Problem 2

Message: 0x466F726F757A616E7038

Solution 2

466F		
726F	FFFE	
757A	1	~ F. F. F. F.
616E		
7038	FFFF	0000
1FFFE		
1) First sum normally	2) Add the back carry	3) Negate

0x0000

CRC

- Uses a generator polynomial and polynomial division to calculate a error-detecting code.
- For a polynomial of degree n, it creates a check of n bits.

Example Problem 1

Message: 0b10100110 Polynomial: x + 1

 \leftarrow The actual remainder is 0, and thus the CRC remainder is 0.

0b0

Example Problem 2

Message: 0b11100101 Polynomial: $x^3 + x^2$

 \leftarrow The actual remainder is 1, we add n bits then re-zero out to get CRC, done above.

0b100

Interesting Things to Note

- x + 1 as a generator polynomial results in a parity bit.
- Has the nice property of being easy to implement in hardware.
- Doesn't guard against intentional changing of data.

$\operatorname{CRC}(x \oplus y) = \operatorname{CRC}(x) \oplus \operatorname{CRC}(y)$

Hamming Distance & Hamming Code

- Review: Distance is the number of bit flips needed to change D1 to D2
- Hamming distance of a coding is the minimum error distance between any pair of codewords (bit-strings) that cannot be detected
- Error detection:
 - For a coding of distance **d+1**, up to **d** errors will always be detected
- Error correction:
 - For a coding of distance **2d+1**, up to **d** errors can always be corrected by mapping to the closest valid codeword

Why Error Correction is Hard

- If we had reliable check bits we could use them to narrow down the position of the error
 - Then correction would be easy
- But error could be in the check bits as well as the data bits!
 - Data might even be correct

- Gives a method for constructing a code with a distance of 3
 - Uses $n = 2^k k 1$, e.g., n=4, k=3
 - Put check bits in positions p that are powers of 2, starting with position 1
 - Check bit in position p is parity of positions whose p-th
- LSBit is same as p's
 - Plus an easy way to correct [soon]

- Example: data=0101, 3 check bits
 - 7 bit code, check bit positions 1, 2, 4

1 2 3 4 5 6 7

- Example: data=0101, 3 check bits
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6, 7

- To decode:
 - Recompute check bits (with parity sum including the check bit)
 - Arrange as a binary number
 - Value (syndrome) tells error position
 - Value of zero means no error
 - Otherwise, flip bit to correct

• Example, continued $\rightarrow 0 1 0 0 1 0 1$ 1 2 3 4 5 6 7 $p_1 = p_2 =$ $p_4 =$ Syndrome = Data =

• Example, continued $\longrightarrow \underline{0} \ \underline{1} \ 0 \ \underline{0} \ 1 \ 0 \ 1$ $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$

```
p_1 = 0+0+1+1 = 0, p_2 = 1+0+0+1 = 0, p_4 = 0+1+0+1 = 0
```

Syndrome = 000, no error Data = 0 1 0 1

• Example, continued $\rightarrow 0 1 0 0 1 1 1$ 1 2 3 4 5 6 7 $p_1 = p_2 =$ $p_4 =$ Syndrome = Data =

• Example, continued $\rightarrow 0 1 0 0 1 1 1$ 1 2 3 4 5 6 7 $p_1 = 0+0+1+1 = 0, p_2 = 1+0+1+1 = 1,$ $p_4 = 0+1+1+1 = 1$

Syndrome = 1 1 0, flip position 6 Data = 0 1 0 1 (correct after flip!)

- Example: bad message 0100111
 - 7 bit code, check bit positions 1, 2, 4 Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6, 7

 $p_1 = 0 + 0 + 1 + 1 = 0$, $p_2 = 1 + 0 + 1 + 1 = 1$, $p_4 = 0 + 1 + 1 + 1 = 1$